90405aa022
In callstack mode the LBR is not a ring buffer, but a stack that grows up and down. This means in this case we don't need to access all LBRs, only the ones up to TOS. Do this optimization for the normal LBR read, and the context switch save/restore code. For save/restore it can be done unconditionally, as it only runs when call stack mode is active. This recovers some of the cost of going to 32 LBRs on Skylake. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@kernel.org Cc: eranian@google.com Cc: jolsa@redhat.com Link: http://lkml.kernel.org/r/1432786398-23861-6-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
1025 lines
26 KiB
C
1025 lines
26 KiB
C
#include <linux/perf_event.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <asm/perf_event.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/insn.h>
|
|
|
|
#include "perf_event.h"
|
|
|
|
enum {
|
|
LBR_FORMAT_32 = 0x00,
|
|
LBR_FORMAT_LIP = 0x01,
|
|
LBR_FORMAT_EIP = 0x02,
|
|
LBR_FORMAT_EIP_FLAGS = 0x03,
|
|
LBR_FORMAT_EIP_FLAGS2 = 0x04,
|
|
LBR_FORMAT_INFO = 0x05,
|
|
LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_INFO,
|
|
};
|
|
|
|
static enum {
|
|
LBR_EIP_FLAGS = 1,
|
|
LBR_TSX = 2,
|
|
} lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
|
|
[LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
|
|
[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
|
|
};
|
|
|
|
/*
|
|
* Intel LBR_SELECT bits
|
|
* Intel Vol3a, April 2011, Section 16.7 Table 16-10
|
|
*
|
|
* Hardware branch filter (not available on all CPUs)
|
|
*/
|
|
#define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
|
|
#define LBR_USER_BIT 1 /* do not capture at ring > 0 */
|
|
#define LBR_JCC_BIT 2 /* do not capture conditional branches */
|
|
#define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
|
|
#define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
|
|
#define LBR_RETURN_BIT 5 /* do not capture near returns */
|
|
#define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
|
|
#define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
|
|
#define LBR_FAR_BIT 8 /* do not capture far branches */
|
|
#define LBR_CALL_STACK_BIT 9 /* enable call stack */
|
|
|
|
#define LBR_KERNEL (1 << LBR_KERNEL_BIT)
|
|
#define LBR_USER (1 << LBR_USER_BIT)
|
|
#define LBR_JCC (1 << LBR_JCC_BIT)
|
|
#define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
|
|
#define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
|
|
#define LBR_RETURN (1 << LBR_RETURN_BIT)
|
|
#define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
|
|
#define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
|
|
#define LBR_FAR (1 << LBR_FAR_BIT)
|
|
#define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
|
|
|
|
#define LBR_PLM (LBR_KERNEL | LBR_USER)
|
|
|
|
#define LBR_SEL_MASK 0x1ff /* valid bits in LBR_SELECT */
|
|
#define LBR_NOT_SUPP -1 /* LBR filter not supported */
|
|
#define LBR_IGN 0 /* ignored */
|
|
|
|
#define LBR_ANY \
|
|
(LBR_JCC |\
|
|
LBR_REL_CALL |\
|
|
