linux/include/net/bluetooth/hci_core.h
Andre Guedes b0434345f2 Bluetooth: Remove inquiry helpers
This patch removes hci_do_inquiry and hci_cancel_inquiry helpers. We
now use the HCI request framework in device discovery functionality
and these helpers are no longer needed.

Signed-off-by: Andre Guedes <andre.guedes@openbossa.org>
Acked-by: Johan Hedberg <johan.hedberg@intel.com>
Signed-off-by: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
2013-06-23 00:23:52 +01:00

1217 lines
32 KiB
C

/*
BlueZ - Bluetooth protocol stack for Linux
Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation;
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
SOFTWARE IS DISCLAIMED.
*/
#ifndef __HCI_CORE_H
#define __HCI_CORE_H
#include <net/bluetooth/hci.h>
/* HCI priority */
#define HCI_PRIO_MAX 7
/* HCI Core structures */
struct inquiry_data {
bdaddr_t bdaddr;
__u8 pscan_rep_mode;
__u8 pscan_period_mode;
__u8 pscan_mode;
__u8 dev_class[3];
__le16 clock_offset;
__s8 rssi;
__u8 ssp_mode;
};
struct inquiry_entry {
struct list_head all; /* inq_cache.all */
struct list_head list; /* unknown or resolve */
enum {
NAME_NOT_KNOWN,
NAME_NEEDED,
NAME_PENDING,
NAME_KNOWN,
} name_state;
__u32 timestamp;
struct inquiry_data data;
};
struct discovery_state {
int type;
enum {
DISCOVERY_STOPPED,
DISCOVERY_STARTING,
DISCOVERY_FINDING,
DISCOVERY_RESOLVING,
DISCOVERY_STOPPING,
} state;
struct list_head all; /* All devices found during inquiry */
struct list_head unknown; /* Name state not known */
struct list_head resolve; /* Name needs to be resolved */
__u32 timestamp;
};
struct hci_conn_hash {
struct list_head list;
unsigned int acl_num;
unsigned int amp_num;
unsigned int sco_num;
unsigned int le_num;
};
struct bdaddr_list {
struct list_head list;
bdaddr_t bdaddr;
};
struct bt_uuid {
struct list_head list;
u8 uuid[16];
u8 size;
u8 svc_hint;
};
struct smp_ltk {
struct list_head list;
bdaddr_t bdaddr;
u8 bdaddr_type;
u8 authenticated;
u8 type;
u8 enc_size;
__le16 ediv;
u8 rand[8];
u8 val[16];
} __packed;
struct link_key {
struct list_head list;
bdaddr_t bdaddr;
u8 type;
u8 val[HCI_LINK_KEY_SIZE];
u8 pin_len;
};
struct oob_data {
struct list_head list;
bdaddr_t bdaddr;
u8 hash[16];
u8 randomizer[16];
};
#define HCI_MAX_SHORT_NAME_LENGTH 10
struct amp_assoc {
__u16 len;
__u16 offset;
__u16 rem_len;
__u16 len_so_far;
__u8 data[HCI_MAX_AMP_ASSOC_SIZE];
};
#define HCI_MAX_PAGES 3
#define NUM_REASSEMBLY 4
struct hci_dev {
struct list_head list;
struct mutex lock;
char name[8];
unsigned long flags;
__u16 id;
__u8 bus;
__u8 dev_type;
bdaddr_t bdaddr;
__u8 dev_name[HCI_MAX_NAME_LENGTH];
__u8 short_name[HCI_MAX_SHORT_NAME_LENGTH];
__u8 eir[HCI_MAX_EIR_LENGTH];
__u8 dev_class[3];
__u8 major_class;
__u8 minor_class;
__u8 max_page;
__u8 features[HCI_MAX_PAGES][8];
__u8 le_features[8];
__u8 le_white_list_size;
__u8 le_states[8];
__u8 commands[64];
__u8 hci_ver;
__u16 hci_rev;
__u8 lmp_ver;
__u16 manufacturer;
__u16 lmp_subver;
__u16 voice_setting;
__u8 io_capability;
__s8 inq_tx_power;
__u16 page_scan_interval;
__u16 page_scan_window;
__u8 page_scan_type;
__u16 devid_source;
__u16 devid_vendor;
__u16 devid_product;
__u16 devid_version;
__u16 pkt_type;
__u16 esco_type;
__u16 link_policy;
__u16 link_mode;
__u32 idle_timeout;
__u16 sniff_min_interval;
__u16 sniff_max_interval;
__u8 amp_status;
__u32 amp_total_bw;
__u32 amp_max_bw;
__u32 amp_min_latency;
__u32 amp_max_pdu;
__u8 amp_type;
__u16 amp_pal_cap;
__u16 amp_assoc_size;
__u32 amp_max_flush_to;
__u32 amp_be_flush_to;
struct amp_assoc loc_assoc;
