forked from Minki/linux
716777db72
This patch adds a pass-through case when ioremapping P4 addresses. Addresses passed to ioremap() should be physical addresses, so the best option is usually to convert the virtual address to a physical address before calling ioremap. This will give you a virtual address in P2 which matches the physical address and this works well for most internal hardware blocks on the SuperH architecture. However, some hardware blocks must be accessed through P4. Converting the P4 address to a physical and then back to a P2 does not work. One example of this is the sh7722 TMU block, it must be accessed through P4. Without this patch P4 addresses will be mapped using PTEs which requires the page allocator to be up and running. Signed-off-by: Magnus Damm <damm@igel.co.jp> Signed-off-by: Paul Mundt <lethal@linux-sh.org>
339 lines
7.5 KiB
C
339 lines
7.5 KiB
C
/*
|
|
* Page fault handler for SH with an MMU.
|
|
*
|
|
* Copyright (C) 1999 Niibe Yutaka
|
|
* Copyright (C) 2003 - 2008 Paul Mundt
|
|
*
|
|
* Based on linux/arch/i386/mm/fault.c:
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/marker.h>
|
|
#include <asm/io_trapped.h>
|
|
#include <asm/system.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/kgdb.h>
|
|
|
|
/*
|
|
* This routine handles page faults. It determines the address,
|
|
* and the problem, and then passes it off to one of the appropriate
|
|
* routines.
|
|
*/
|
|
asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
|
|
unsigned long writeaccess,
|
|
unsigned long address)
|
|
{
|
|
struct task_struct *tsk;
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct * vma;
|
|
int si_code;
|
|
int fault;
|
|
siginfo_t info;
|
|
|
|
/*
|
|
* We don't bother with any notifier callbacks here, as they are
|
|
* all handled through the __do_page_fault() fast-path.
|
|
*/
|
|
|
|
tsk = current;
|
|
si_code = SEGV_MAPERR;
|
|
|
|
if (unlikely(address >= TASK_SIZE)) {
|
|
/*
|
|
* Synchronize this task's top level page-table
|
|
* with the 'reference' page table.
|
|
*
|
|
* Do _not_ use "tsk" here. We might be inside
|
|
* an interrupt in the middle of a task switch..
|
|
*/
|
|
int offset = pgd_index(address);
|
|
pgd_t *pgd, *pgd_k;
|
|
pud_t *pud, *pud_k;
|
|
pmd_t *pmd, *pmd_k;
|
|
|
|
pgd = get_TTB() + offset;
|
|
pgd_k = swapper_pg_dir + offset;
|
|
|
|
if (!pgd_present(*pgd)) {
|
|
if (!pgd_present(*pgd_k))
|
|
goto bad_area_nosemaphore;
|
|
set_pgd(pgd, *pgd_k);
|
|
return;
|
|
}
|
|
|
|
pud = pud_offset(pgd, address);
|
|
pud_k = pud_offset(pgd_k, address);
|
|
|
|
if (!pud_present(*pud)) {
|
|
if (!pud_present(*pud_k))
|
|
goto bad_area_nosemaphore;
|
|
set_pud(pud, *pud_k);
|
|
return;
|
|
}
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
pmd_k = pmd_offset(pud_k, address);
|
|
if (pmd_present(*pmd) || !pmd_present(*pmd_k))
|
|
goto bad_area_nosemaphore;
|
|
set_pmd(pmd, *pmd_k);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Only enable interrupts if they were on before the fault */
|
|
if ((regs->sr & SR_IMASK) != SR_IMASK) {
|
|
trace_hardirqs_on();
|
|
local_irq_enable();
|
|
}
|
|
|
|
mm = tsk->mm;
|
|
|
|
/*
|
|
* If we're in an interrupt or have no user
|
|
* context, we must not take the fault..