LBR_IND_CALL |\
|
|
LBR_RETURN |\
|
|
LBR_REL_JMP |\
|
|
LBR_IND_JMP |\
|
|
LBR_FAR)
|
|
|
|
#define LBR_FROM_FLAG_MISPRED (1ULL << 63)
|
|
#define LBR_FROM_FLAG_IN_TX (1ULL << 62)
|
|
#define LBR_FROM_FLAG_ABORT (1ULL << 61)
|
|
|
|
/*
|
|
* x86control flow change classification
|
|
* x86control flow changes include branches, interrupts, traps, faults
|
|
*/
|
|
enum {
|
|
X86_BR_NONE = 0, /* unknown */
|
|
|
|
X86_BR_USER = 1 << 0, /* branch target is user */
|
|
X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
|
|
|
|
X86_BR_CALL = 1 << 2, /* call */
|
|
X86_BR_RET = 1 << 3, /* return */
|
|
X86_BR_SYSCALL = 1 << 4, /* syscall */
|
|
X86_BR_SYSRET = 1 << 5, /* syscall return */
|
|
X86_BR_INT = 1 << 6, /* sw interrupt */
|
|
X86_BR_IRET = 1 << 7, /* return from interrupt */
|
|
X86_BR_JCC = 1 << 8, /* conditional */
|
|
X86_BR_JMP = 1 << 9, /* jump */
|
|
X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
|
|
X86_BR_IND_CALL = 1 << 11,/* indirect calls */
|
|
X86_BR_ABORT = 1 << 12,/* transaction abort */
|
|
X86_BR_IN_TX = 1 << 13,/* in transaction */
|
|
X86_BR_NO_TX = 1 << 14,/* not in transaction */
|
|
X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
|
|
X86_BR_CALL_STACK = 1 << 16,/* call stack */
|
|
X86_BR_IND_JMP = 1 << 17,/* indirect jump */
|
|
};
|
|
|
|
#define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
|
|
#define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
|
|
|
|
#define X86_BR_ANY \
|
|
(X86_BR_CALL |\
|
|
X86_BR_RET |\
|
|
X86_BR_SYSCALL |\
|
|
X86_BR_SYSRET |\
|
|
X86_BR_INT |\
|
|
X86_BR_IRET |\
|
|
X86_BR_JCC |\
|
|
X86_BR_JMP |\
|
|
X86_BR_IRQ |\
|
|
X86_BR_ABORT |\
|
|
X86_BR_IND_CALL |\
|
|
X86_BR_IND_JMP |\
|
|
X86_BR_ZERO_CALL)
|
|
|
|
#define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
|
|
|
|
#define X86_BR_ANY_CALL \
|
|
(X86_BR_CALL |\
|
|
X86_BR_IND_CALL |\
|
|
X86_BR_ZERO_CALL |\
|
|
X86_BR_SYSCALL |\
|
|
X86_BR_IRQ |\
|
|
X86_BR_INT)
|
|
|
|
static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
|
|
|
|
/*
|
|
* We only support LBR implementations that have FREEZE_LBRS_ON_PMI
|
|
* otherwise it becomes near impossible to get a reliable stack.
|
|
*/
|
|
|
|
static void __intel_pmu_lbr_enable(bool pmi)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
u64 debugctl, lbr_select = 0, orig_debugctl;
|
|
|
|
/*
|
|
* No need to unfreeze manually, as v4 can do that as part
|
|
* of the GLOBAL_STATUS ack.
|
|
*/
|
|
if (pmi && x86_pmu.version >= 4)
|
|
return;
|
|
|
|
/*
|
|
* No need to reprogram LBR_SELECT in a PMI, as it
|
|
* did not change.
|
|
*/
|
|
if (cpuc->lbr_sel && !pmi) {
|
|
lbr_select = cpuc->lbr_sel->config;
|
|
wrmsrl(MSR_LBR_SELECT, lbr_select);
|
|
}
|
|
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
orig_debugctl = debugctl;
|
|
debugctl |= DEBUGCTLMSR_LBR;
|
|
/*
|
|
* LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
|
|
* If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
|
|
* may cause superfluous increase/decrease of LBR_TOS.