__u8 flow_ctl_mode;
unsigned int auto_accept_delay;
unsigned long quirks;
atomic_t cmd_cnt;
unsigned int acl_cnt;
unsigned int sco_cnt;
unsigned int le_cnt;
unsigned int acl_mtu;
unsigned int sco_mtu;
unsigned int le_mtu;
unsigned int acl_pkts;
unsigned int sco_pkts;
unsigned int le_pkts;
__u16 block_len;
__u16 block_mtu;
__u16 num_blocks;
__u16 block_cnt;
unsigned long acl_last_tx;
unsigned long sco_last_tx;
unsigned long le_last_tx;
struct workqueue_struct *workqueue;
struct workqueue_struct *req_workqueue;
struct work_struct power_on;
struct delayed_work power_off;
__u16 discov_timeout;
struct delayed_work discov_off;
struct delayed_work service_cache;
struct timer_list cmd_timer;
struct work_struct rx_work;
struct work_struct cmd_work;
struct work_struct tx_work;
struct sk_buff_head rx_q;
struct sk_buff_head raw_q;
struct sk_buff_head cmd_q;
struct sk_buff *recv_evt;
struct sk_buff *sent_cmd;
struct sk_buff *reassembly[NUM_REASSEMBLY];
struct mutex req_lock;
wait_queue_head_t req_wait_q;
__u32 req_status;
__u32 req_result;
struct list_head mgmt_pending;
struct discovery_state discovery;
struct hci_conn_hash conn_hash;
struct list_head blacklist;
struct list_head uuids;
struct list_head link_keys;
struct list_head long_term_keys;
struct list_head remote_oob_data;
struct hci_dev_stats stat;
atomic_t promisc;
struct dentry *debugfs;
struct device dev;
struct rfkill *rfkill;
unsigned long dev_flags;
struct delayed_work le_scan_disable;
__s8 adv_tx_power;
__u8 adv_data[HCI_MAX_AD_LENGTH];
__u8 adv_data_len;
int (*open)(struct hci_dev *hdev);
int (*close)(struct hci_dev *hdev);
int (*flush)(struct hci_dev *hdev);
int (*setup)(struct hci_dev *hdev);
int (*send)(struct sk_buff *skb);
void (*notify)(struct hci_dev *hdev, unsigned int evt);
int (*ioctl)(struct hci_dev *hdev, unsigned int cmd, unsigned long arg);
};
#define HCI_PHY_HANDLE(handle) (handle & 0xff)
struct hci_conn {
struct list_head list;
atomic_t refcnt;
bdaddr_t dst;
__u8 dst_type;
__u16 handle;
__u16 state;
__u8 mode;
__u8 type;
bool out;
__u8 attempt;
__u8 dev_class[3];
__u8 features[HCI_MAX_PAGES][8];
__u16 interval;
__u16 pkt_type;
__u16 link_policy;
__u32 link_mode;
__u8 key_type;
__u8 auth_type;
__u8 sec_level;
__u8 pending_sec_level;
__u8 pin_length;
__u8 enc_key_size;
__u8 io_capability;
__u32 passkey_notify;
__u8 passkey_entered;
__u16 disc_timeout;
unsigned long flags;
__u8 remote_cap;
__u8 remote_auth;
__u8 remote_id;
bool flush_key;
unsigned int sent;
struct sk_buff_head data_q;
struct list_head chan_list;
struct delayed_work disc_work;
struct timer_list idle_timer;
struct timer_list auto_accept_timer;
struct device dev;
struct hci_dev *hdev;
void *l2cap_data;
void *sco_data;
void *smp_conn;
struct amp_mgr *amp_mgr;
struct hci_conn *link;
void (*connect_cfm_cb) (struct hci_conn *conn, u8 status);
void (*security_cfm_cb) (struct hci_conn *conn, u8 status);
void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason);
};
struct hci_chan {
struct list_head list;
