forked from Minki/linux
38e9002b85
Added new core param for low speed, which can be used only when SNPSID is equal to DWC2_CORE_FS_IOT. When LS mode is enabled, we are restricting ep types and providing to upper layer only INTR and CTRL endpoints. Signed-off-by: Vardan Mikayelyan <mvardan@synopsys.com> Signed-off-by: John Youn <johnyoun@synopsys.com> Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com>
1242 lines
48 KiB
C
1242 lines
48 KiB
C
/*
|
|
* core.h - DesignWare HS OTG Controller common declarations
|
|
*
|
|
* Copyright (C) 2004-2013 Synopsys, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The names of the above-listed copyright holders may not be used
|
|
* to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* ALTERNATIVELY, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") as published by the Free Software
|
|
* Foundation; either version 2 of the License, or (at your option) any
|
|
* later version.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __DWC2_CORE_H__
|
|
#define __DWC2_CORE_H__
|
|
|
|
#include <linux/phy/phy.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/usb/gadget.h>
|
|
#include <linux/usb/otg.h>
|
|
#include <linux/usb/phy.h>
|
|
#include "hw.h"
|
|
|
|
/*
|
|
* Suggested defines for tracers:
|
|
* - no_printk: Disable tracing
|
|
* - pr_info: Print this info to the console
|
|
* - trace_printk: Print this info to trace buffer (good for verbose logging)
|
|
*/
|
|
|
|
#define DWC2_TRACE_SCHEDULER no_printk
|
|
#define DWC2_TRACE_SCHEDULER_VB no_printk
|
|
|
|
/* Detailed scheduler tracing, but won't overwhelm console */
|
|
#define dwc2_sch_dbg(hsotg, fmt, ...) \
|
|
DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \
|
|
dev_name(hsotg->dev), ##__VA_ARGS__)
|
|
|
|
/* Verbose scheduler tracing */
|
|
#define dwc2_sch_vdbg(hsotg, fmt, ...) \
|
|
DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \
|
|
dev_name(hsotg->dev), ##__VA_ARGS__)
|
|
|
|
#ifdef CONFIG_MIPS
|
|
/*
|
|
* There are some MIPS machines that can run in either big-endian
|
|
* or little-endian mode and that use the dwc2 register without
|
|
* a byteswap in both ways.
|
|
* Unlike other architectures, MIPS apparently does not require a
|
|
* barrier before the __raw_writel() to synchronize with DMA but does
|
|
* require the barrier after the __raw_writel() to serialize a set of
|
|
* writes. This set of operations was added specifically for MIPS and
|
|
* should only be used there.
|
|
*/
|
|
static inline u32 dwc2_readl(const void __iomem *addr)
|
|
{
|
|
u32 value = __raw_readl(addr);
|
|
|
|
/* In order to preserve endianness __raw_* operation is used. Therefore
|
|
* a barrier is needed to ensure IO access is not re-ordered across
|
|
* reads or writes
|
|
*/
|
|
mb();
|
|
return value;
|
|
}
|
|
|
|
static inline void dwc2_writel(u32 value, void __iomem *addr)
|
|
{
|
|
__raw_writel(value, addr);
|
|
|
|
/*
|
|
* In order to preserve endianness __raw_* operation is used. Therefore
|
|
* a barrier is needed to ensure IO access is not re-ordered across
|
|
* reads or writes
|
|
*/
|
|
mb();
|
|
#ifdef DWC2_LOG_WRITES
|
|
pr_info("INFO:: wrote %08x to %p\n", value, addr);
|
|
#endif
|
|
}
|
|
#else
|
|
/* Normal architectures just use readl/write */
|
|
static inline u32 dwc2_readl(const void __iomem *addr)
|
|
{
|
|
return readl(addr);
|
|
}
|
|
|
|
static inline void dwc2_writel(u32 value, void __iomem *addr)
|
|
{
|
|
writel(value, addr);
|
|
|
|
#ifdef DWC2_LOG_WRITES
|
|
pr_info("info:: wrote %08x to %p\n", value, addr);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* Maximum number of Endpoints/HostChannels */
|
|
#define MAX_EPS_CHANNELS 16
|
|
|
|
/* dwc2-hsotg declarations */
|
|
static const char * const dwc2_hsotg_supply_names[] = {
|
|
"vusb_d", /* digital USB supply, 1.2V */
|
|
"vusb_a", /* analog USB supply, 1.1V */
|
|
};
|
|
|
|
/*
|
|
* EP0_MPS_LIMIT
|
|
*
|
|
* Unfortunately there seems to be a limit of the amount of data that can
|
|
* be transferred by IN transactions on EP0. This is either 127 bytes or 3
|
|
* packets (which practically means 1 packet and 63 bytes of data) when the
|
|
* MPS is set to 64.
|
|
*
|
|
* This means if we are wanting to move >127 bytes of data, we need to
|
|
* split the transactions up, but just doing one packet at a time does
|
|
* not work (this may be an implicit DATA0 PID on first packet of the
|
|
* transaction) and doing 2 packets is outside the controller's limits.
|
|
*
|
|
* If we try to lower the MPS size for EP0, then no transfers work properly
|
|
* for EP0, and the system will fail basic enumeration. As no cause for this
|
|
* has currently been found, we cannot support any large IN transfers for
|
|
* EP0.
|
|
*/
|
|
#define EP0_MPS_LIMIT 64
|
|
|
|
struct dwc2_hsotg;
|
|
struct dwc2_hsotg_req;
|
|
|
|
/**
|
|
* struct dwc2_hsotg_ep - driver endpoint definition.
|
|
* @ep: The gadget layer representation of the endpoint.
|
|
* @name: The driver generated name for the endpoint.
|
|
* @queue: Queue of requests for this endpoint.
|
|
* @parent: Reference back to the parent device structure.
|
|
* @req: The current request that the endpoint is processing. This is
|
|
* used to indicate an request has been loaded onto the endpoint
|
|
* and has yet to be completed (maybe due to data move, or simply
|
|
* awaiting an ack from the core all the data has been completed).
|
|
* @debugfs: File entry for debugfs file for this endpoint.
|
|
* @lock: State lock to protect contents of endpoint.
|
|
* @dir_in: Set to true if this endpoint is of the IN direction, which
|
|
* means that it is sending data to the Host.
|
|
* @index: The index for the endpoint registers.
|
|
* @mc: Multi Count - number of transactions per microframe
|
|
* @interval - Interval for periodic endpoints, in frames or microframes.
|
|
* @name: The name array passed to the USB core.