|
|
*/
|
|
if (!(lbr_select & LBR_CALL_STACK))
|
|
debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
|
|
if (orig_debugctl != debugctl)
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
}
|
|
|
|
static void __intel_pmu_lbr_disable(void)
|
|
{
|
|
u64 debugctl;
|
|
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
|
|
}
|
|
|
|
static void intel_pmu_lbr_reset_32(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++)
|
|
wrmsrl(x86_pmu.lbr_from + i, 0);
|
|
}
|
|
|
|
static void intel_pmu_lbr_reset_64(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
wrmsrl(x86_pmu.lbr_from + i, 0);
|
|
wrmsrl(x86_pmu.lbr_to + i, 0);
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
|
wrmsrl(MSR_LBR_INFO_0 + i, 0);
|
|
}
|
|
}
|
|
|
|
void intel_pmu_lbr_reset(void)
|
|
{
|
|
if (!x86_pmu.lbr_nr)
|
|
return;
|
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
|
|
intel_pmu_lbr_reset_32();
|
|
else
|
|
intel_pmu_lbr_reset_64();
|
|
}
|
|
|
|
/*
|
|
* TOS = most recently recorded branch
|
|
*/
|
|
static inline u64 intel_pmu_lbr_tos(void)
|
|
{
|
|
u64 tos;
|
|
|
|
rdmsrl(x86_pmu.lbr_tos, tos);
|
|
return tos;
|
|
}
|
|
|
|
enum {
|
|
LBR_NONE,
|
|
LBR_VALID,
|
|
};
|
|
|
|
static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
|
|
{
|
|
int i;
|
|
unsigned lbr_idx, mask;
|
|
u64 tos;
|
|
|
|
if (task_ctx->lbr_callstack_users == 0 ||
|
|
task_ctx->lbr_stack_state == LBR_NONE) {
|
|
intel_pmu_lbr_reset();
|
|
return;
|
|
}
|
|
|
|
mask = x86_pmu.lbr_nr - 1;
|
|
tos = intel_pmu_lbr_tos();
|
|
for (i = 0; i < tos; i++) {
|
|
lbr_idx = (tos - i) & mask;
|
|
wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
|
|
wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
|
wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
|
|
}
|
|
task_ctx->lbr_stack_state = LBR_NONE;
|
|
}
|
|
|
|
static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
|
|
{
|
|
int i;
|
|
unsigned lbr_idx, mask;
|
|
u64 tos;
|
|
|
|
if (task_ctx->lbr_callstack_users == 0) {
|
|
task_ctx->lbr_stack_state = LBR_NONE;
|
|
return;
|
|
}
|
|
|
|
mask = x86_pmu.lbr_nr - 1;
|
|
tos = intel_pmu_lbr_tos();
|
|
for (i = 0; i < tos; i++) {
|
|
lbr_idx = (tos - i) & mask;
|
|
rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
|
|
rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
|
|
rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
|
|
}
|
|
task_ctx->lbr_stack_state = LBR_VALID;
|
|
}
|
|
|
|
void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct x86_perf_task_context *task_ctx;
|
|
|
|
/*
|
|
* If LBR callstack feature is enabled and the stack was saved when
|
|
* the task was scheduled out, restore the stack. Otherwise flush
|
|
* the LBR stack.
|
|
*/
|
|
task_ctx = ctx ? ctx->task_ctx_data : NULL;
|
|
if (task_ctx) {
|
|
if (sched_in) {
|
|
__intel_pmu_lbr_restore(task_ctx);
|
|
cpuc->lbr_context = ctx;
|
|
} else {
|
|
__intel_pmu_lbr_save(task_ctx);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* When sampling the branck stack in system-wide, it may be
|
|
* necessary to flush the stack on context switch. This happens
|
|
* when the branch stack does not tag its entries with the pid
|
|
* of the current task. Otherwise it becomes impossible to
|
|
* associate a branch entry with a task. This ambiguity is more
|
|
* likely to appear when the branch stack supports priv level
|
|
* filtering and the user sets it to monitor only at the user
|
|
* level (which could be a useful measurement in system-wide
|
|
* mode). In that case, the risk is high of having a branch
|
|
* stack with branch from multiple tasks.
|
|
*/
|
|
if (sched_in) {
|
|
intel_pmu_lbr_reset();
|
|
cpuc->lbr_context = ctx;
|
|
}
|
|
}
|
|
|
|
static inline bool branch_user_callstack(unsigned br_sel)
|
|
{
|
|
return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
|
|
}
|
|
|
|
void intel_pmu_lbr_enable(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct x86_perf_task_context *task_ctx;
|
|
|
|
if (!x86_pmu.lbr_nr)
|
|
return;
|
|
|
|
/*
|
|
* Reset the LBR stack if we changed task context to
|
|
* avoid data leaks.