__u16 handle;
struct hci_conn *conn;
struct sk_buff_head data_q;
unsigned int sent;
__u8 state;
};
extern struct list_head hci_dev_list;
extern struct list_head hci_cb_list;
extern rwlock_t hci_dev_list_lock;
extern rwlock_t hci_cb_list_lock;
/* ----- HCI interface to upper protocols ----- */
extern int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
extern void l2cap_connect_cfm(struct hci_conn *hcon, u8 status);
extern int l2cap_disconn_ind(struct hci_conn *hcon);
extern void l2cap_disconn_cfm(struct hci_conn *hcon, u8 reason);
extern int l2cap_security_cfm(struct hci_conn *hcon, u8 status, u8 encrypt);
extern int l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb,
u16 flags);
extern int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
extern void sco_connect_cfm(struct hci_conn *hcon, __u8 status);
extern void sco_disconn_cfm(struct hci_conn *hcon, __u8 reason);
extern int sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
/* ----- Inquiry cache ----- */
#define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */
#define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */
static inline void discovery_init(struct hci_dev *hdev)
{
hdev->discovery.state = DISCOVERY_STOPPED;
INIT_LIST_HEAD(&hdev->discovery.all);
INIT_LIST_HEAD(&hdev->discovery.unknown);
INIT_LIST_HEAD(&hdev->discovery.resolve);
}
bool hci_discovery_active(struct hci_dev *hdev);
void hci_discovery_set_state(struct hci_dev *hdev, int state);
static inline int inquiry_cache_empty(struct hci_dev *hdev)
{
return list_empty(&hdev->discovery.all);
}
static inline long inquiry_cache_age(struct hci_dev *hdev)
{
struct discovery_state *c = &hdev->discovery;
return jiffies - c->timestamp;
}
static inline long inquiry_entry_age(struct inquiry_entry *e)
{
return jiffies - e->timestamp;
}
struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
bdaddr_t *bdaddr);
struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
bdaddr_t *bdaddr);
struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
bdaddr_t *bdaddr,
int state);
void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
struct inquiry_entry *ie);
bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
bool name_known, bool *ssp);
void hci_inquiry_cache_flush(struct hci_dev *hdev);
/* ----- HCI Connections ----- */
enum {
HCI_CONN_AUTH_PEND,
HCI_CONN_REAUTH_PEND,
HCI_CONN_ENCRYPT_PEND,
HCI_CONN_RSWITCH_PEND,
HCI_CONN_MODE_CHANGE_PEND,
HCI_CONN_SCO_SETUP_PEND,
HCI_CONN_LE_SMP_PEND,
HCI_CONN_MGMT_CONNECTED,
HCI_CONN_SSP_ENABLED,
HCI_CONN_POWER_SAVE,
HCI_CONN_REMOTE_OOB,
};
static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
{
struct hci_dev *hdev = conn->hdev;
return test_bit(HCI_SSP_ENABLED, &hdev->dev_flags) &&
test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
}
static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
{
struct hci_conn_hash *h = &hdev->conn_hash;
list_add_rcu(&c->list, &h->list);
switch (c->type) {
case ACL_LINK:
h->acl_num++;
break;
case AMP_LINK:
h->amp_num++;
break;
case LE_LINK:
h->le_num++;
break;
case SCO_LINK:
case ESCO_LINK:
h->sco_num++;
break;
}
}
static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
{
struct hci_conn_hash *h = &hdev->conn_hash;
list_del_rcu(&c->list);
synchronize_rcu();