|
|
* @halted: Set if the endpoint has been halted.
|
|
* @periodic: Set if this is a periodic ep, such as Interrupt
|
|
* @isochronous: Set if this is a isochronous ep
|
|
* @send_zlp: Set if we need to send a zero-length packet.
|
|
* @desc_list_dma: The DMA address of descriptor chain currently in use.
|
|
* @desc_list: Pointer to descriptor DMA chain head currently in use.
|
|
* @desc_count: Count of entries within the DMA descriptor chain of EP.
|
|
* @isoc_chain_num: Number of ISOC chain currently in use - either 0 or 1.
|
|
* @next_desc: index of next free descriptor in the ISOC chain under SW control.
|
|
* @total_data: The total number of data bytes done.
|
|
* @fifo_size: The size of the FIFO (for periodic IN endpoints)
|
|
* @fifo_load: The amount of data loaded into the FIFO (periodic IN)
|
|
* @last_load: The offset of data for the last start of request.
|
|
* @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
|
|
* @target_frame: Targeted frame num to setup next ISOC transfer
|
|
* @frame_overrun: Indicates SOF number overrun in DSTS
|
|
*
|
|
* This is the driver's state for each registered enpoint, allowing it
|
|
* to keep track of transactions that need doing. Each endpoint has a
|
|
* lock to protect the state, to try and avoid using an overall lock
|
|
* for the host controller as much as possible.
|
|
*
|
|
* For periodic IN endpoints, we have fifo_size and fifo_load to try
|
|
* and keep track of the amount of data in the periodic FIFO for each
|
|
* of these as we don't have a status register that tells us how much
|
|
* is in each of them. (note, this may actually be useless information
|
|
* as in shared-fifo mode periodic in acts like a single-frame packet
|
|
* buffer than a fifo)
|
|
*/
|
|
struct dwc2_hsotg_ep {
|
|
struct usb_ep ep;
|
|
struct list_head queue;
|
|
struct dwc2_hsotg *parent;
|
|
struct dwc2_hsotg_req *req;
|
|
struct dentry *debugfs;
|
|
|
|
unsigned long total_data;
|
|
unsigned int size_loaded;
|
|
unsigned int last_load;
|
|
unsigned int fifo_load;
|
|
unsigned short fifo_size;
|
|
unsigned short fifo_index;
|
|
|
|
unsigned char dir_in;
|
|
unsigned char index;
|
|
unsigned char mc;
|
|
unsigned char interval;
|
|
|
|
unsigned int halted:1;
|
|
unsigned int periodic:1;
|
|
unsigned int isochronous:1;
|
|
unsigned int send_zlp:1;
|
|
unsigned int target_frame;
|
|
#define TARGET_FRAME_INITIAL 0xFFFFFFFF
|
|
bool frame_overrun;
|
|
|
|
dma_addr_t desc_list_dma;
|
|
struct dwc2_dma_desc *desc_list;
|
|
u8 desc_count;
|
|
|
|
unsigned char isoc_chain_num;
|
|
unsigned int next_desc;
|
|
|
|
char name[10];
|
|
};
|
|
|
|
/**
|
|
* struct dwc2_hsotg_req - data transfer request
|
|
* @req: The USB gadget request
|
|
* @queue: The list of requests for the endpoint this is queued for.
|
|
* @saved_req_buf: variable to save req.buf when bounce buffers are used.
|
|
*/
|
|
struct dwc2_hsotg_req {
|
|
struct usb_request req;
|
|
struct list_head queue;
|
|
void *saved_req_buf;
|
|
};
|
|
|
|
#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
|
|
#define call_gadget(_hs, _entry) \
|
|
do { \
|
|
if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
|
|
(_hs)->driver && (_hs)->driver->_entry) { \
|
|
spin_unlock(&_hs->lock); \
|
|
(_hs)->driver->_entry(&(_hs)->gadget); \
|
|
spin_lock(&_hs->lock); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define call_gadget(_hs, _entry) do {} while (0)
|
|
#endif
|
|
|
|
struct dwc2_hsotg;
|
|
struct dwc2_host_chan;
|
|
|
|
/* Device States */
|
|
enum dwc2_lx_state {
|
|
DWC2_L0, /* On state */
|
|
DWC2_L1, /* LPM sleep state */
|
|
DWC2_L2, /* USB suspend state */
|
|
DWC2_L3, /* Off state */
|
|
};
|
|
|
|
/*
|
|
* Gadget periodic tx fifo sizes as used by legacy driver
|
|
* EP0 is not included
|
|
*/
|
|
#define DWC2_G_P_LEGACY_TX_FIFO_SIZE {256, 256, 256, 256, 768, 768, 768, \
|
|
768, 0, 0, 0, 0, 0, 0, 0}
|
|
|
|
/* Gadget ep0 states */
|
|
enum dwc2_ep0_state {
|
|
DWC2_EP0_SETUP,
|
|
DWC2_EP0_DATA_IN,
|
|
DWC2_EP0_DATA_OUT,
|
|
DWC2_EP0_STATUS_IN,
|
|
DWC2_EP0_STATUS_OUT,
|
|
};
|
|
|
|
/**
|
|
* struct dwc2_core_params - Parameters for configuring the core
|
|
*
|
|
* @otg_cap: Specifies the OTG capabilities.
|
|
* 0 - HNP and SRP capable
|
|
* 1 - SRP Only capable
|
|
* 2 - No HNP/SRP capable (always available)
|
|
* Defaults to best available option (0, 1, then 2)
|
|
* @otg_ver: OTG version supported
|
|
* 0 - 1.3 (default)
|
|
* 1 - 2.0
|
|
* @host_dma: Specifies whether to use slave or DMA mode for accessing
|
|
* the data FIFOs. The driver will automatically detect the
|
|
* value for this parameter if none is specified.
|
|
* 0 - Slave (always available)
|
|
* 1 - DMA (default, if available)
|
|
* @dma_desc_enable: When DMA mode is enabled, specifies whether to use
|
|
* address DMA mode or descriptor DMA mode for accessing
|
|
* the data FIFOs. The driver will automatically detect the
|
|
* value for this if none is specified.
|
|
* 0 - Address DMA
|
|
* 1 - Descriptor DMA (default, if available)
|
|
* @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
|
|
* address DMA mode or descriptor DMA mode for accessing
|
|
* the data FIFOs in Full Speed mode only. The driver
|
|
* will automatically detect the value for this if none is
|
|
* specified.
