c3c7dbf488
The manufacturer specific initialization has already been done when
block unlocking takes place, and if anything goes wrong during this
procedure we should call spinand_manufacturer_cleanup().
Fixes: 7529df4652
("mtd: nand: Add core infrastructure to support SPI NANDs")
Cc: <stable@vger.kernel.org>
Signed-off-by: Boris Brezillon <bbrezillon@kernel.org>
Acked-by: Miquel Raynal <miquel.raynal@bootlin.com>
1156 lines
27 KiB
C
1156 lines
27 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2016-2017 Micron Technology, Inc.
|
|
*
|
|
* Authors:
|
|
* Peter Pan <peterpandong@micron.com>
|
|
* Boris Brezillon <boris.brezillon@bootlin.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "spi-nand: " fmt
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/spinand.h>
|
|
#include <linux/of.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/spi-mem.h>
|
|
|
|
static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
|
|
const struct nand_page_io_req *req,
|
|
u16 *column)
|
|
{
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
unsigned int shift;
|
|
|
|
if (nand->memorg.planes_per_lun < 2)
|
|
return;
|
|
|
|
/* The plane number is passed in MSB just above the column address */
|
|
shift = fls(nand->memorg.pagesize);
|
|
*column |= req->pos.plane << shift;
|
|
}
|
|
|
|
static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
|
|
{
|
|
struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
|
|
spinand->scratchbuf);
|
|
int ret;
|
|
|
|
ret = spi_mem_exec_op(spinand->spimem, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*val = *spinand->scratchbuf;
|
|
return 0;
|
|
}
|
|
|
|
static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
|
|
{
|
|
struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
|
|
spinand->scratchbuf);
|
|
|
|
*spinand->scratchbuf = val;
|
|
return spi_mem_exec_op(spinand->spimem, &op);
|
|
}
|
|
|
|
static int spinand_read_status(struct spinand_device *spinand, u8 *status)
|
|
{
|
|
return spinand_read_reg_op(spinand, REG_STATUS, status);
|
|
}
|
|
|
|
static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
|
|
{
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
|
|
if (WARN_ON(spinand->cur_target < 0 ||
|
|
spinand->cur_target >= nand->memorg.ntargets))
|
|
return -EINVAL;
|
|
|
|
*cfg = spinand->cfg_cache[spinand->cur_target];
|
|
return 0;
|
|
}
|
|
|
|
static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
|
|
{
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
int ret;
|
|
|
|
if (WARN_ON(spinand->cur_target < 0 ||
|
|
spinand->cur_target >= nand->memorg.ntargets))
|
|
return -EINVAL;
|
|
|
|
if (spinand->cfg_cache[spinand->cur_target] == cfg)
|
|
return 0;
|
|
|
|
ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spinand->cfg_cache[spinand->cur_target] = cfg;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spinand_upd_cfg() - Update the configuration register
|
|
* @spinand: the spinand device
|
|
* @mask: the mask encoding the bits to update in the config reg
|
|
* @val: the new value to apply
|
|
*
|
|
* Update the configuration register.
|
|
*
|
|
* Return: 0 on success, a negative error code otherwise.
|
|
*/
|
|
int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
|
|
{
|
|
int ret;
|
|
u8 cfg;
|
|
|
|
ret = spinand_get_cfg(spinand, &cfg);
|
|
if (ret)
|
|
return ret;
|
|
|
|
cfg &= ~mask;
|
|
cfg |= val;
|
|
|
|
return spinand_set_cfg(spinand, cfg);
|
|
}
|
|
|
|
/**
|
|
* spinand_select_target() - Select a specific NAND target/die
|
|
* @spinand: the spinand device
|
|
* @target: the target/die to select
|
|
*
|
|
* Select a new target/die. If chip only has one die, this function is a NOOP.
|
|
*
|
|
* Return: 0 on success, a negative error code otherwise.