switch (c->type) {
case ACL_LINK:
h->acl_num--;
break;
case AMP_LINK:
h->amp_num--;
break;
case LE_LINK:
h->le_num--;
break;
case SCO_LINK:
case ESCO_LINK:
h->sco_num--;
break;
}
}
static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
{
struct hci_conn_hash *h = &hdev->conn_hash;
switch (type) {
case ACL_LINK:
return h->acl_num;
case AMP_LINK:
return h->amp_num;
case LE_LINK:
return h->le_num;
case SCO_LINK:
case ESCO_LINK:
return h->sco_num;
default:
return 0;
}
}
static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
__u16 handle)
{
struct hci_conn_hash *h = &hdev->conn_hash;
struct hci_conn *c;
rcu_read_lock();
list_for_each_entry_rcu(c, &h->list, list) {
if (c->handle == handle) {
rcu_read_unlock();
return c;
}
}
rcu_read_unlock();
return NULL;
}
static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
__u8 type, bdaddr_t *ba)
{
struct hci_conn_hash *h = &hdev->conn_hash;
struct hci_conn *c;
rcu_read_lock();
list_for_each_entry_rcu(c, &h->list, list) {
if (c->type == type && !bacmp(&c->dst, ba)) {
rcu_read_unlock();
return c;
}
}
rcu_read_unlock();
return NULL;
}
static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
__u8 type, __u16 state)
{
struct hci_conn_hash *h = &hdev->conn_hash;
struct hci_conn *c;
rcu_read_lock();
list_for_each_entry_rcu(c, &h->list, list) {
if (c->type == type && c->state == state) {
rcu_read_unlock();
return c;
}
}
rcu_read_unlock();
return NULL;
}
void hci_disconnect(struct hci_conn *conn, __u8 reason);
void hci_setup_sync(struct hci_conn *conn, __u16 handle);
void hci_sco_setup(struct hci_conn *conn, __u8 status);
struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst);
int hci_conn_del(struct hci_conn *conn);
void hci_conn_hash_flush(struct hci_dev *hdev);
void hci_conn_check_pending(struct hci_dev *hdev);
struct hci_chan *hci_chan_create(struct hci_conn *conn);
void hci_chan_del(struct hci_chan *chan);
void hci_chan_list_flush(struct hci_conn *conn);
struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);
struct hci_conn *hci_connect(struct hci_dev *hdev, int type, bdaddr_t *dst,
__u8 dst_type, __u8 sec_level, __u8 auth_type);
int hci_conn_check_link_mode(struct hci_conn *conn);
int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type);
int hci_conn_change_link_key(struct hci_conn *conn);
int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
/*
* hci_conn_get() and hci_conn_put() are used to control the life-time of an
* "hci_conn" object. They do not guarantee that the hci_conn object is running,
* working or anything else. They just guarantee that the object is available
* and can be dereferenced. So you can use its locks, local variables and any
* other constant data.
* Before accessing runtime data, you _must_ lock the object and then check that
* it is still running. As soon as you release the locks, the connection might
* get dropped, though.
*
* On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
* how long the underlying connection is held. So every channel that runs on the
* hci_conn object calls this to prevent the connection from disappearing. As
* long as you hold a device, you must also guarantee that you have a valid
* reference to the device via hci_conn_get() (or the initial reference from
* hci_conn_add()).