|
|
* 0 - Address DMA
|
|
* 1 - Descriptor DMA in FS (default, if available)
|
|
* @speed: Specifies the maximum speed of operation in host and
|
|
* device mode. The actual speed depends on the speed of
|
|
* the attached device and the value of phy_type.
|
|
* 0 - High Speed
|
|
* (default when phy_type is UTMI+ or ULPI)
|
|
* 1 - Full Speed
|
|
* (default when phy_type is Full Speed)
|
|
* @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
|
|
* 1 - Allow dynamic FIFO sizing (default, if available)
|
|
* @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
|
|
* are enabled for non-periodic IN endpoints in device
|
|
* mode.
|
|
* @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when
|
|
* dynamic FIFO sizing is enabled
|
|
* 16 to 32768
|
|
* Actual maximum value is autodetected and also
|
|
* the default.
|
|
* @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
|
|
* in host mode when dynamic FIFO sizing is enabled
|
|
* 16 to 32768
|
|
* Actual maximum value is autodetected and also
|
|
* the default.
|
|
* @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
|
|
* host mode when dynamic FIFO sizing is enabled
|
|
* 16 to 32768
|
|
* Actual maximum value is autodetected and also
|
|
* the default.
|
|
* @max_transfer_size: The maximum transfer size supported, in bytes
|
|
* 2047 to 65,535
|
|
* Actual maximum value is autodetected and also
|
|
* the default.
|
|
* @max_packet_count: The maximum number of packets in a transfer
|
|
* 15 to 511
|
|
* Actual maximum value is autodetected and also
|
|
* the default.
|
|
* @host_channels: The number of host channel registers to use
|
|
* 1 to 16
|
|
* Actual maximum value is autodetected and also
|
|
* the default.
|
|
* @phy_type: Specifies the type of PHY interface to use. By default,
|
|
* the driver will automatically detect the phy_type.
|
|
* 0 - Full Speed Phy
|
|
* 1 - UTMI+ Phy
|
|
* 2 - ULPI Phy
|
|
* Defaults to best available option (2, 1, then 0)
|
|
* @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter
|
|
* is applicable for a phy_type of UTMI+ or ULPI. (For a
|
|
* ULPI phy_type, this parameter indicates the data width
|
|
* between the MAC and the ULPI Wrapper.) Also, this
|
|
* parameter is applicable only if the OTG_HSPHY_WIDTH cC
|
|
* parameter was set to "8 and 16 bits", meaning that the
|
|
* core has been configured to work at either data path
|
|
* width.
|
|
* 8 or 16 (default 16 if available)
|
|
* @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single
|
|
* data rate. This parameter is only applicable if phy_type
|
|
* is ULPI.
|
|
* 0 - single data rate ULPI interface with 8 bit wide
|
|
* data bus (default)
|
|
* 1 - double data rate ULPI interface with 4 bit wide
|
|
* data bus
|
|
* @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or
|
|
* external supply to drive the VBus
|
|
* 0 - Internal supply (default)
|
|
* 1 - External supply
|
|
* @i2c_enable: Specifies whether to use the I2Cinterface for a full
|
|
* speed PHY. This parameter is only applicable if phy_type
|
|
* is FS.
|
|
* 0 - No (default)
|
|
* 1 - Yes
|
|
* @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only
|
|
* 0 - No (default)
|
|
* 1 - Yes
|
|
* @host_support_fs_ls_low_power: Specifies whether low power mode is supported
|
|
* when attached to a Full Speed or Low Speed device in
|
|
* host mode.
|
|
* 0 - Don't support low power mode (default)
|
|
* 1 - Support low power mode
|
|
* @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
|
|
* when connected to a Low Speed device in host
|
|
* mode. This parameter is applicable only if
|
|
* host_support_fs_ls_low_power is enabled.
|
|
* 0 - 48 MHz
|
|
* (default when phy_type is UTMI+ or ULPI)
|
|
* 1 - 6 MHz
|
|
* (default when phy_type is Full Speed)
|
|
* @ts_dline: Enable Term Select Dline pulsing
|
|
* 0 - No (default)
|
|
* 1 - Yes
|
|
* @reload_ctl: Allow dynamic reloading of HFIR register during runtime
|
|
* 0 - No (default for core < 2.92a)
|
|
* 1 - Yes (default for core >= 2.92a)
|
|
* @ahbcfg: This field allows the default value of the GAHBCFG
|
|
* register to be overridden
|
|
* -1 - GAHBCFG value will be set to 0x06
|
|
* (INCR4, default)
|
|
* all others - GAHBCFG value will be overridden with
|
|
* this value
|
|
* Not all bits can be controlled like this, the
|
|
* bits defined by GAHBCFG_CTRL_MASK are controlled
|
|
* by the driver and are ignored in this
|
|
* configuration value.
|
|
* @uframe_sched: True to enable the microframe scheduler
|
|
* @external_id_pin_ctl: Specifies whether ID pin is handled externally.
|
|
* Disable CONIDSTSCHNG controller interrupt in such
|
|
* case.
|
|
* 0 - No (default)
|
|
* 1 - Yes
|
|
* @hibernation: Specifies whether the controller support hibernation.
|
|
* If hibernation is enabled, the controller will enter
|
|
* hibernation in both peripheral and host mode when
|
|
* needed.
|
|
* 0 - No (default)
|
|
* 1 - Yes
|
|
* @g_dma: Enables gadget dma usage (default: autodetect).
|
|
* @g_dma_desc: Enables gadget descriptor DMA (default: autodetect).
|
|
* @g_rx_fifo_size: The periodic rx fifo size for the device, in
|
|
* DWORDS from 16-32768 (default: 2048 if
|
|
* possible, otherwise autodetect).
|
|
* @g_np_tx_fifo_size: The non-periodic tx fifo size for the device in
|
|
* DWORDS from 16-32768 (default: 1024 if
|
|
* possible, otherwise autodetect).
|
|
* @g_tx_fifo_size: An array of TX fifo sizes in dedicated fifo
|
|
* mode. Each value corresponds to one EP
|
|
* starting from EP1 (max 15 values). Sizes are
|
|
* in DWORDS with possible values from from
|
|
* 16-32768 (default: 256, 256, 256, 256, 768,
|
|
* 768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
|
|
*
|
|
* The following parameters may be specified when starting the module. These
|
|
* parameters define how the DWC_otg controller should be configured. A
|
|
* value of -1 (or any other out of range value) for any parameter means
|
|
* to read the value from hardware (if possible) or use the builtin
|
|
* default described above.