|
|
*/
|
|
int spinand_select_target(struct spinand_device *spinand, unsigned int target)
|
|
{
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
int ret;
|
|
|
|
if (WARN_ON(target >= nand->memorg.ntargets))
|
|
return -EINVAL;
|
|
|
|
if (spinand->cur_target == target)
|
|
return 0;
|
|
|
|
if (nand->memorg.ntargets == 1) {
|
|
spinand->cur_target = target;
|
|
return 0;
|
|
}
|
|
|
|
ret = spinand->select_target(spinand, target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spinand->cur_target = target;
|
|
return 0;
|
|
}
|
|
|
|
static int spinand_init_cfg_cache(struct spinand_device *spinand)
|
|
{
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
struct device *dev = &spinand->spimem->spi->dev;
|
|
unsigned int target;
|
|
int ret;
|
|
|
|
spinand->cfg_cache = devm_kcalloc(dev,
|
|
nand->memorg.ntargets,
|
|
sizeof(*spinand->cfg_cache),
|
|
GFP_KERNEL);
|
|
if (!spinand->cfg_cache)
|
|
return -ENOMEM;
|
|
|
|
for (target = 0; target < nand->memorg.ntargets; target++) {
|
|
ret = spinand_select_target(spinand, target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* We use spinand_read_reg_op() instead of spinand_get_cfg()
|
|
* here to bypass the config cache.
|
|
*/
|
|
ret = spinand_read_reg_op(spinand, REG_CFG,
|
|
&spinand->cfg_cache[target]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spinand_init_quad_enable(struct spinand_device *spinand)
|
|
{
|
|
bool enable = false;
|
|
|
|
if (!(spinand->flags & SPINAND_HAS_QE_BIT))
|
|
return 0;
|
|
|
|
if (spinand->op_templates.read_cache->data.buswidth == 4 ||
|
|
spinand->op_templates.write_cache->data.buswidth == 4 ||
|
|
spinand->op_templates.update_cache->data.buswidth == 4)
|
|
enable = true;
|
|
|
|
return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
|
|
enable ? CFG_QUAD_ENABLE : 0);
|
|
}
|
|
|
|
static int spinand_ecc_enable(struct spinand_device *spinand,
|
|
bool enable)
|
|
{
|
|
return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
|
|
enable ? CFG_ECC_ENABLE : 0);
|
|
}
|
|
|
|
static int spinand_write_enable_op(struct spinand_device *spinand)
|
|
{
|
|
struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
|
|
|
|
return spi_mem_exec_op(spinand->spimem, &op);
|
|
}
|
|
|
|
static int spinand_load_page_op(struct spinand_device *spinand,
|
|
const struct nand_page_io_req *req)
|
|
{
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
unsigned int row = nanddev_pos_to_row(nand, &req->pos);
|
|
struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
|
|
|
|
return spi_mem_exec_op(spinand->spimem, &op);
|
|
}
|
|
|
|
static int spinand_read_from_cache_op(struct spinand_device *spinand,
|
|
const struct nand_page_io_req *req)
|
|
{
|
|
struct spi_mem_op op = *spinand->op_templates.read_cache;
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
|
struct nand_page_io_req adjreq = *req;
|
|
unsigned int nbytes = 0;
|
|
void *buf = NULL;
|
|
u16 column = 0;
|
|
int ret;
|
|
|
|
if (req->datalen) {
|
|
adjreq.datalen = nanddev_page_size(nand);
|
|
adjreq.dataoffs = 0;
|
|
adjreq.databuf.in = spinand->databuf;
|
|
buf = spinand->databuf;
|
|
nbytes = adjreq.datalen;
|
|
}
|
|
|
|
if (req->ooblen) {
|
|
adjreq.ooblen = nanddev_per_page_oobsize(nand);
|
|
adjreq.ooboffs = 0;
|
|
adjreq.oobbuf.in = spinand->oobbuf;
|
|
nbytes += nanddev_per_page_oobsize(nand);
|
|
if (!buf) {
|
|
buf = spinand->oobbuf;
|
|
column = nanddev_page_size(nand);
|
|
}
|
|
}
|
|
|
|
spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
|
|
op.addr.val = column;
|
|
|
|
/*
|
|
* Some controllers are limited in term of max RX data size. In this
|
|
* case, just repeat the READ_CACHE operation after updating the
|
|
* column.