|
|
*/
|
|
if (event->ctx->task && cpuc->lbr_context != event->ctx) {
|
|
intel_pmu_lbr_reset();
|
|
cpuc->lbr_context = event->ctx;
|
|
}
|
|
cpuc->br_sel = event->hw.branch_reg.reg;
|
|
|
|
if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
|
|
event->ctx->task_ctx_data) {
|
|
task_ctx = event->ctx->task_ctx_data;
|
|
task_ctx->lbr_callstack_users++;
|
|
}
|
|
|
|
cpuc->lbr_users++;
|
|
perf_sched_cb_inc(event->ctx->pmu);
|
|
}
|
|
|
|
void intel_pmu_lbr_disable(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct x86_perf_task_context *task_ctx;
|
|
|
|
if (!x86_pmu.lbr_nr)
|
|
return;
|
|
|
|
if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
|
|
event->ctx->task_ctx_data) {
|
|
task_ctx = event->ctx->task_ctx_data;
|
|
task_ctx->lbr_callstack_users--;
|
|
}
|
|
|
|
cpuc->lbr_users--;
|
|
WARN_ON_ONCE(cpuc->lbr_users < 0);
|
|
perf_sched_cb_dec(event->ctx->pmu);
|
|
|
|
if (cpuc->enabled && !cpuc->lbr_users) {
|
|
__intel_pmu_lbr_disable();
|
|
/* avoid stale pointer */
|
|
cpuc->lbr_context = NULL;
|
|
}
|
|
}
|
|
|
|
void intel_pmu_lbr_enable_all(bool pmi)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (cpuc->lbr_users)
|
|
__intel_pmu_lbr_enable(pmi);
|
|
}
|
|
|
|
void intel_pmu_lbr_disable_all(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (cpuc->lbr_users)
|
|
__intel_pmu_lbr_disable();
|
|
}
|
|
|
|
static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
|
|
{
|
|
unsigned long mask = x86_pmu.lbr_nr - 1;
|
|
u64 tos = intel_pmu_lbr_tos();
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
unsigned long lbr_idx = (tos - i) & mask;
|
|
union {
|
|
struct {
|
|
u32 from;
|
|
u32 to;
|
|
};
|
|
u64 lbr;
|
|
} msr_lastbranch;
|
|
|
|
rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
|
|
|
|
cpuc->lbr_entries[i].from = msr_lastbranch.from;
|
|
cpuc->lbr_entries[i].to = msr_lastbranch.to;
|
|
cpuc->lbr_entries[i].mispred = 0;
|
|
cpuc->lbr_entries[i].predicted = 0;
|
|
cpuc->lbr_entries[i].reserved = 0;
|
|
}
|
|
cpuc->lbr_stack.nr = i;
|
|
}
|
|
|
|
/*
|
|
* Due to lack of segmentation in Linux the effective address (offset)
|
|
* is the same as the linear address, allowing us to merge the LIP and EIP
|
|
* LBR formats.
|
|
*/
|
|
static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
|
|
{
|
|
unsigned long mask = x86_pmu.lbr_nr - 1;
|
|
int lbr_format = x86_pmu.intel_cap.lbr_format;
|
|
u64 tos = intel_pmu_lbr_tos();
|
|
int i;
|
|
int out = 0;
|
|
int num = x86_pmu.lbr_nr;
|
|
|
|
if (cpuc->lbr_sel->config & LBR_CALL_STACK)
|
|
num = tos;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
unsigned long lbr_idx = (tos - i) & mask;
|
|
u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
|
|
int skip = 0;
|
|
u16 cycles = 0;
|
|
int lbr_flags = lbr_desc[lbr_format];
|
|
|
|
rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
|
|
rdmsrl(x86_pmu.lbr_to + lbr_idx, to);
|
|
|
|
if (lbr_format == LBR_FORMAT_INFO) {
|
|
u64 info;
|
|
|
|
rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
|
|
mis = !!(info & LBR_INFO_MISPRED);
|
|
pred = !mis;
|
|
in_tx = !!(info & LBR_INFO_IN_TX);
|
|
abort = !!(info & LBR_INFO_ABORT);
|
|
cycles = (info & LBR_INFO_CYCLES);
|
|
}
|
|
if (lbr_flags & LBR_EIP_FLAGS) {
|
|
mis = !!(from & LBR_FROM_FLAG_MISPRED);
|
|
pred = !mis;
|
|
skip = 1;
|
|
}
|
|
if (lbr_flags & LBR_TSX) {
|
|
in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
|
|
abort = !!(from & LBR_FROM_FLAG_ABORT);
|
|
skip = 3;
|
|
}
|
|
from = (u64)((((s64)from) << skip) >> skip);
|
|
|
|
/*
|
|
* Some CPUs report duplicated abort records,
|
|
* with the second entry not having an abort bit set.