|
|
*/
|
|
struct dwc2_core_params {
|
|
/*
|
|
* Don't add any non-int members here, this will break
|
|
* dwc2_set_all_params!
|
|
*/
|
|
int otg_cap;
|
|
#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE 0
|
|
#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE 1
|
|
#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
|
|
|
|
int otg_ver;
|
|
int dma_desc_enable;
|
|
int dma_desc_fs_enable;
|
|
int speed;
|
|
#define DWC2_SPEED_PARAM_HIGH 0
|
|
#define DWC2_SPEED_PARAM_FULL 1
|
|
#define DWC2_SPEED_PARAM_LOW 2
|
|
|
|
int enable_dynamic_fifo;
|
|
int en_multiple_tx_fifo;
|
|
int host_rx_fifo_size;
|
|
int host_nperio_tx_fifo_size;
|
|
int host_perio_tx_fifo_size;
|
|
int max_transfer_size;
|
|
int max_packet_count;
|
|
int host_channels;
|
|
int phy_type;
|
|
#define DWC2_PHY_TYPE_PARAM_FS 0
|
|
#define DWC2_PHY_TYPE_PARAM_UTMI 1
|
|
#define DWC2_PHY_TYPE_PARAM_ULPI 2
|
|
|
|
int phy_utmi_width;
|
|
int phy_ulpi_ddr;
|
|
int phy_ulpi_ext_vbus;
|
|
#define DWC2_PHY_ULPI_INTERNAL_VBUS 0
|
|
#define DWC2_PHY_ULPI_EXTERNAL_VBUS 1
|
|
|
|
int i2c_enable;
|
|
int ulpi_fs_ls;
|
|
int host_support_fs_ls_low_power;
|
|
int host_ls_low_power_phy_clk;
|
|
#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
|
|
#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
|
|
|
|
int ts_dline;
|
|
int reload_ctl;
|
|
int ahbcfg;
|
|
int uframe_sched;
|
|
int external_id_pin_ctl;
|
|
int hibernation;
|
|
|
|
/*
|
|
* The following parameters are *only* set via device
|
|
* properties and cannot be set directly in this structure.
|
|
*/
|
|
|
|
/* Host parameters */
|
|
bool host_dma;
|
|
|
|
/* Gadget parameters */
|
|
bool g_dma;
|
|
bool g_dma_desc;
|
|
u16 g_rx_fifo_size;
|
|
u16 g_np_tx_fifo_size;
|
|
u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
|
|
};
|
|
|
|
/**
|
|
* struct dwc2_hw_params - Autodetected parameters.
|
|
*
|
|
* These parameters are the various parameters read from hardware
|
|
* registers during initialization. They typically contain the best
|
|
* supported or maximum value that can be configured in the
|
|
* corresponding dwc2_core_params value.
|
|
*
|
|
* The values that are not in dwc2_core_params are documented below.
|
|
*
|
|
* @op_mode Mode of Operation
|
|
* 0 - HNP- and SRP-Capable OTG (Host & Device)
|
|
* 1 - SRP-Capable OTG (Host & Device)
|
|
* 2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
|
|
* 3 - SRP-Capable Device
|
|
* 4 - Non-OTG Device
|
|
* 5 - SRP-Capable Host
|
|
* 6 - Non-OTG Host
|
|
* @arch Architecture
|
|
* 0 - Slave only
|
|
* 1 - External DMA
|
|
* 2 - Internal DMA
|
|
* @power_optimized Are power optimizations enabled?
|
|
* @num_dev_ep Number of device endpoints available
|
|
* @num_dev_perio_in_ep Number of device periodic IN endpoints
|
|
* available
|
|
* @dev_token_q_depth Device Mode IN Token Sequence Learning Queue
|
|
* Depth
|
|
* 0 to 30
|
|
* @host_perio_tx_q_depth
|
|
* Host Mode Periodic Request Queue Depth
|
|
* 2, 4 or 8
|
|
* @nperio_tx_q_depth
|
|
* Non-Periodic Request Queue Depth
|
|
* 2, 4 or 8
|
|
* @hs_phy_type High-speed PHY interface type
|
|
* 0 - High-speed interface not supported
|
|
* 1 - UTMI+
|
|
* 2 - ULPI
|
|
* 3 - UTMI+ and ULPI
|
|
* @fs_phy_type Full-speed PHY interface type
|
|
* 0 - Full speed interface not supported
|
|
* 1 - Dedicated full speed interface
|
|
* 2 - FS pins shared with UTMI+ pins
|
|
* 3 - FS pins shared with ULPI pins
|
|
* @total_fifo_size: Total internal RAM for FIFOs (bytes)
|
|
* @utmi_phy_data_width UTMI+ PHY data width
|
|
* 0 - 8 bits
|
|
* 1 - 16 bits
|
|
* 2 - 8 or 16 bits
|
|
* @snpsid: Value from SNPSID register
|
|
* @dev_ep_dirs: Direction of device endpoints (GHWCFG1)
|
|
*/
|
|
struct dwc2_hw_params {
|
|
unsigned op_mode:3;
|
|
unsigned arch:2;
|
|
unsigned dma_desc_enable:1;
|
|
unsigned enable_dynamic_fifo:1;
|
|
unsigned en_multiple_tx_fifo:1;
|
|
unsigned rx_fifo_size:16;
|
|
unsigned host_nperio_tx_fifo_size:16;
|
|
unsigned dev_nperio_tx_fifo_size:16;
|
|
unsigned host_perio_tx_fifo_size:16;
|
|
unsigned nperio_tx_q_depth:3;
|
|
unsigned host_perio_tx_q_depth:3;
|
|
unsigned dev_token_q_depth:5;
|
|
unsigned max_transfer_size:26;
|
|
unsigned max_packet_count:11;
|
|
unsigned host_channels:5;
|
|
unsigned hs_phy_type:2;
|
|
unsigned fs_phy_type:2;
|
|
unsigned i2c_enable:1;
|
|
unsigned num_dev_ep:4;
|
|
unsigned num_dev_perio_in_ep:4;
|
|
unsigned total_fifo_size:16;
|
|
unsigned power_optimized:1;
|
|
unsigned utmi_phy_data_width:2;
|
|
u32 snpsid;
|
|
u32 dev_ep_dirs;
|
|
};
|
|
|
|
/* Size of control and EP0 buffers */
|
|
#define DWC2_CTRL_BUFF_SIZE 8
|
|
|
|
/**
|
|
* struct dwc2_gregs_backup - Holds global registers state before entering partial
|
|
* power down
|
|
* @gotgctl: Backup of GOTGCTL register
|
|
* @gintmsk: Backup of GINTMSK register
|
|
* @gahbcfg: Backup of GAHBCFG register
|