|
|
*/
|
|
while (nbytes) {
|
|
op.data.buf.in = buf;
|
|
op.data.nbytes = nbytes;
|
|
ret = spi_mem_adjust_op_size(spinand->spimem, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spi_mem_exec_op(spinand->spimem, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
buf += op.data.nbytes;
|
|
nbytes -= op.data.nbytes;
|
|
op.addr.val += op.data.nbytes;
|
|
}
|
|
|
|
if (req->datalen)
|
|
memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
|
|
req->datalen);
|
|
|
|
if (req->ooblen) {
|
|
if (req->mode == MTD_OPS_AUTO_OOB)
|
|
mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
|
|
spinand->oobbuf,
|
|
req->ooboffs,
|
|
req->ooblen);
|
|
else
|
|
memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
|
|
req->ooblen);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spinand_write_to_cache_op(struct spinand_device *spinand,
|
|
const struct nand_page_io_req *req)
|
|
{
|
|
struct spi_mem_op op = *spinand->op_templates.write_cache;
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
|
struct nand_page_io_req adjreq = *req;
|
|
void *buf = spinand->databuf;
|
|
unsigned int nbytes;
|
|
u16 column = 0;
|
|
int ret;
|
|
|
|
/*
|
|
* Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
|
|
* the cache content to 0xFF (depends on vendor implementation), so we
|
|
* must fill the page cache entirely even if we only want to program
|
|
* the data portion of the page, otherwise we might corrupt the BBM or
|
|
* user data previously programmed in OOB area.
|
|
*/
|
|
nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
|
|
memset(spinand->databuf, 0xff, nbytes);
|
|
adjreq.dataoffs = 0;
|
|
adjreq.datalen = nanddev_page_size(nand);
|
|
adjreq.databuf.out = spinand->databuf;
|
|
adjreq.ooblen = nanddev_per_page_oobsize(nand);
|
|
adjreq.ooboffs = 0;
|
|
adjreq.oobbuf.out = spinand->oobbuf;
|
|
|
|
if (req->datalen)
|
|
memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
|
|
req->datalen);
|
|
|
|
if (req->ooblen) {
|
|
if (req->mode == MTD_OPS_AUTO_OOB)
|
|
mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
|
|
spinand->oobbuf,
|
|
req->ooboffs,
|
|
req->ooblen);
|
|
else
|
|
memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
|
|
req->ooblen);
|
|
}
|
|
|
|
spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
|
|
|
|
op = *spinand->op_templates.write_cache;
|
|
op.addr.val = column;
|
|
|
|
/*
|
|
* Some controllers are limited in term of max TX data size. In this
|
|
* case, split the operation into one LOAD CACHE and one or more
|
|
* LOAD RANDOM CACHE.
|
|
*/
|
|
while (nbytes) {
|
|
op.data.buf.out = buf;
|
|
op.data.nbytes = nbytes;
|
|
|
|
ret = spi_mem_adjust_op_size(spinand->spimem, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spi_mem_exec_op(spinand->spimem, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
buf += op.data.nbytes;
|
|
nbytes -= op.data.nbytes;
|
|
op.addr.val += op.data.nbytes;
|
|
|
|
/*
|
|
* We need to use the RANDOM LOAD CACHE operation if there's
|
|
* more than one iteration, because the LOAD operation might
|
|
* reset the cache to 0xff.