|
|
*/
|
|
if (in_atomic() || !mm)
|
|
goto no_context;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
vma = find_vma(mm, address);
|
|
if (!vma)
|
|
goto bad_area;
|
|
if (vma->vm_start <= address)
|
|
goto good_area;
|
|
if (!(vma->vm_flags & VM_GROWSDOWN))
|
|
goto bad_area;
|
|
if (expand_stack(vma, address))
|
|
goto bad_area;
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so
|
|
* we can handle it..
|
|
*/
|
|
good_area:
|
|
si_code = SEGV_ACCERR;
|
|
if (writeaccess) {
|
|
if (!(vma->vm_flags & VM_WRITE))
|
|
goto bad_area;
|
|
} else {
|
|
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
|
|
goto bad_area;
|
|
}
|
|
|
|
/*
|
|
* If for any reason at all we couldn't handle the fault,
|
|
* make sure we exit gracefully rather than endlessly redo
|
|
* the fault.
|
|
*/
|
|
survive:
|
|
fault = handle_mm_fault(mm, vma, address, writeaccess);
|
|
if (unlikely(fault & VM_FAULT_ERROR)) {
|
|
if (fault & VM_FAULT_OOM)
|
|
goto out_of_memory;
|
|
else if (fault & VM_FAULT_SIGBUS)
|
|
goto do_sigbus;
|
|
BUG();
|
|
}
|
|
if (fault & VM_FAULT_MAJOR)
|
|
tsk->maj_flt++;
|
|
else
|
|
tsk->min_flt++;
|
|
|
|
up_read(&mm->mmap_sem);
|
|
return;
|
|
|
|
/*
|
|
* Something tried to access memory that isn't in our memory map..
|
|
* Fix it, but check if it's kernel or user first..
|
|
*/
|
|
bad_area:
|
|
up_read(&mm->mmap_sem);
|
|
|
|
bad_area_nosemaphore:
|
|
if (user_mode(regs)) {
|
|
info.si_signo = SIGSEGV;
|
|
info.si_errno = 0;
|
|
info.si_code = si_code;
|
|
info.si_addr = (void *) address;
|
|
force_sig_info(SIGSEGV, &info, tsk);
|
|
return;
|
|
}
|
|
|
|
no_context:
|
|
/* Are we prepared to handle this kernel fault? */
|
|
if (fixup_exception(regs))
|
|
return;
|
|
|
|
if (handle_trapped_io(regs, address))
|
|
return;
|
|
/*
|
|
* Oops. The kernel tried to access some bad page. We'll have to
|
|
* terminate things with extreme prejudice.
|
|
*
|
|
*/
|
|
|
|
bust_spinlocks(1);
|
|
|
|
if (oops_may_print()) {
|
|
unsigned long page;
|
|
|
|
if (address < PAGE_SIZE)
|
|
printk(KERN_ALERT "Unable to handle kernel NULL "
|
|
"pointer dereference");
|
|
else
|
|
printk(KERN_ALERT "Unable to handle kernel paging "
|
|
"request");
|
|
printk(" at virtual address %08lx\n", address);
|
|
printk(KERN_ALERT "pc = %08lx\n", regs->pc);
|
|
page = (unsigned long)get_TTB();
|
|
if (page) {
|
|
page = ((__typeof__(page) *)page)[address >> PGDIR_SHIFT];
|
|
printk(KERN_ALERT "*pde = %08lx\n", page);
|
|
if (page & _PAGE_PRESENT) {
|
|
page &= PAGE_MASK;
|
|
address &= 0x003ff000;
|
|
page = ((__typeof__(page) *)
|
|
__va(page))[address >>
|
|
PAGE_SHIFT];
|
|
printk(KERN_ALERT "*pte = %08lx\n", page);
|
|
}
|
|
}
|
|
}
|
|
|
|
die("Oops", regs, writeaccess);
|
|
bust_spinlocks(0);
|
|
do_exit(SIGKILL);
|
|
|
|
/*
|
|
* We ran out of memory, or some other thing happened to us that made
|
|
* us unable to handle the page fault gracefully.