|
* @gusbcfg: Backup of GUSBCFG register
|
|
* @grxfsiz: Backup of GRXFSIZ register
|
|
* @gnptxfsiz: Backup of GNPTXFSIZ register
|
|
* @gi2cctl: Backup of GI2CCTL register
|
|
* @hptxfsiz: Backup of HPTXFSIZ register
|
|
* @gdfifocfg: Backup of GDFIFOCFG register
|
|
* @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
|
|
* @gpwrdn: Backup of GPWRDN register
|
|
*/
|
|
struct dwc2_gregs_backup {
|
|
u32 gotgctl;
|
|
u32 gintmsk;
|
|
u32 gahbcfg;
|
|
u32 gusbcfg;
|
|
u32 grxfsiz;
|
|
u32 gnptxfsiz;
|
|
u32 gi2cctl;
|
|
u32 hptxfsiz;
|
|
u32 pcgcctl;
|
|
u32 gdfifocfg;
|
|
u32 dtxfsiz[MAX_EPS_CHANNELS];
|
|
u32 gpwrdn;
|
|
bool valid;
|
|
};
|
|
|
|
/**
|
|
* struct dwc2_dregs_backup - Holds device registers state before entering partial
|
|
* power down
|
|
* @dcfg: Backup of DCFG register
|
|
* @dctl: Backup of DCTL register
|
|
* @daintmsk: Backup of DAINTMSK register
|
|
* @diepmsk: Backup of DIEPMSK register
|
|
* @doepmsk: Backup of DOEPMSK register
|
|
* @diepctl: Backup of DIEPCTL register
|
|
* @dieptsiz: Backup of DIEPTSIZ register
|
|
* @diepdma: Backup of DIEPDMA register
|
|
* @doepctl: Backup of DOEPCTL register
|
|
* @doeptsiz: Backup of DOEPTSIZ register
|
|
* @doepdma: Backup of DOEPDMA register
|
|
*/
|
|
struct dwc2_dregs_backup {
|
|
u32 dcfg;
|
|
u32 dctl;
|
|
u32 daintmsk;
|
|
u32 diepmsk;
|
|
u32 doepmsk;
|
|
u32 diepctl[MAX_EPS_CHANNELS];
|
|
u32 dieptsiz[MAX_EPS_CHANNELS];
|
|
u32 diepdma[MAX_EPS_CHANNELS];
|
|
u32 doepctl[MAX_EPS_CHANNELS];
|
|
u32 doeptsiz[MAX_EPS_CHANNELS];
|
|
u32 doepdma[MAX_EPS_CHANNELS];
|
|
bool valid;
|
|
};
|
|
|
|
/**
|
|
* struct dwc2_hregs_backup - Holds host registers state before entering partial
|
|
* power down
|
|
* @hcfg: Backup of HCFG register
|
|
* @haintmsk: Backup of HAINTMSK register
|
|
* @hcintmsk: Backup of HCINTMSK register
|
|
* @hptr0: Backup of HPTR0 register
|
|
* @hfir: Backup of HFIR register
|
|
*/
|
|
struct dwc2_hregs_backup {
|
|
u32 hcfg;
|
|
u32 haintmsk;
|
|
u32 hcintmsk[MAX_EPS_CHANNELS];
|
|
u32 hprt0;
|
|
u32 hfir;
|
|
bool valid;
|
|
};
|
|
|
|
/*
|
|
* Constants related to high speed periodic scheduling
|
|
*
|
|
* We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a
|
|
* reservation point of view it's assumed that the schedule goes right back to
|
|
* the beginning after the end of the schedule.
|
|
*
|
|
* What does that mean for scheduling things with a long interval? It means
|
|
* we'll reserve time for them in every possible microframe that they could
|
|
* ever be scheduled in. ...but we'll still only actually schedule them as
|
|
* often as they were requested.
|
|
*
|
|
* We keep our schedule in a "bitmap" structure. This simplifies having
|
|
* to keep track of and merge intervals: we just let the bitmap code do most
|
|
* of the heavy lifting. In a way scheduling is much like memory allocation.
|
|
*
|
|
* We schedule 100us per uframe or 80% of 125us (the maximum amount you're
|
|
* supposed to schedule for periodic transfers). That's according to spec.
|
|
*
|
|
* Note that though we only schedule 80% of each microframe, the bitmap that we
|
|
* keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
|
|
* space for each uFrame).
|
|
*
|
|
* Requirements:
|
|
* - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
|
|
* - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
|
|
* could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
|
|
* be bugs). The 8 comes from the USB spec: number of microframes per frame.
|
|
*/
|
|
#define DWC2_US_PER_UFRAME 125
|
|
#define DWC2_HS_PERIODIC_US_PER_UFRAME 100
|
|
|
|
#define DWC2_HS_SCHEDULE_UFRAMES 8
|
|
#define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \
|
|
DWC2_HS_PERIODIC_US_PER_UFRAME)
|
|
|
|
/*
|
|
* Constants related to low speed scheduling
|
|
*
|
|
* For high speed we schedule every 1us. For low speed that's a bit overkill,
|
|
* so we make up a unit called a "slice" that's worth 25us. There are 40
|
|
* slices in a full frame and we can schedule 36 of those (90%) for periodic
|
|
* transfers.
|
|
*
|
|
* Our low speed schedule can be as short as 1 frame or could be longer. When
|
|
* we only schedule 1 frame it means that we'll need to reserve a time every
|
|
* frame even for things that only transfer very rarely, so something that runs
|
|
* every 2048 frames will get time reserved in every frame. Our low speed
|
|
* schedule can be longer and we'll be able to handle more overlap, but that
|
|
* will come at increased memory cost and increased time to schedule.
|
|
*
|
|
* Note: one other advantage of a short low speed schedule is that if we mess
|
|
* up and miss scheduling we can jump in and use any of the slots that we
|
|
* happened to reserve.
|
|
*
|
|
* With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
|
|
* the schedule. There will be one schedule per TT.