|
|
*/
|
|
if (nbytes) {
|
|
column = op.addr.val;
|
|
op = *spinand->op_templates.update_cache;
|
|
op.addr.val = column;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spinand_program_op(struct spinand_device *spinand,
|
|
const struct nand_page_io_req *req)
|
|
{
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
unsigned int row = nanddev_pos_to_row(nand, &req->pos);
|
|
struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
|
|
|
|
return spi_mem_exec_op(spinand->spimem, &op);
|
|
}
|
|
|
|
static int spinand_erase_op(struct spinand_device *spinand,
|
|
const struct nand_pos *pos)
|
|
{
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
unsigned int row = nanddev_pos_to_row(nand, pos);
|
|
struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
|
|
|
|
return spi_mem_exec_op(spinand->spimem, &op);
|
|
}
|
|
|
|
static int spinand_wait(struct spinand_device *spinand, u8 *s)
|
|
{
|
|
unsigned long timeo = jiffies + msecs_to_jiffies(400);
|
|
u8 status;
|
|
int ret;
|
|
|
|
do {
|
|
ret = spinand_read_status(spinand, &status);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!(status & STATUS_BUSY))
|
|
goto out;
|
|
} while (time_before(jiffies, timeo));
|
|
|
|
/*
|
|
* Extra read, just in case the STATUS_READY bit has changed
|
|
* since our last check
|
|
*/
|
|
ret = spinand_read_status(spinand, &status);
|
|
if (ret)
|
|
return ret;
|
|
|
|
out:
|
|
if (s)
|
|
*s = status;
|
|
|
|
return status & STATUS_BUSY ? -ETIMEDOUT : 0;
|
|
}
|
|
|
|
static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf)
|
|
{
|
|
struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf,
|
|
SPINAND_MAX_ID_LEN);
|
|
int ret;
|
|
|
|
ret = spi_mem_exec_op(spinand->spimem, &op);
|
|
if (!ret)
|
|
memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spinand_reset_op(struct spinand_device *spinand)
|
|
{
|
|
struct spi_mem_op op = SPINAND_RESET_OP;
|
|
int ret;
|
|
|
|
ret = spi_mem_exec_op(spinand->spimem, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return spinand_wait(spinand, NULL);
|
|
}
|
|
|
|
static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
|
|
{
|
|
return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
|
|
}
|
|
|
|
static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
|
|
{
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
|
|
if (spinand->eccinfo.get_status)
|
|
return spinand->eccinfo.get_status(spinand, status);
|
|
|
|
switch (status & STATUS_ECC_MASK) {
|
|
case STATUS_ECC_NO_BITFLIPS:
|
|
return 0;
|
|
|
|
case STATUS_ECC_HAS_BITFLIPS:
|
|
/*
|
|
* We have no way to know exactly how many bitflips have been
|
|
* fixed, so let's return the maximum possible value so that
|
|
* wear-leveling layers move the data immediately.
|
|
*/
|
|
return nand->eccreq.strength;
|
|
|
|
case STATUS_ECC_UNCOR_ERROR:
|
|
return -EBADMSG;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int spinand_read_page(struct spinand_device *spinand,
|
|
const struct nand_page_io_req *req,
|
|
bool ecc_enabled)
|
|
{
|
|
u8 status;
|
|
int ret;
|
|
|
|
ret = spinand_load_page_op(spinand, req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spinand_wait(spinand, &status);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = spinand_read_from_cache_op(spinand, req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!ecc_enabled)
|
|
return 0;
|
|
|
|
return spinand_check_ecc_status(spinand, status);
|
|
}
|
|
|
|
static int spinand_write_page(struct spinand_device *spinand,
|
|
const struct nand_page_io_req *req)
|
|
{
|
|
u8 status;
|
|
int ret;
|
|
|
|
ret = spinand_write_enable_op(spinand);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spinand_write_to_cache_op(spinand, req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spinand_program_op(spinand, req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spinand_wait(spinand, &status);