|
|
* Skip them here. This loop runs backwards,
|
|
* so we need to undo the previous record.
|
|
* If the abort just happened outside the window
|
|
* the extra entry cannot be removed.
|
|
*/
|
|
if (abort && x86_pmu.lbr_double_abort && out > 0)
|
|
out--;
|
|
|
|
cpuc->lbr_entries[out].from = from;
|
|
cpuc->lbr_entries[out].to = to;
|
|
cpuc->lbr_entries[out].mispred = mis;
|
|
cpuc->lbr_entries[out].predicted = pred;
|
|
cpuc->lbr_entries[out].in_tx = in_tx;
|
|
cpuc->lbr_entries[out].abort = abort;
|
|
cpuc->lbr_entries[out].cycles = cycles;
|
|
cpuc->lbr_entries[out].reserved = 0;
|
|
out++;
|
|
}
|
|
cpuc->lbr_stack.nr = out;
|
|
}
|
|
|
|
void intel_pmu_lbr_read(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
if (!cpuc->lbr_users)
|
|
return;
|
|
|
|
if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
|
|
intel_pmu_lbr_read_32(cpuc);
|
|
else
|
|
intel_pmu_lbr_read_64(cpuc);
|
|
|
|
intel_pmu_lbr_filter(cpuc);
|
|
}
|
|
|
|
/*
|
|
* SW filter is used:
|
|
* - in case there is no HW filter
|
|
* - in case the HW filter has errata or limitations
|
|
*/
|
|
static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
|
|
{
|
|
u64 br_type = event->attr.branch_sample_type;
|
|
int mask = 0;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_USER)
|
|
mask |= X86_BR_USER;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
|
|
mask |= X86_BR_KERNEL;
|
|
|
|
/* we ignore BRANCH_HV here */
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY)
|
|
mask |= X86_BR_ANY;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
|
|
mask |= X86_BR_ANY_CALL;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
|
|
mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
|
|
mask |= X86_BR_IND_CALL;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
|
|
mask |= X86_BR_ABORT;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
|
|
mask |= X86_BR_IN_TX;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
|
|
mask |= X86_BR_NO_TX;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_COND)
|
|
mask |= X86_BR_JCC;
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
|
|
if (!x86_pmu_has_lbr_callstack())
|
|
return -EOPNOTSUPP;
|
|
if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
|
|
return -EINVAL;
|
|
mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
|
|
X86_BR_CALL_STACK;
|
|
}
|
|
|
|
if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
|
|
mask |= X86_BR_IND_JMP;
|
|
|
|
/*
|
|
* stash actual user request into reg, it may
|
|
* be used by fixup code for some CPU
|
|
*/
|
|
event->hw.branch_reg.reg = mask;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* setup the HW LBR filter
|
|
* Used only when available, may not be enough to disambiguate
|
|
* all branches, may need the help of the SW filter
|
|
*/
|
|
static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event_extra *reg;
|
|
u64 br_type = event->attr.branch_sample_type;
|
|
u64 mask = 0, v;
|
|
int i;
|
|
|
|
for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
|
|
if (!(br_type & (1ULL << i)))
|
|
continue;
|
|
|
|
v = x86_pmu.lbr_sel_map[i];
|
|
if (v == LBR_NOT_SUPP)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (v != LBR_IGN)
|
|
mask |= v;
|
|
}
|
|
reg = &event->hw.branch_reg;
|
|
reg->idx = EXTRA_REG_LBR;
|
|
|
|
/*
|
|
* The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
|
|
* in suppress mode. So LBR_SELECT should be set to
|
|
* (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
|
|
*/
|
|
reg->config = mask ^ x86_pmu.lbr_sel_mask;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_pmu_setup_lbr_filter(struct perf_event *event)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* no LBR on this PMU
|
|
*/
|
|
if (!x86_pmu.lbr_nr)
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* setup SW LBR filter
|
|
*/
|
|
ret = intel_pmu_setup_sw_lbr_filter(event);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* setup HW LBR filter, if any
|
|
*/
|
|
if (x86_pmu.lbr_sel_map)
|
|
ret = intel_pmu_setup_hw_lbr_filter(event);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* return the type of control flow change at address "from"
|
|
* intruction is not necessarily a branch (in case of interrupt).