|
|
*
|
|
* Requirements:
|
|
* - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
|
|
*/
|
|
#define DWC2_US_PER_SLICE 25
|
|
#define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
|
|
|
|
#define DWC2_ROUND_US_TO_SLICE(us) \
|
|
(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
|
|
DWC2_US_PER_SLICE)
|
|
|
|
#define DWC2_LS_PERIODIC_US_PER_FRAME \
|
|
900
|
|
#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
|
|
(DWC2_LS_PERIODIC_US_PER_FRAME / \
|
|
DWC2_US_PER_SLICE)
|
|
|
|
#define DWC2_LS_SCHEDULE_FRAMES 1
|
|
#define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
|
|
DWC2_LS_PERIODIC_SLICES_PER_FRAME)
|
|
|
|
/**
|
|
* struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
|
|
* and periodic schedules
|
|
*
|
|
* These are common for both host and peripheral modes:
|
|
*
|
|
* @dev: The struct device pointer
|
|
* @regs: Pointer to controller regs
|
|
* @hw_params: Parameters that were autodetected from the
|
|
* hardware registers
|
|
* @core_params: Parameters that define how the core should be configured
|
|
* @op_state: The operational State, during transitions (a_host=>
|
|
* a_peripheral and b_device=>b_host) this may not match
|
|
* the core, but allows the software to determine
|
|
* transitions
|
|
* @dr_mode: Requested mode of operation, one of following:
|
|
* - USB_DR_MODE_PERIPHERAL
|
|
* - USB_DR_MODE_HOST
|
|
* - USB_DR_MODE_OTG
|
|
* @hcd_enabled Host mode sub-driver initialization indicator.
|
|
* @gadget_enabled Peripheral mode sub-driver initialization indicator.
|
|
* @ll_hw_enabled Status of low-level hardware resources.
|
|
* @phy: The otg phy transceiver structure for phy control.
|
|
* @uphy: The otg phy transceiver structure for old USB phy control.
|
|
* @plat: The platform specific configuration data. This can be removed once
|
|
* all SoCs support usb transceiver.
|
|
* @supplies: Definition of USB power supplies
|
|
* @phyif: PHY interface width
|
|
* @lock: Spinlock that protects all the driver data structures
|
|
* @priv: Stores a pointer to the struct usb_hcd
|
|
* @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
|
|
* transfer are in process of being queued
|
|
* @srp_success: Stores status of SRP request in the case of a FS PHY
|
|
* with an I2C interface
|
|
* @wq_otg: Workqueue object used for handling of some interrupts
|
|
* @wf_otg: Work object for handling Connector ID Status Change
|
|
* interrupt
|
|
* @wkp_timer: Timer object for handling Wakeup Detected interrupt
|
|
* @lx_state: Lx state of connected device
|
|
* @gregs_backup: Backup of global registers during suspend
|
|
* @dregs_backup: Backup of device registers during suspend
|
|
* @hregs_backup: Backup of host registers during suspend
|
|
*
|
|
* These are for host mode:
|
|
*
|
|
* @flags: Flags for handling root port state changes
|
|
* @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
|
|
* Transfers associated with these QHs are not currently
|
|
* assigned to a host channel.
|
|
* @non_periodic_sched_active: Active QHs in the non-periodic schedule.
|
|
* Transfers associated with these QHs are currently
|
|
* assigned to a host channel.
|
|
* @non_periodic_qh_ptr: Pointer to next QH to process in the active
|
|
* non-periodic schedule
|
|
* @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
|
|
* list of QHs for periodic transfers that are _not_
|
|
* scheduled for the next frame. Each QH in the list has an
|
|
* interval counter that determines when it needs to be
|
|
* scheduled for execution. This scheduling mechanism
|
|
* allows only a simple calculation for periodic bandwidth
|
|
* used (i.e. must assume that all periodic transfers may
|
|
* need to execute in the same frame). However, it greatly
|
|
* simplifies scheduling and should be sufficient for the
|
|
* vast majority of OTG hosts, which need to connect to a
|
|
* small number of peripherals at one time. Items move from
|
|
* this list to periodic_sched_ready when the QH interval
|
|
* counter is 0 at SOF.
|
|
* @periodic_sched_ready: List of periodic QHs that are ready for execution in
|
|
* the next frame, but have not yet been assigned to host
|
|
* channels. Items move from this list to
|
|
* periodic_sched_assigned as host channels become
|
|
* available during the current frame.
|
|
* @periodic_sched_assigned: List of periodic QHs to be executed in the next
|
|
* frame that are assigned to host channels. Items move
|
|
* from this list to periodic_sched_queued as the
|
|
* transactions for the QH are queued to the DWC_otg
|
|
* controller.
|
|
* @periodic_sched_queued: List of periodic QHs that have been queued for
|
|
* execution. Items move from this list to either
|
|
* periodic_sched_inactive or periodic_sched_ready when the
|
|
* channel associated with the transfer is released. If the
|
|
* interval for the QH is 1, the item moves to
|
|
* periodic_sched_ready because it must be rescheduled for
|
|
* the next frame. Otherwise, the item moves to
|
|
* periodic_sched_inactive.
|
|
* @split_order: List keeping track of channels doing splits, in order.
|
|
* @periodic_usecs: Total bandwidth claimed so far for periodic transfers.
|
|
* This value is in microseconds per (micro)frame. The
|
|
* assumption is that all periodic transfers may occur in
|
|
* the same (micro)frame.
|
|
* @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
|
|
* host is in high speed mode; low speed schedules are
|
|
* stored elsewhere since we need one per TT.
|
|
* @frame_number: Frame number read from the core at SOF. The value ranges
|
|
* from 0 to HFNUM_MAX_FRNUM.
|
|
* @periodic_qh_count: Count of periodic QHs, if using several eps. Used for
|
|
* SOF enable/disable.
|
|
* @free_hc_list: Free host channels in the controller. This is a list of
|
|
* struct dwc2_host_chan items.
|
|
* @periodic_channels: Number of host channels assigned to periodic transfers.
|
|
* Currently assuming that there is a dedicated host
|
|
* channel for each periodic transaction and at least one
|
|
* host channel is available for non-periodic transactions.
|
|
* @non_periodic_channels: Number of host channels assigned to non-periodic
|
|
* transfers
|
|
* @available_host_channels Number of host channels available for the microframe
|
|
* scheduler to use
|
|
* @hc_ptr_array: Array of pointers to the host channel descriptors.
|
|
* Allows accessing a host channel descriptor given the
|
|
* host channel number. This is useful in interrupt
|
|
* handlers.
|
|
* @status_buf: Buffer used for data received during the status phase of
|
|
* a control transfer.