|
|
if (!ret && (status & STATUS_PROG_FAILED))
|
|
ret = -EIO;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct spinand_device *spinand = mtd_to_spinand(mtd);
|
|
struct nand_device *nand = mtd_to_nanddev(mtd);
|
|
unsigned int max_bitflips = 0;
|
|
struct nand_io_iter iter;
|
|
bool enable_ecc = false;
|
|
bool ecc_failed = false;
|
|
int ret = 0;
|
|
|
|
if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
|
|
enable_ecc = true;
|
|
|
|
mutex_lock(&spinand->lock);
|
|
|
|
nanddev_io_for_each_page(nand, from, ops, &iter) {
|
|
ret = spinand_select_target(spinand, iter.req.pos.target);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = spinand_ecc_enable(spinand, enable_ecc);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = spinand_read_page(spinand, &iter.req, enable_ecc);
|
|
if (ret < 0 && ret != -EBADMSG)
|
|
break;
|
|
|
|
if (ret == -EBADMSG) {
|
|
ecc_failed = true;
|
|
mtd->ecc_stats.failed++;
|
|
ret = 0;
|
|
} else {
|
|
mtd->ecc_stats.corrected += ret;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, ret);
|
|
}
|
|
|
|
ops->retlen += iter.req.datalen;
|
|
ops->oobretlen += iter.req.ooblen;
|
|
}
|
|
|
|
mutex_unlock(&spinand->lock);
|
|
|
|
if (ecc_failed && !ret)
|
|
ret = -EBADMSG;
|
|
|
|
return ret ? ret : max_bitflips;
|
|
}
|
|
|
|
static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct spinand_device *spinand = mtd_to_spinand(mtd);
|
|
struct nand_device *nand = mtd_to_nanddev(mtd);
|
|
struct nand_io_iter iter;
|
|
bool enable_ecc = false;
|
|
int ret = 0;
|
|
|
|
if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
|
|
enable_ecc = true;
|
|
|
|
mutex_lock(&spinand->lock);
|
|
|
|
nanddev_io_for_each_page(nand, to, ops, &iter) {
|
|
ret = spinand_select_target(spinand, iter.req.pos.target);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = spinand_ecc_enable(spinand, enable_ecc);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = spinand_write_page(spinand, &iter.req);
|
|
if (ret)
|
|
break;
|
|
|
|
ops->retlen += iter.req.datalen;
|
|
ops->oobretlen += iter.req.ooblen;
|
|
}
|
|
|
|
mutex_unlock(&spinand->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
|
|
{
|
|
struct spinand_device *spinand = nand_to_spinand(nand);
|
|
struct nand_page_io_req req = {
|
|
.pos = *pos,
|
|
.ooblen = 2,
|
|
.ooboffs = 0,
|
|
.oobbuf.in = spinand->oobbuf,
|
|
.mode = MTD_OPS_RAW,
|
|
};
|
|
|
|
memset(spinand->oobbuf, 0, 2);
|
|
spinand_select_target(spinand, pos->target);
|
|
spinand_read_page(spinand, &req, false);
|
|
if (spinand->oobbuf[0] != 0xff || spinand->oobbuf[1] != 0xff)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
|
|
{
|
|
struct nand_device *nand = mtd_to_nanddev(mtd);
|
|
struct spinand_device *spinand = nand_to_spinand(nand);
|
|
struct nand_pos pos;
|
|
int ret;
|
|
|
|
nanddev_offs_to_pos(nand, offs, &pos);
|
|
mutex_lock(&spinand->lock);
|
|
ret = nanddev_isbad(nand, &pos);
|
|
mutex_unlock(&spinand->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
|
|
{
|
|
struct spinand_device *spinand = nand_to_spinand(nand);
|
|
struct nand_page_io_req req = {
|
|
.pos = *pos,
|
|
.ooboffs = 0,
|
|
.ooblen = 2,
|
|
.oobbuf.out = spinand->oobbuf,
|
|
};
|
|
int ret;
|
|
|
|
/* Erase block before marking it bad. */
|
|
ret = spinand_select_target(spinand, pos->target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spinand_write_enable_op(spinand);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spinand_erase_op(spinand, pos);
|
|
|
|
memset(spinand->oobbuf, 0, 2);
|
|
return spinand_write_page(spinand, &req);
|
|
}
|
|
|
|
static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
|
|
{
|
|
struct nand_device *nand = mtd_to_nanddev(mtd);
|
|
struct spinand_device *spinand = nand_to_spinand(nand);
|
|
struct nand_pos pos;
|
|
int ret;
|
|
|
|
nanddev_offs_to_pos(nand, offs, &pos);
