linux/drivers/mtd/nand/raw/mxc_nand.c
Martin Kaiser 3f77f244d8 mtd: rawnand: mxc: set spare area size register explicitly
The v21 version of the NAND flash controller contains a Spare Area Size
Register (SPAS) at offset 0x10. Its setting defaults to the maximum
spare area size of 218 bytes. The size that is set in this register is
used by the controller when it calculates the ECC bytes internally in
hardware.

Usually, this register is updated from settings in the IIM fuses when
the system is booting from NAND flash. For other boot media, however,
the SPAS register remains at the default setting, which may not work for
the particular flash chip on the board. The same goes for flash chips
whose configuration cannot be set in the IIM fuses (e.g. chips with 2k
sector size and 128 bytes spare area size can't be configured in the IIM
fuses on imx25 systems).

Set the SPAS register explicitly during the preset operation. Derive the
register value from mtd->oobsize that was detected during probe by
decoding the flash chip's ID bytes.

While at it, rename the define for the spare area register's offset to
NFC_V21_RSLTSPARE_AREA. The register at offset 0x10 on v1 controllers is
different from the register on v21 controllers.

Fixes: d484018 ("mtd: mxc_nand: set NFC registers after reset")
Cc: stable@vger.kernel.org
Signed-off-by: Martin Kaiser <martin@kaiser.cx>
Reviewed-by: Sascha Hauer <s.hauer@pengutronix.de>
Reviewed-by: Miquel Raynal <miquel.raynal@bootlin.com>
Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
2018-06-19 13:17:59 +02:00