|
|
* @status_buf_dma: DMA address for status_buf
|
|
* @start_work: Delayed work for handling host A-cable connection
|
|
* @reset_work: Delayed work for handling a port reset
|
|
* @otg_port: OTG port number
|
|
* @frame_list: Frame list
|
|
* @frame_list_dma: Frame list DMA address
|
|
* @frame_list_sz: Frame list size
|
|
* @desc_gen_cache: Kmem cache for generic descriptors
|
|
* @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors
|
|
*
|
|
* These are for peripheral mode:
|
|
*
|
|
* @driver: USB gadget driver
|
|
* @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
|
|
* @num_of_eps: Number of available EPs (excluding EP0)
|
|
* @debug_root: Root directrory for debugfs.
|
|
* @debug_file: Main status file for debugfs.
|
|
* @debug_testmode: Testmode status file for debugfs.
|
|
* @debug_fifo: FIFO status file for debugfs.
|
|
* @ep0_reply: Request used for ep0 reply.
|
|
* @ep0_buff: Buffer for EP0 reply data, if needed.
|
|
* @ctrl_buff: Buffer for EP0 control requests.
|
|
* @ctrl_req: Request for EP0 control packets.
|
|
* @ep0_state: EP0 control transfers state
|
|
* @test_mode: USB test mode requested by the host
|
|
* @setup_desc_dma: EP0 setup stage desc chain DMA address
|
|
* @setup_desc: EP0 setup stage desc chain pointer
|
|
* @ctrl_in_desc_dma: EP0 IN data phase desc chain DMA address
|
|
* @ctrl_in_desc: EP0 IN data phase desc chain pointer
|
|
* @ctrl_out_desc_dma: EP0 OUT data phase desc chain DMA address
|
|
* @ctrl_out_desc: EP0 OUT data phase desc chain pointer
|
|
* @eps: The endpoints being supplied to the gadget framework
|
|
*/
|
|
struct dwc2_hsotg {
|
|
struct device *dev;
|
|
void __iomem *regs;
|
|
/** Params detected from hardware */
|
|
struct dwc2_hw_params hw_params;
|
|
/** Params to actually use */
|
|
struct dwc2_core_params params;
|
|
enum usb_otg_state op_state;
|
|
enum usb_dr_mode dr_mode;
|
|
unsigned int hcd_enabled:1;
|
|
unsigned int gadget_enabled:1;
|
|
unsigned int ll_hw_enabled:1;
|
|
|
|
struct phy *phy;
|
|
struct usb_phy *uphy;
|
|
struct dwc2_hsotg_plat *plat;
|
|
struct regulator_bulk_data supplies[ARRAY_SIZE(dwc2_hsotg_supply_names)];
|
|
u32 phyif;
|
|
|
|
spinlock_t lock;
|
|
void *priv;
|
|
int irq;
|
|
struct clk *clk;
|
|
struct reset_control *reset;
|
|
|
|
unsigned int queuing_high_bandwidth:1;
|
|
unsigned int srp_success:1;
|
|
|
|
struct workqueue_struct *wq_otg;
|
|
struct work_struct wf_otg;
|
|
struct timer_list wkp_timer;
|
|
enum dwc2_lx_state lx_state;
|
|
struct dwc2_gregs_backup gr_backup;
|
|
struct dwc2_dregs_backup dr_backup;
|
|
struct dwc2_hregs_backup hr_backup;
|
|
|
|
struct dentry *debug_root;
|
|
struct debugfs_regset32 *regset;
|
|
|
|
/* DWC OTG HW Release versions */
|
|
#define DWC2_CORE_REV_2_71a 0x4f54271a
|
|
#define DWC2_CORE_REV_2_90a 0x4f54290a
|
|
#define DWC2_CORE_REV_2_92a 0x4f54292a
|
|
#define DWC2_CORE_REV_2_94a 0x4f54294a
|
|
#define DWC2_CORE_REV_3_00a 0x4f54300a
|
|
#define DWC2_CORE_REV_3_10a 0x4f54310a
|
|
#define DWC2_FS_IOT_REV_1_00a 0x5531100a
|
|
#define DWC2_HS_IOT_REV_1_00a 0x5532100a
|
|
|
|
#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
|
|
union dwc2_hcd_internal_flags {
|
|
u32 d32;
|
|
struct {
|
|
unsigned port_connect_status_change:1;
|
|
unsigned port_connect_status:1;
|
|
unsigned port_reset_change:1;
|
|
unsigned port_enable_change:1;
|
|
unsigned port_suspend_change:1;
|
|
unsigned port_over_current_change:1;
|
|
unsigned port_l1_change:1;
|
|
unsigned reserved:25;
|
|
} b;
|
|
} flags;
|
|
|
|
struct list_head non_periodic_sched_inactive;
|
|
struct list_head non_periodic_sched_active;
|
|
struct list_head *non_periodic_qh_ptr;
|
|
struct list_head periodic_sched_inactive;
|
|
struct list_head periodic_sched_ready;
|
|
struct list_head periodic_sched_assigned;
|
|
struct list_head periodic_sched_queued;
|
|
struct list_head split_order;
|
|
u16 periodic_usecs;
|
|
unsigned long hs_periodic_bitmap[
|
|
DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
|
|
u16 frame_number;
|
|
u16 periodic_qh_count;
|
|
bool bus_suspended;
|
|
bool new_connection;
|
|
|
|
u16 last_frame_num;
|
|
|
|
#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
|
|
#define FRAME_NUM_ARRAY_SIZE 1000
|
|
u16 *frame_num_array;
|
|
u16 *last_frame_num_array;
|
|
int frame_num_idx;
|
|
int dumped_frame_num_array;
|
|
#endif
|
|
|
|
struct list_head free_hc_list;
|
|
int periodic_channels;
|
|
int non_periodic_channels;
|
|
int available_host_channels;
|
|
struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
|
|
u8 *status_buf;
|
|
dma_addr_t status_buf_dma;
|
|
#define DWC2_HCD_STATUS_BUF_SIZE 64
|
|
|
|
struct delayed_work start_work;
|
|
struct delayed_work reset_work;
|
|
u8 otg_port;
|
|
u32 *frame_list;
|
|
dma_addr_t frame_list_dma;
|
|
u32 frame_list_sz;
|
|
struct kmem_cache *desc_gen_cache;
|
|
struct kmem_cache *desc_hsisoc_cache;
|
|
|
|
#ifdef DEBUG
|
|
u32 frrem_samples;
|
|
u64 frrem_accum;
|
|
|
|
u32 hfnum_7_samples_a;
|
|
u64 hfnum_7_frrem_accum_a;
|
|
u32 hfnum_0_samples_a;
|
|
u64 hfnum_0_frrem_accum_a;
|
|
u32 hfnum_other_samples_a;
|
|
u64 hfnum_other_frrem_accum_a;
|
|
|
|
u32 hfnum_7_samples_b;
|
|
u64 hfnum_7_frrem_accum_b;
|
|
u32 hfnum_0_samples_b;
|
|
u64 hfnum_0_frrem_accum_b;
|
|
u32 hfnum_other_samples_b;
|
|
u64 hfnum_other_frrem_accum_b;
|
|
#endif
|
|
#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
|
|
|
|
#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
|
|
/* Gadget structures */
|
|
struct usb_gadget_driver *driver;
|
|
int fifo_mem;
|
|
unsigned int dedicated_fifos:1;
|
|
unsigned char num_of_eps;
|
|
u32 fifo_map;
|
|
|
|
struct usb_request *ep0_reply;
|
|
struct usb_request *ctrl_req;
|
|
void *ep0_buff;
|
|
void *ctrl_buff;
|
|
enum dwc2_ep0_state ep0_state;
|
|
u8 test_mode;
|
|
|
|
dma_addr_t setup_desc_dma[2];
|
|
struct dwc2_dma_desc *setup_desc[2];
|
|
dma_addr_t ctrl_in_desc_dma;
|
|
struct dwc2_dma_desc *ctrl_in_desc;
|
|
dma_addr_t ctrl_out_desc_dma;
|
|
struct dwc2_dma_desc *ctrl_out_desc;
|
|
|
|
struct usb_gadget gadget;
|
|
unsigned int enabled:1;
|
|
unsigned int connected:1;
|
|
struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
|
|
struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
|
|
#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
|
|
};
|
|
|
|
/* Reasons for halting a host channel */
|
|
enum dwc2_halt_status {
|
|
DWC2_HC_XFER_NO_HALT_STATUS,
|
|
DWC2_HC_XFER_COMPLETE,
|
|
DWC2_HC_XFER_URB_COMPLETE,
|
|
DWC2_HC_XFER_ACK,
|
|
DWC2_HC_XFER_NAK,
|
|
DWC2_HC_XFER_NYET,
|
|
DWC2_HC_XFER_STALL,
|
|
DWC2_HC_XFER_XACT_ERR,
|
|