|
|
*
|
|
* The branch type returned also includes the priv level of the
|
|
* target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
|
|
*
|
|
* If a branch type is unknown OR the instruction cannot be
|
|
* decoded (e.g., text page not present), then X86_BR_NONE is
|
|
* returned.
|
|
*/
|
|
static int branch_type(unsigned long from, unsigned long to, int abort)
|
|
{
|
|
struct insn insn;
|
|
void *addr;
|
|
int bytes_read, bytes_left;
|
|
int ret = X86_BR_NONE;
|
|
int ext, to_plm, from_plm;
|
|
u8 buf[MAX_INSN_SIZE];
|
|
int is64 = 0;
|
|
|
|
to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
|
|
from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
|
|
|
|
/*
|
|
* maybe zero if lbr did not fill up after a reset by the time
|
|
* we get a PMU interrupt
|
|
*/
|
|
if (from == 0 || to == 0)
|
|
return X86_BR_NONE;
|
|
|
|
if (abort)
|
|
return X86_BR_ABORT | to_plm;
|
|
|
|
if (from_plm == X86_BR_USER) {
|
|
/*
|
|
* can happen if measuring at the user level only
|
|
* and we interrupt in a kernel thread, e.g., idle.
|
|
*/
|
|
if (!current->mm)
|
|
return X86_BR_NONE;
|
|
|
|
/* may fail if text not present */
|
|
bytes_left = copy_from_user_nmi(buf, (void __user *)from,
|
|
MAX_INSN_SIZE);
|
|
bytes_read = MAX_INSN_SIZE - bytes_left;
|
|
if (!bytes_read)
|
|
return X86_BR_NONE;
|
|
|
|
addr = buf;
|
|
} else {
|
|
/*
|
|
* The LBR logs any address in the IP, even if the IP just
|
|
* faulted. This means userspace can control the from address.
|
|
* Ensure we don't blindy read any address by validating it is
|
|
* a known text address.
|
|
*/
|
|
if (kernel_text_address(from)) {
|
|
addr = (void *)from;
|
|
/*
|
|
* Assume we can get the maximum possible size
|
|
* when grabbing kernel data. This is not
|
|
* _strictly_ true since we could possibly be
|
|
* executing up next to a memory hole, but
|
|
* it is very unlikely to be a problem.