* The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
* break because nobody cares for that. But this means, we cannot use
* _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
*/
static inline void hci_conn_get(struct hci_conn *conn)
{
get_device(&conn->dev);
}
static inline void hci_conn_put(struct hci_conn *conn)
{
put_device(&conn->dev);
}
static inline void hci_conn_hold(struct hci_conn *conn)
{
BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
atomic_inc(&conn->refcnt);
cancel_delayed_work(&conn->disc_work);
}
static inline void hci_conn_drop(struct hci_conn *conn)
{
BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
if (atomic_dec_and_test(&conn->refcnt)) {
unsigned long timeo;
switch (conn->type) {
case ACL_LINK:
case LE_LINK:
del_timer(&conn->idle_timer);
if (conn->state == BT_CONNECTED) {
timeo = conn->disc_timeout;
if (!conn->out)
timeo *= 2;
} else {
timeo = msecs_to_jiffies(10);
}
break;
case AMP_LINK:
timeo = conn->disc_timeout;
break;
default:
timeo = msecs_to_jiffies(10);
break;
}
cancel_delayed_work(&conn->disc_work);
queue_delayed_work(conn->hdev->workqueue,
&conn->disc_work, timeo);
}
}
/* ----- HCI Devices ----- */
static inline void hci_dev_put(struct hci_dev *d)
{
BT_DBG("%s orig refcnt %d", d->name,
atomic_read(&d->dev.kobj.kref.refcount));
put_device(&d->dev);
}
static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
{
BT_DBG("%s orig refcnt %d", d->name,
atomic_read(&d->dev.kobj.kref.refcount));
get_device(&d->dev);
return d;
}
#define hci_dev_lock(d) mutex_lock(&d->lock)
#define hci_dev_unlock(d) mutex_unlock(&d->lock)
#define to_hci_dev(d) container_of(d, struct hci_dev, dev)
#define to_hci_conn(c) container_of(c, struct hci_conn, dev)
static inline void *hci_get_drvdata(struct hci_dev *hdev)
{
return dev_get_drvdata(&hdev->dev);
}
static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
{
dev_set_drvdata(&hdev->dev, data);
}
/* hci_dev_list shall be locked */
static inline uint8_t __hci_num_ctrl(void)
{
uint8_t count = 0;
struct list_head *p;
list_for_each(p, &hci_dev_list) {
count++;
}
return count;
}
struct hci_dev *hci_dev_get(int index);
struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src);
struct hci_dev *hci_alloc_dev(void);
void hci_free_dev(struct hci_dev *hdev);
int hci_register_dev(struct hci_dev *hdev);
void hci_unregister_dev(struct hci_dev *hdev);
int hci_suspend_dev(struct hci_dev *hdev);
int hci_resume_dev(struct hci_dev *hdev);
int hci_dev_open(__u16 dev);
int hci_dev_close(__u16 dev);
int hci_dev_reset(__u16 dev);
int hci_dev_reset_stat(__u16 dev);
int hci_dev_cmd(unsigned int cmd, void __user *arg);
int hci_get_dev_list(void __user *arg);
int hci_get_dev_info(void __user *arg);
int hci_get_conn_list(void __user *arg);
int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
int hci_inquiry(void __user *arg);
struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
bdaddr_t *bdaddr);
int hci_blacklist_clear(struct hci_dev *hdev);
int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
int hci_uuids_clear(struct hci_dev *hdev);
int hci_link_keys_clear(struct hci_dev *hdev);
struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len);
struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8]);
int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type,
int new_key, u8 authenticated, u8 tk[16], u8 enc_size,
__le16 ediv, u8 rand[8]);
struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 addr_type);
int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr);
int hci_smp_ltks_clear(struct hci_dev *hdev);
int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
int hci_remote_oob_data_clear(struct hci_dev *hdev);
struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
bdaddr_t *bdaddr);
int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
u8 *randomizer);
int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr);
void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
int hci_recv_frame(struct sk_buff *skb);
int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count);
int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count);