|
|
mutex_lock(&spinand->lock);
|
|
ret = nanddev_markbad(nand, &pos);
|
|
mutex_unlock(&spinand->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
|
|
{
|
|
struct spinand_device *spinand = nand_to_spinand(nand);
|
|
u8 status;
|
|
int ret;
|
|
|
|
ret = spinand_select_target(spinand, pos->target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spinand_write_enable_op(spinand);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spinand_erase_op(spinand, pos);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spinand_wait(spinand, &status);
|
|
if (!ret && (status & STATUS_ERASE_FAILED))
|
|
ret = -EIO;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spinand_mtd_erase(struct mtd_info *mtd,
|
|
struct erase_info *einfo)
|
|
{
|
|
struct spinand_device *spinand = mtd_to_spinand(mtd);
|
|
int ret;
|
|
|
|
mutex_lock(&spinand->lock);
|
|
ret = nanddev_mtd_erase(mtd, einfo);
|
|
mutex_unlock(&spinand->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
|
|
{
|
|
struct spinand_device *spinand = mtd_to_spinand(mtd);
|
|
struct nand_device *nand = mtd_to_nanddev(mtd);
|
|
struct nand_pos pos;
|
|
int ret;
|
|
|
|
nanddev_offs_to_pos(nand, offs, &pos);
|
|
mutex_lock(&spinand->lock);
|
|
ret = nanddev_isreserved(nand, &pos);
|
|
mutex_unlock(&spinand->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct nand_ops spinand_ops = {
|
|
.erase = spinand_erase,
|
|
.markbad = spinand_markbad,
|
|
.isbad = spinand_isbad,
|
|
};
|
|
|
|
static const struct spinand_manufacturer *spinand_manufacturers[] = {
|
|
&gigadevice_spinand_manufacturer,
|
|
¯onix_spinand_manufacturer,
|
|
µn_spinand_manufacturer,
|
|
&toshiba_spinand_manufacturer,
|
|
&winbond_spinand_manufacturer,
|
|
};
|
|
|
|
static int spinand_manufacturer_detect(struct spinand_device *spinand)
|
|
{
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
|
|
ret = spinand_manufacturers[i]->ops->detect(spinand);
|
|
if (ret > 0) {
|
|
spinand->manufacturer = spinand_manufacturers[i];
|
|
return 0;
|
|
} else if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static int spinand_manufacturer_init(struct spinand_device *spinand)
|
|
{
|
|
if (spinand->manufacturer->ops->init)
|
|
return spinand->manufacturer->ops->init(spinand);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
|
|
{
|
|
/* Release manufacturer private data */
|
|
if (spinand->manufacturer->ops->cleanup)
|
|
return spinand->manufacturer->ops->cleanup(spinand);
|
|
}
|
|
|
|
static const struct spi_mem_op *
|
|
spinand_select_op_variant(struct spinand_device *spinand,
|
|
const struct spinand_op_variants *variants)
|
|
{
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < variants->nops; i++) {
|
|
struct spi_mem_op op = variants->ops[i];
|
|
unsigned int nbytes;
|
|
int ret;
|
|
|
|
nbytes = nanddev_per_page_oobsize(nand) +
|
|
nanddev_page_size(nand);
|
|
|
|
while (nbytes) {
|
|
op.data.nbytes = nbytes;
|
|
ret = spi_mem_adjust_op_size(spinand->spimem, &op);
|
|
if (ret)
|
|
break;
|
|
|
|
if (!spi_mem_supports_op(spinand->spimem, &op))
|
|
break;
|
|
|
|
nbytes -= op.data.nbytes;
|
|
}
|
|
|
|
if (!nbytes)
|
|
return &variants->ops[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* spinand_match_and_init() - Try to find a match between a device ID and an
|
|
* entry in a spinand_info table
|
|
* @spinand: SPI NAND object
|
|
* @table: SPI NAND device description table
|
|
* @table_size: size of the device description table
|
|
*
|
|
* Should be used by SPI NAND manufacturer drivers when they want to find a
|
|
* match between a device ID retrieved through the READ_ID command and an
|
|
* entry in the SPI NAND description table. If a match is found, the spinand
|
|
* object will be initialized with information provided by the matching
|
|
* spinand_info entry.
|
|
*
|
|
* Return: 0 on success, a negative error code otherwise.