DWC2_HC_XFER_FRAME_OVERRUN,
|
|
DWC2_HC_XFER_BABBLE_ERR,
|
|
DWC2_HC_XFER_DATA_TOGGLE_ERR,
|
|
DWC2_HC_XFER_AHB_ERR,
|
|
DWC2_HC_XFER_PERIODIC_INCOMPLETE,
|
|
DWC2_HC_XFER_URB_DEQUEUE,
|
|
};
|
|
|
|
/* Core version information */
|
|
static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
|
|
{
|
|
return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
|
|
}
|
|
|
|
static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
|
|
{
|
|
return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
|
|
}
|
|
|
|
static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
|
|
{
|
|
return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
|
|
}
|
|
|
|
/*
|
|
* The following functions support initialization of the core driver component
|
|
* and the DWC_otg controller
|
|
*/
|
|
extern int dwc2_core_reset(struct dwc2_hsotg *hsotg);
|
|
extern int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
|
|
extern int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
|
|
extern int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
|
|
|
|
bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host);
|
|
void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg);
|
|
void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
|
|
|
|
extern bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
|
|
|
|
/*
|
|
* Common core Functions.
|
|
* The following functions support managing the DWC_otg controller in either
|
|
* device or host mode.
|
|
*/
|
|
extern void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
|
|
extern void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
|
|
extern void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
|
|
|
|
extern void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
|
|
extern void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
|
|
|
|
/* This function should be called on every hardware interrupt. */
|
|
extern irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
|
|
|
|
/* The device ID match table */
|
|
extern const struct of_device_id dwc2_of_match_table[];
|
|
|
|
extern int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
|
|
extern int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
|
|
|
|
/* Parameters */
|
|
int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
|
|
int dwc2_init_params(struct dwc2_hsotg *hsotg);
|
|
|
|
/*
|
|
* The following functions check the controller's OTG operation mode
|
|
* capability (GHWCFG2.OTG_MODE).
|
|
*
|
|
* These functions can be used before the internal hsotg->hw_params
|
|
* are read in and cached so they always read directly from the
|
|
* GHWCFG2 register.
|
|
*/
|
|
unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg);
|
|
bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
|
|
bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
|
|
bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
|
|
|
|
/*
|
|
* Returns the mode of operation, host or device
|
|
*/
|
|
static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
|
|
{
|
|
return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
|
|
}
|
|
static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
|
|
{
|
|
return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
|
|
}
|
|
|
|
/*
|
|
* Dump core registers and SPRAM
|
|
*/
|
|
extern void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
|
|
extern void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
|
|
extern void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
|
|
|
|
/*
|
|
* Return OTG version - either 1.3 or 2.0
|
|
*/
|
|
extern u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg);
|
|
|
|
/* Gadget defines */
|
|
#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
|
|
extern int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
|
|
extern int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
|
|
extern int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
|
|
extern int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
|
|
extern void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
|
|
bool reset);
|
|
extern void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
|
|
extern void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
|
|
extern int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
|
|
#define dwc2_is_device_connected(hsotg) (hsotg->connected)
|
|
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
|
|
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
|
|
#else
|
|
static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
|
|
{ return 0; }
|
|
static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
|
|
{ return 0; }
|
|
static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
|
|
{ return 0; }
|
|
static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
|
|
{ return 0; }
|
|
static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
|
|
bool reset) {}
|
|
static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
|
|
static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
|
|
static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
|
|
int testmode)
|
|
{ return 0; }
|
|
#define dwc2_is_device_connected(hsotg) (0)
|
|
static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
|
|
{ return 0; }
|
|
static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
|
|
{ return 0; }
|
|
#endif
|
|
|
|
#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
|
|
extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
|
|
extern int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
|
|
extern void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
|
|
extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
|
|
extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
|
|
int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
|
|
int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
|
|
#else
|
|
static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
|
|
{ return 0; }
|
|
static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
|
|
int us)
|
|
{ return 0; }
|
|
static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
|
|
static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
|
|
static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
|
|
static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
|
|
static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
|
|
{ return 0; }
|
|
static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
|
|
{ return 0; }
|
|
static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
|
|
{ return 0; }
|
|
|
|
#endif
|
|
|
|
#endif /* __DWC2_CORE_H__ */
|