void hci_init_sysfs(struct hci_dev *hdev);
int hci_add_sysfs(struct hci_dev *hdev);
void hci_del_sysfs(struct hci_dev *hdev);
void hci_conn_init_sysfs(struct hci_conn *conn);
void hci_conn_add_sysfs(struct hci_conn *conn);
void hci_conn_del_sysfs(struct hci_conn *conn);
#define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))
/* ----- LMP capabilities ----- */
#define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT)
#define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH)
#define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD)
#define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF)
#define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK)
#define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ)
#define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO)
#define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR))
#define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE)
#define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
#define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
#define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ)
#define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
#define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
#define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH)
#define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO)
#define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
#define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES)
/* ----- Extended LMP capabilities ----- */
#define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP)
#define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE))
#define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))
/* returns true if at least one AMP active */
static inline bool hci_amp_capable(void)
{
struct hci_dev *hdev;
bool ret = false;
read_lock(&hci_dev_list_lock);
list_for_each_entry(hdev, &hci_dev_list, list)
if (hdev->amp_type == HCI_AMP &&
test_bit(HCI_UP, &hdev->flags))
ret = true;
read_unlock(&hci_dev_list_lock);
return ret;
}
/* ----- HCI protocols ----- */
#define HCI_PROTO_DEFER 0x01
static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
__u8 type, __u8 *flags)
{
switch (type) {
case ACL_LINK:
return l2cap_connect_ind(hdev, bdaddr);
case SCO_LINK:
case ESCO_LINK:
return sco_connect_ind(hdev, bdaddr, flags);
default:
BT_ERR("unknown link type %d", type);
return -EINVAL;
}
}
static inline void hci_proto_connect_cfm(struct hci_conn *conn, __u8 status)
{
switch (conn->type) {
case ACL_LINK:
case LE_LINK:
l2cap_connect_cfm(conn, status);
break;
case SCO_LINK:
case ESCO_LINK:
sco_connect_cfm(conn, status);
break;
default:
BT_ERR("unknown link type %d", conn->type);
break;
}
if (conn->connect_cfm_cb)
conn->connect_cfm_cb(conn, status);
}
static inline int hci_proto_disconn_ind(struct hci_conn *conn)
{
if (conn->type != ACL_LINK && conn->type != LE_LINK)
return HCI_ERROR_REMOTE_USER_TERM;
return l2cap_disconn_ind(conn);
}
static inline void hci_proto_disconn_cfm(struct hci_conn *conn, __u8 reason)
{
switch (conn->type) {
case ACL_LINK:
case LE_LINK:
l2cap_disconn_cfm(conn, reason);
break;
case SCO_LINK:
case ESCO_LINK:
sco_disconn_cfm(conn, reason);
break;
/* L2CAP would be handled for BREDR chan */
case AMP_LINK:
break;
default:
BT_ERR("unknown link type %d", conn->type);
break;
}
if (conn->disconn_cfm_cb)
conn->disconn_cfm_cb(conn, reason);
}
static inline void hci_proto_auth_cfm(struct hci_conn *conn, __u8 status)
{
__u8 encrypt;
if (conn->type != ACL_LINK && conn->type != LE_LINK)
return;
if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
return;
encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00;
l2cap_security_cfm(conn, status, encrypt);
if (conn->security_cfm_cb)
conn->security_cfm_cb(conn, status);
}
static inline void hci_proto_encrypt_cfm(struct hci_conn *conn, __u8 status,
__u8 encrypt)
{
if (conn->type != ACL_LINK && conn->type != LE_LINK)
return;
l2cap_security_cfm(conn, status, encrypt);
if (conn->security_cfm_cb)
conn->security_cfm_cb(conn, status);
}
/* ----- HCI callbacks ----- */
struct hci_cb {
struct list_head list;