|
|
*/
|
|
bytes_read = MAX_INSN_SIZE;
|
|
} else {
|
|
return X86_BR_NONE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* decoder needs to know the ABI especially
|
|
* on 64-bit systems running 32-bit apps
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
|
|
#endif
|
|
insn_init(&insn, addr, bytes_read, is64);
|
|
insn_get_opcode(&insn);
|
|
if (!insn.opcode.got)
|
|
return X86_BR_ABORT;
|
|
|
|
switch (insn.opcode.bytes[0]) {
|
|
case 0xf:
|
|
switch (insn.opcode.bytes[1]) {
|
|
case 0x05: /* syscall */
|
|
case 0x34: /* sysenter */
|
|
ret = X86_BR_SYSCALL;
|
|
break;
|
|
case 0x07: /* sysret */
|
|
case 0x35: /* sysexit */
|
|
ret = X86_BR_SYSRET;
|
|
break;
|
|
case 0x80 ... 0x8f: /* conditional */
|
|
ret = X86_BR_JCC;
|
|
break;
|
|
default:
|
|
ret = X86_BR_NONE;
|
|
}
|
|
break;
|
|
case 0x70 ... 0x7f: /* conditional */
|
|
ret = X86_BR_JCC;
|
|
break;
|
|
case 0xc2: /* near ret */
|
|
case 0xc3: /* near ret */
|
|
case 0xca: /* far ret */
|
|
case 0xcb: /* far ret */
|
|
ret = X86_BR_RET;
|
|
break;
|
|
case 0xcf: /* iret */
|
|
ret = X86_BR_IRET;
|
|
break;
|
|
case 0xcc ... 0xce: /* int */
|
|
ret = X86_BR_INT;
|
|
break;
|
|
case 0xe8: /* call near rel */
|
|
insn_get_immediate(&insn);
|
|
if (insn.immediate1.value == 0) {
|
|
/* zero length call */
|
|
ret = X86_BR_ZERO_CALL;
|
|
break;
|
|
}
|
|
case 0x9a: /* call far absolute */
|
|
ret = X86_BR_CALL;
|
|
break;
|
|
case 0xe0 ... 0xe3: /* loop jmp */
|
|
ret = X86_BR_JCC;
|
|
break;
|
|
case 0xe9 ... 0xeb: /* jmp */
|
|
ret = X86_BR_JMP;
|
|
break;
|
|
case 0xff: /* call near absolute, call far absolute ind */
|
|
insn_get_modrm(&insn);
|
|
ext = (insn.modrm.bytes[0] >> 3) & 0x7;
|
|
switch (ext) {
|
|
case 2: /* near ind call */
|
|
case 3: /* far ind call */
|
|
ret = X86_BR_IND_CALL;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
ret = X86_BR_IND_JMP;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
ret = X86_BR_NONE;
|
|
}
|
|
/*
|
|
* interrupts, traps, faults (and thus ring transition) may
|
|
* occur on any instructions. Thus, to classify them correctly,
|
|
* we need to first look at the from and to priv levels. If they
|
|
* are different and to is in the kernel, then it indicates
|
|
* a ring transition. If the from instruction is not a ring
|
|
* transition instr (syscall, systenter, int), then it means
|
|
* it was a irq, trap or fault.
|
|
*
|
|
* we have no way of detecting kernel to kernel faults.
|
|
*/
|
|
if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
|
|
&& ret != X86_BR_SYSCALL && ret != X86_BR_INT)
|
|
ret = X86_BR_IRQ;
|
|
|
|
/*
|
|
* branch priv level determined by target as
|
|
* is done by HW when LBR_SELECT is implemented
|
|
*/
|
|
if (ret != X86_BR_NONE)
|
|
ret |= to_plm;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* implement actual branch filter based on user demand.
|
|
* Hardware may not exactly satisfy that request, thus
|
|
* we need to inspect opcodes. Mismatched branches are
|
|
* discarded. Therefore, the number of branches returned
|
|
* in PERF_SAMPLE_BRANCH_STACK sample may vary.