|
|
*/
|
|
int spinand_match_and_init(struct spinand_device *spinand,
|
|
const struct spinand_info *table,
|
|
unsigned int table_size, u8 devid)
|
|
{
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < table_size; i++) {
|
|
const struct spinand_info *info = &table[i];
|
|
const struct spi_mem_op *op;
|
|
|
|
if (devid != info->devid)
|
|
continue;
|
|
|
|
nand->memorg = table[i].memorg;
|
|
nand->eccreq = table[i].eccreq;
|
|
spinand->eccinfo = table[i].eccinfo;
|
|
spinand->flags = table[i].flags;
|
|
spinand->select_target = table[i].select_target;
|
|
|
|
op = spinand_select_op_variant(spinand,
|
|
info->op_variants.read_cache);
|
|
if (!op)
|
|
return -ENOTSUPP;
|
|
|
|
spinand->op_templates.read_cache = op;
|
|
|
|
op = spinand_select_op_variant(spinand,
|
|
info->op_variants.write_cache);
|
|
if (!op)
|
|
return -ENOTSUPP;
|
|
|
|
spinand->op_templates.write_cache = op;
|
|
|
|
op = spinand_select_op_variant(spinand,
|
|
info->op_variants.update_cache);
|
|
spinand->op_templates.update_cache = op;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
static int spinand_detect(struct spinand_device *spinand)
|
|
{
|
|
struct device *dev = &spinand->spimem->spi->dev;
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
int ret;
|
|
|
|
ret = spinand_reset_op(spinand);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spinand_read_id_op(spinand, spinand->id.data);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spinand->id.len = SPINAND_MAX_ID_LEN;
|
|
|
|
ret = spinand_manufacturer_detect(spinand);
|
|
if (ret) {
|
|
dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
|
|
spinand->id.data);
|
|
return ret;
|
|
}
|
|
|
|
if (nand->memorg.ntargets > 1 && !spinand->select_target) {
|
|
dev_err(dev,
|
|
"SPI NANDs with more than one die must implement ->select_target()\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_info(&spinand->spimem->spi->dev,
|
|
"%s SPI NAND was found.\n", spinand->manufacturer->name);
|
|
dev_info(&spinand->spimem->spi->dev,
|
|
"%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
|
|
nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
|
|
nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *region)
|
|
{
|
|
return -ERANGE;
|
|
}
|
|
|
|
static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *region)
|
|
{
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
/* Reserve 2 bytes for the BBM. */
|
|
region->offset = 2;
|
|
region->length = 62;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
|
|
.ecc = spinand_noecc_ooblayout_ecc,
|
|
.free = spinand_noecc_ooblayout_free,
|
|
};
|
|
|
|
static int spinand_init(struct spinand_device *spinand)
|
|
{
|
|
struct device *dev = &spinand->spimem->spi->dev;
|
|
struct mtd_info *mtd = spinand_to_mtd(spinand);
|
|
struct nand_device *nand = mtd_to_nanddev(mtd);
|
|
int ret, i;
|
|
|
|
/*
|
|
* We need a scratch buffer because the spi_mem interface requires that
|
|
* buf passed in spi_mem_op->data.buf be DMA-able.
|
|
*/
|
|
spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
|
|
if (!spinand->scratchbuf)
|
|
return -ENOMEM;
|
|
|
|
ret = spinand_detect(spinand);
|
|
if (ret)
|
|
goto err_free_bufs;
|
|
|
|
/*
|
|
* Use kzalloc() instead of devm_kzalloc() here, because some drivers
|
|
* may use this buffer for DMA access.
|
|
* Memory allocated by devm_ does not guarantee DMA-safe alignment.
|
|
*/
|
|
spinand->databuf = kzalloc(nanddev_page_size(nand) +
|
|
nanddev_per_page_oobsize(nand),
|
|
GFP_KERNEL);
|
|
if (!spinand->databuf) {
|
|
ret = -ENOMEM;
|
|
goto err_free_bufs;
|
|
}
|
|
|
|
spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
|
|
|
|
ret = spinand_init_cfg_cache(spinand);
|
|
if (ret)
|
|
goto err_free_bufs;
|
|
|
|
ret = spinand_init_quad_enable(spinand);
|
|
if (ret)
|
|
goto err_free_bufs;
|
|
|
|
ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
|
|
if (ret)
|
|
goto err_free_bufs;
|
|
|
|
ret = spinand_manufacturer_init(spinand);
|
|
if (ret) {
|
|
dev_err(dev,
|
|
"Failed to initialize the SPI NAND chip (err = %d)\n",
|
|
ret);
|
|
goto err_free_bufs;
|
|
}
|
|
|
|
/* After power up, all blocks are locked, so unlock them here. */
|
|
for (i = 0; i < nand->memorg.ntargets; i++) {
|
|
ret = spinand_select_target(spinand, i);
|
|
if (ret)
|
|
goto err_manuf_cleanup;
|
|
|
|
ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
|
|
if (ret)
|
|
goto err_manuf_cleanup;
|
|
}
|
|
|
|
ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
|
|
if (ret)
|
|
goto err_manuf_cleanup;
|
|
|
|
/*
|
|
* Right now, we don't support ECC, so let the whole oob
|
|
* area is available for user.