char *name;
void (*security_cfm) (struct hci_conn *conn, __u8 status,
__u8 encrypt);
void (*key_change_cfm) (struct hci_conn *conn, __u8 status);
void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role);
};
static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
{
struct hci_cb *cb;
__u8 encrypt;
hci_proto_auth_cfm(conn, status);
if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
return;
encrypt = (conn->link_mode & HCI_LM_ENCRYPT) ? 0x01 : 0x00;
read_lock(&hci_cb_list_lock);
list_for_each_entry(cb, &hci_cb_list, list) {
if (cb->security_cfm)
cb->security_cfm(conn, status, encrypt);
}
read_unlock(&hci_cb_list_lock);
}
static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status,
__u8 encrypt)
{
struct hci_cb *cb;
if (conn->sec_level == BT_SECURITY_SDP)
conn->sec_level = BT_SECURITY_LOW;
if (conn->pending_sec_level > conn->sec_level)
conn->sec_level = conn->pending_sec_level;
hci_proto_encrypt_cfm(conn, status, encrypt);
read_lock(&hci_cb_list_lock);
list_for_each_entry(cb, &hci_cb_list, list) {
if (cb->security_cfm)
cb->security_cfm(conn, status, encrypt);
}
read_unlock(&hci_cb_list_lock);
}
static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
{
struct hci_cb *cb;
read_lock(&hci_cb_list_lock);
list_for_each_entry(cb, &hci_cb_list, list) {
if (cb->key_change_cfm)
cb->key_change_cfm(conn, status);
}
read_unlock(&hci_cb_list_lock);
}
static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
__u8 role)
{
struct hci_cb *cb;
read_lock(&hci_cb_list_lock);
list_for_each_entry(cb, &hci_cb_list, list) {
if (cb->role_switch_cfm)
cb->role_switch_cfm(conn, status, role);
}
read_unlock(&hci_cb_list_lock);
}
static inline bool eir_has_data_type(u8 *data, size_t data_len, u8 type)
{
size_t parsed = 0;
if (data_len < 2)
return false;
while (parsed < data_len - 1) {
u8 field_len = data[0];
if (field_len == 0)
break;
parsed += field_len + 1;
if (parsed > data_len)
break;
if (data[1] == type)
return true;
data += field_len + 1;
}
return false;
}
static inline size_t eir_get_length(u8 *eir, size_t eir_len)
{
size_t parsed = 0;
while (parsed < eir_len) {
u8 field_len = eir[0];
if (field_len == 0)
return parsed;
parsed += field_len + 1;
eir += field_len + 1;
}
return eir_len;
}
static inline u16 eir_append_data(u8 *eir, u16 eir_len, u8 type, u8 *data,
u8 data_len)
{
eir[eir_len++] = sizeof(type) + data_len;
eir[eir_len++] = type;
memcpy(&eir[eir_len], data, data_len);
eir_len += data_len;
return eir_len;
}
int hci_register_cb(struct hci_cb *hcb);
int hci_unregister_cb(struct hci_cb *hcb);
struct hci_request {
struct hci_dev *hdev;
struct sk_buff_head cmd_q;
/* If something goes wrong when building the HCI request, the error
* value is stored in this field.
*/
int err;
};
void hci_req_init(struct hci_request *req, struct hci_dev *hdev);
int hci_req_run(struct hci_request *req, hci_req_complete_t complete);
void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
const void *param);
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
const void *param, u8 event);
void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status);
struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
const void *param, u32 timeout);
struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
const void *param, u8 event, u32 timeout);
int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
const void *param);
void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
/* ----- HCI Sockets ----- */
void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
void hci_send_to_control(struct sk_buff *skb, struct sock *skip_sk);
void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);
void hci_sock_dev_event(struct hci_dev *hdev, int event);
/* Management interface */
#define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR))
#define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \
BIT(BDADDR_LE_RANDOM))
#define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \
BIT(BDADDR_LE_PUBLIC) | \
BIT(BDADDR_LE_RANDOM))
/* These LE scan and inquiry parameters were chosen according to LE General
* Discovery Procedure specification.