|
|
*/
|
|
static void
|
|
intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
|
|
{
|
|
u64 from, to;
|
|
int br_sel = cpuc->br_sel;
|
|
int i, j, type;
|
|
bool compress = false;
|
|
|
|
/* if sampling all branches, then nothing to filter */
|
|
if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
|
|
return;
|
|
|
|
for (i = 0; i < cpuc->lbr_stack.nr; i++) {
|
|
|
|
from = cpuc->lbr_entries[i].from;
|
|
to = cpuc->lbr_entries[i].to;
|
|
|
|
type = branch_type(from, to, cpuc->lbr_entries[i].abort);
|
|
if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
|
|
if (cpuc->lbr_entries[i].in_tx)
|
|
type |= X86_BR_IN_TX;
|
|
else
|
|
type |= X86_BR_NO_TX;
|
|
}
|
|
|
|
/* if type does not correspond, then discard */
|
|
if (type == X86_BR_NONE || (br_sel & type) != type) {
|
|
cpuc->lbr_entries[i].from = 0;
|
|
compress = true;
|
|
}
|
|
}
|
|
|
|
if (!compress)
|
|
return;
|
|
|
|
/* remove all entries with from=0 */
|
|
for (i = 0; i < cpuc->lbr_stack.nr; ) {
|
|
if (!cpuc->lbr_entries[i].from) {
|
|
j = i;
|
|
while (++j < cpuc->lbr_stack.nr)
|
|
cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
|
|
cpuc->lbr_stack.nr--;
|
|
if (!cpuc->lbr_entries[i].from)
|
|
continue;
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map interface branch filters onto LBR filters
|
|
*/
|
|
static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
|
|
| LBR_IND_JMP | LBR_FAR,
|
|
/*
|
|
* NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
|
|
*/
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
|
|
LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
|
|
/*
|
|
* NHM/WSM erratum: must include IND_JMP to capture IND_CALL
|
|
*/
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
|
};
|
|
|
|
static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
| LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
|
};
|
|
|
|
static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
|
|
[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
|
|
[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
|
|
[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
|
|
[PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
|
|
[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
| LBR_FAR,
|
|
[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
|
|
[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
|
|
[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
|
|
| LBR_RETURN | LBR_CALL_STACK,
|
|
[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
|
|
};
|
|
|
|
/* core */
|
|
void __init intel_pmu_lbr_init_core(void)
|
|
{
|
|
x86_pmu.lbr_nr = 4;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - compensate for lack of HW filter
|
|
*/
|
|
pr_cont("4-deep LBR, ");
|
|
}
|
|
|
|
/* nehalem/westmere */
|
|
void __init intel_pmu_lbr_init_nhm(void)
|
|
{
|
|
x86_pmu.lbr_nr = 16;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - workaround LBR_SEL errata (see above)
|
|
* - support syscall, sysret capture.
|
|
* That requires LBR_FAR but that means far
|
|
* jmp need to be filtered out
|
|
*/
|
|
pr_cont("16-deep LBR, ");
|
|
}
|
|
|
|
/* sandy bridge */
|
|
void __init intel_pmu_lbr_init_snb(void)
|
|
{
|
|
x86_pmu.lbr_nr = 16;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = snb_lbr_sel_map;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - support syscall, sysret capture.
|
|
* That requires LBR_FAR but that means far
|
|
* jmp need to be filtered out
|
|
*/
|
|
pr_cont("16-deep LBR, ");
|
|
}
|
|
|
|
/* haswell */
|
|
void intel_pmu_lbr_init_hsw(void)
|
|
{
|
|
x86_pmu.lbr_nr = 16;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
|
|
|
|
pr_cont("16-deep LBR, ");
|
|
}
|
|
|
|
/* skylake */
|
|
__init void intel_pmu_lbr_init_skl(void)
|
|
{
|
|
x86_pmu.lbr_nr = 32;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_NHM_TO;
|
|
|
|
x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
|
|
x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - support syscall, sysret capture.
|
|
* That requires LBR_FAR but that means far
|
|
* jmp need to be filtered out
|
|
*/
|
|
pr_cont("32-deep LBR, ");
|
|
}
|
|
|
|
/* atom */
|
|
void __init intel_pmu_lbr_init_atom(void)
|
|
{
|
|
/*
|
|
* only models starting at stepping 10 seems
|
|
* to have an operational LBR which can freeze
|
|
* on PMU interrupt
|
|
*/
|
|
if (boot_cpu_data.x86_model == 28
|
|
&& boot_cpu_data.x86_mask < 10) {
|
|
pr_cont("LBR disabled due to erratum");
|
|
return;
|
|
}
|
|
|
|
x86_pmu.lbr_nr = 8;
|
|
x86_pmu.lbr_tos = MSR_LBR_TOS;
|
|
x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
|
|
x86_pmu.lbr_to = MSR_LBR_CORE_TO;
|
|
|
|
/*
|
|
* SW branch filter usage:
|
|
* - compensate for lack of HW filter
|
|
*/
|
|
pr_cont("8-deep LBR, ");
|
|
}
|