|
|
*/
|
|
mtd->_read_oob = spinand_mtd_read;
|
|
mtd->_write_oob = spinand_mtd_write;
|
|
mtd->_block_isbad = spinand_mtd_block_isbad;
|
|
mtd->_block_markbad = spinand_mtd_block_markbad;
|
|
mtd->_block_isreserved = spinand_mtd_block_isreserved;
|
|
mtd->_erase = spinand_mtd_erase;
|
|
|
|
if (spinand->eccinfo.ooblayout)
|
|
mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
|
|
else
|
|
mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
|
|
|
|
ret = mtd_ooblayout_count_freebytes(mtd);
|
|
if (ret < 0)
|
|
goto err_cleanup_nanddev;
|
|
|
|
mtd->oobavail = ret;
|
|
|
|
return 0;
|
|
|
|
err_cleanup_nanddev:
|
|
nanddev_cleanup(nand);
|
|
|
|
err_manuf_cleanup:
|
|
spinand_manufacturer_cleanup(spinand);
|
|
|
|
err_free_bufs:
|
|
kfree(spinand->databuf);
|
|
kfree(spinand->scratchbuf);
|
|
return ret;
|
|
}
|
|
|
|
static void spinand_cleanup(struct spinand_device *spinand)
|
|
{
|
|
struct nand_device *nand = spinand_to_nand(spinand);
|
|
|
|
nanddev_cleanup(nand);
|
|
spinand_manufacturer_cleanup(spinand);
|
|
kfree(spinand->databuf);
|
|
kfree(spinand->scratchbuf);
|
|
}
|
|
|
|
static int spinand_probe(struct spi_mem *mem)
|
|
{
|
|
struct spinand_device *spinand;
|
|
struct mtd_info *mtd;
|
|
int ret;
|
|
|
|
spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
|
|
GFP_KERNEL);
|
|
if (!spinand)
|
|
return -ENOMEM;
|
|
|
|
spinand->spimem = mem;
|
|
spi_mem_set_drvdata(mem, spinand);
|
|
spinand_set_of_node(spinand, mem->spi->dev.of_node);
|
|
mutex_init(&spinand->lock);
|
|
mtd = spinand_to_mtd(spinand);
|
|
mtd->dev.parent = &mem->spi->dev;
|
|
|
|
ret = spinand_init(spinand);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mtd_device_register(mtd, NULL, 0);
|
|
if (ret)
|
|
goto err_spinand_cleanup;
|
|
|
|
return 0;
|
|
|
|
err_spinand_cleanup:
|
|
spinand_cleanup(spinand);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spinand_remove(struct spi_mem *mem)
|
|
{
|
|
struct spinand_device *spinand;
|
|
struct mtd_info *mtd;
|
|
int ret;
|
|
|
|
spinand = spi_mem_get_drvdata(mem);
|
|
mtd = spinand_to_mtd(spinand);
|
|
|
|
ret = mtd_device_unregister(mtd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spinand_cleanup(spinand);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct spi_device_id spinand_ids[] = {
|
|
{ .name = "spi-nand" },
|
|
{ /* sentinel */ },
|
|
};
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id spinand_of_ids[] = {
|
|
{ .compatible = "spi-nand" },
|
|
{ /* sentinel */ },
|
|
};
|
|
#endif
|
|
|
|
static struct spi_mem_driver spinand_drv = {
|
|
.spidrv = {
|
|
.id_table = spinand_ids,
|
|
.driver = {
|
|
.name = "spi-nand",
|
|
.of_match_table = of_match_ptr(spinand_of_ids),
|
|
},
|
|
},
|
|
.probe = spinand_probe,
|
|
.remove = spinand_remove,
|
|
};
|
|
module_spi_mem_driver(spinand_drv);
|
|
|
|
MODULE_DESCRIPTION("SPI NAND framework");
|
|
MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
|
|
MODULE_LICENSE("GPL v2");
|