*/
#define DISCOV_LE_SCAN_WIN 0x12
#define DISCOV_LE_SCAN_INT 0x12
#define DISCOV_LE_TIMEOUT msecs_to_jiffies(10240)
#define DISCOV_INTERLEAVED_TIMEOUT msecs_to_jiffies(5120)
#define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04
#define DISCOV_BREDR_INQUIRY_LEN 0x08
int mgmt_control(struct sock *sk, struct msghdr *msg, size_t len);
int mgmt_index_added(struct hci_dev *hdev);
int mgmt_index_removed(struct hci_dev *hdev);
int mgmt_set_powered_failed(struct hci_dev *hdev, int err);
int mgmt_powered(struct hci_dev *hdev, u8 powered);
int mgmt_discoverable(struct hci_dev *hdev, u8 discoverable);
int mgmt_connectable(struct hci_dev *hdev, u8 connectable);
int mgmt_write_scan_failed(struct hci_dev *hdev, u8 scan, u8 status);
int mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
bool persistent);
int mgmt_device_connected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
u8 addr_type, u32 flags, u8 *name, u8 name_len,
u8 *dev_class);
int mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 link_type, u8 addr_type, u8 reason);
int mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 link_type, u8 addr_type, u8 status);
int mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
u8 addr_type, u8 status);
int mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
int mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 status);
int mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 status);
int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 link_type, u8 addr_type, __le32 value,
u8 confirm_hint);
int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 link_type, u8 addr_type, u8 status);
int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 link_type, u8 addr_type, u8 status);
int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 link_type, u8 addr_type);
int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 link_type, u8 addr_type, u8 status);
int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 link_type, u8 addr_type, u8 status);
int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
u8 link_type, u8 addr_type, u32 passkey,
u8 entered);
int mgmt_auth_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
u8 addr_type, u8 status);
int mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
int mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
int mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
u8 status);
int mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
int mgmt_read_local_oob_data_reply_complete(struct hci_dev *hdev, u8 *hash,
u8 *randomizer, u8 status);
int mgmt_le_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
int mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
u8 addr_type, u8 *dev_class, s8 rssi, u8 cfm_name,
u8 ssp, u8 *eir, u16 eir_len);
int mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
u8 addr_type, s8 rssi, u8 *name, u8 name_len);
int mgmt_discovering(struct hci_dev *hdev, u8 discovering);
int mgmt_device_blocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
int mgmt_device_unblocked(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
bool mgmt_valid_hdev(struct hci_dev *hdev);
int mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, u8 persistent);
/* HCI info for socket */
#define hci_pi(sk) ((struct hci_pinfo *) sk)
struct hci_pinfo {
struct bt_sock bt;
struct hci_dev *hdev;
struct hci_filter filter;
__u32 cmsg_mask;
unsigned short channel;
};
/* HCI security filter */
#define HCI_SFLT_MAX_OGF 5
struct hci_sec_filter {
__u32 type_mask;
__u32 event_mask[2];
__u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
};
/* ----- HCI requests ----- */
#define HCI_REQ_DONE 0
#define HCI_REQ_PEND 1
#define HCI_REQ_CANCELED 2
#define hci_req_lock(d) mutex_lock(&d->req_lock)
#define hci_req_unlock(d) mutex_unlock(&d->req_lock)
void hci_update_ad(struct hci_request *req);
void hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max,
u16 latency, u16 to_multiplier);
void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __u8 rand[8],
__u8 ltk[16]);
u8 bdaddr_to_le(u8 bdaddr_type);
#endif /* __HCI_CORE_H */