|
|
*/
|
|
out_of_memory:
|
|
up_read(&mm->mmap_sem);
|
|
if (is_global_init(current)) {
|
|
yield();
|
|
down_read(&mm->mmap_sem);
|
|
goto survive;
|
|
}
|
|
printk("VM: killing process %s\n", tsk->comm);
|
|
if (user_mode(regs))
|
|
do_group_exit(SIGKILL);
|
|
goto no_context;
|
|
|
|
do_sigbus:
|
|
up_read(&mm->mmap_sem);
|
|
|
|
/*
|
|
* Send a sigbus, regardless of whether we were in kernel
|
|
* or user mode.
|
|
*/
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = BUS_ADRERR;
|
|
info.si_addr = (void *)address;
|
|
force_sig_info(SIGBUS, &info, tsk);
|
|
|
|
/* Kernel mode? Handle exceptions or die */
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
}
|
|
|
|
static inline int notify_page_fault(struct pt_regs *regs, int trap)
|
|
{
|
|
int ret = 0;
|
|
|
|
trace_mark(kernel_arch_trap_entry, "trap_id %d ip #p%ld",
|
|
trap >> 5, instruction_pointer(regs));
|
|
|
|
#ifdef CONFIG_KPROBES
|
|
if (!user_mode(regs)) {
|
|
preempt_disable();
|
|
if (kprobe_running() && kprobe_fault_handler(regs, trap))
|
|
ret = 1;
|
|
preempt_enable();
|
|
}
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called with interrupts disabled.
|
|
*/
|
|
asmlinkage int __kprobes __do_page_fault(struct pt_regs *regs,
|
|
unsigned long writeaccess,
|
|
unsigned long address)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
pte_t entry;
|
|
int ret = 0;
|
|
|
|
if (notify_page_fault(regs, lookup_exception_vector()))
|
|
goto out;
|
|
|
|
#ifdef CONFIG_SH_KGDB
|
|
if (kgdb_nofault && kgdb_bus_err_hook)
|
|
kgdb_bus_err_hook();
|
|
#endif
|
|
|
|
ret = 1;
|
|
|
|
/*
|
|
* We don't take page faults for P1, P2, and parts of P4, these
|
|
* are always mapped, whether it be due to legacy behaviour in
|
|
* 29-bit mode, or due to PMB configuration in 32-bit mode.
|
|
*/
|
|
if (address >= P3SEG && address < P3_ADDR_MAX) {
|
|
pgd = pgd_offset_k(address);
|
|
} else {
|
|
if (unlikely(address >= TASK_SIZE || !current->mm))
|
|
goto out;
|
|
|
|
pgd = pgd_offset(current->mm, address);
|
|
}
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (pud_none_or_clear_bad(pud))
|
|
goto out;
|
|
pmd = pmd_offset(pud, address);
|
|
if (pmd_none_or_clear_bad(pmd))
|
|
goto out;
|
|
pte = pte_offset_kernel(pmd, address);
|
|
entry = *pte;
|
|
if (unlikely(pte_none(entry) || pte_not_present(entry)))
|
|
goto out;
|
|
if (unlikely(writeaccess && !pte_write(entry)))
|
|
goto out;
|
|
|
|
if (writeaccess)
|
|
entry = pte_mkdirty(entry);
|
|
entry = pte_mkyoung(entry);
|
|
|
|
#if defined(CONFIG_CPU_SH4) && !defined(CONFIG_SMP)
|
|
/*
|
|
* ITLB is not affected by "ldtlb" instruction.
|
|
* So, we need to flush the entry by ourselves.
|
|
*/
|
|
local_flush_tlb_one(get_asid(), address & PAGE_MASK);
|
|
#endif
|
|
|
|
set_pte(pte, entry);
|
|
update_mmu_cache(NULL, address, entry);
|
|
|
|
ret = 0;
|
|
out:
|
|
trace_mark(kernel_arch_trap_exit, MARK_NOARGS);
|
|
return ret;
|
|
}
|