1961 lines
51 KiB
C

/*
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2008 Sascha Hauer, kernel@pengutronix.de
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/completion.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <asm/mach/flash.h>
#include <linux/platform_data/mtd-mxc_nand.h>
#define DRIVER_NAME "mxc_nand"
/* Addresses for NFC registers */
#define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
#define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
#define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
#define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
#define NFC_V1_V2_CONFIG (host->regs + 0x0a)
#define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
#define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
#define NFC_V21_RSLTSPARE_AREA (host->regs + 0x10)
#define NFC_V1_V2_WRPROT (host->regs + 0x12)
#define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
#define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
#define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
#define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
#define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
#define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
#define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
#define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
#define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
#define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
#define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
#define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
#define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
#define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
#define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
#define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
#define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
#define NFC_V1_V2_CONFIG1_BIG (1 << 5)
#define NFC_V1_V2_CONFIG1_RST (1 << 6)
#define NFC_V1_V2_CONFIG1_CE (1 << 7)
#define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
#define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
#define NFC_V2_CONFIG1_FP_INT (1 << 11)
#define NFC_V1_V2_CONFIG2_INT (1 << 15)
/*
* Operation modes for the NFC. Valid for v1, v2 and v3
* type controllers.
*/
#define NFC_CMD (1 << 0)
#define NFC_ADDR (1 << 1)
#define NFC_INPUT (1 << 2)
#define NFC_OUTPUT (1 << 3)
#define NFC_ID (1 << 4)
#define NFC_STATUS (1 << 5)
#define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
#define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
#define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
#define NFC_V3_CONFIG1_SP_EN (1 << 0)
#define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
#define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
#define NFC_V3_LAUNCH (host->regs_axi + 0x40)
#define NFC_V3_WRPROT (host->regs_ip + 0x0)
#define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
#define NFC_V3_WRPROT_LOCK (1 << 1)
#define NFC_V3_WRPROT_UNLOCK (1 << 2)
#define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
#define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
#define NFC_V3_CONFIG2_PS_512 (0 << 0)
#define NFC_V3_CONFIG2_PS_2048 (1 << 0)
#define NFC_V3_CONFIG2_PS_4096 (2 << 0)
#define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
#define NFC_V3_CONFIG2_ECC_EN (1 << 3)
#define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
#define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
#define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
#define NFC_V3_CONFIG2_INT_MSK (1 << 15)
#define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
#define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
#define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
#define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
#define NFC_V3_CONFIG3_FW8 (1 << 3)
#define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
#define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
#define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
#define NFC_V3_IPC (host->regs_ip + 0x2C)
#define NFC_V3_IPC_CREQ (1 << 0)
#define NFC_V3_IPC_INT (1 << 31)
#define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
struct mxc_nand_host;
struct mxc_nand_devtype_data {
void (*preset)(struct mtd_info *);
int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
int page);
void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
void (*send_page)(struct mtd_info *, unsigned int);
void (*send_read_id)(struct mxc_nand_host *);
uint16_t (*get_dev_status)(struct mxc_nand_host *);
int (*check_int)(struct mxc_nand_host *);
void (*irq_control)(struct mxc_nand_host *, int);
u32 (*get_ecc_status)(struct mxc_nand_host *);
const struct mtd_ooblayout_ops *ooblayout;
void (*select_chip)(struct mtd_info *mtd, int chip);
int (*setup_data_interface)(struct mtd_info *mtd, int csline,
const struct nand_data_interface *conf);
void (*enable_hwecc)(struct nand_chip *chip, bool enable);
/*
* On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
* (CONFIG1:INT_MSK is set). To handle this the driver uses
* enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
*/
int irqpending_quirk;
int needs_ip;
size_t regs_offset;
size_t spare0_offset;
size_t axi_offset;
int spare_len;
int eccbytes;
int eccsize;
int ppb_shift;
};
struct mxc_nand_host {
struct nand_chip nand;
struct device *dev;
void __iomem *spare0;
void __iomem *main_area0;
void __iomem *base;
void __iomem *regs;
void __iomem *regs_axi;
void __iomem *regs_ip;
int status_request;
struct clk *clk;
int clk_act;
int irq;
int eccsize;
int used_oobsize;
int active_cs;
struct completion op_completion;
uint8_t *data_buf;
unsigned int buf_start;
const struct mxc_nand_devtype_data *devtype_data;
struct mxc_nand_platform_data pdata;
};
static const char * const part_probes[] = {
"cmdlinepart", "RedBoot", "ofpart", NULL };
static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
{
int i;
u32 *t = trg;
const __iomem u32 *s = src;
for (i = 0; i < (size >> 2); i++)
*t++ = __raw_readl(s++);
}
static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size)
{
int i;
u16 *t = trg;
const __iomem u16 *s = src;
/* We assume that src (IO) is always 32bit aligned */
if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
memcpy32_fromio(trg, src, size);
return;
}
for (i = 0; i < (size >> 1); i++)
*t++ = __raw_readw(s++);
}
static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
{
/* __iowrite32_copy use 32bit size values so divide by 4 */
__iowrite32_copy(trg, src, size / 4);
}
static void memcpy16_toio(void __iomem *trg, const void *src, int size)
{
int i;
__iomem u16 *t = trg;
const u16 *s = src;
/* We assume that trg (IO) is always 32bit aligned */
if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
memcpy32_toio(trg, src, size);
return;
}
for (i = 0; i < (size >> 1); i++)
__raw_writew(*s++, t++);
}
/*
* The controller splits a page into data chunks of 512 bytes + partial oob.
* There are writesize / 512 such chunks, the size of the partial oob parts is
* oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
* contains additionally the byte lost by rounding (if any).
* This function handles the needed shuffling between host->data_buf (which
* holds a page in natural order, i.e. writesize bytes data + oobsize bytes
* spare) and the NFC buffer.
*/
static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
{
struct nand_chip *this = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(this);
u16 i, oob_chunk_size;
u16 num_chunks = mtd->writesize / 512;
u8 *d = buf;
u8 __iomem *s = host->spare0;
u16 sparebuf_size = host->devtype_data->spare_len;
/* size of oob chunk for all but possibly the last one */
oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
if (bfrom) {
for (i = 0; i < num_chunks - 1; i++)
memcpy16_fromio(d + i * oob_chunk_size,
s + i * sparebuf_size,
oob_chunk_size);
/* the last chunk */
memcpy16_fromio(d + i * oob_chunk_size,
s + i * sparebuf_size,
host->used_oobsize - i * oob_chunk_size);
} else {
for (i = 0; i < num_chunks - 1; i++)
memcpy16_toio(&s[i * sparebuf_size],
&d[i * oob_chunk_size],
oob_chunk_size);
/* the last chunk */
memcpy16_toio(&s[i * sparebuf_size],
&d[i * oob_chunk_size],
host->used_oobsize - i * oob_chunk_size);
}
}
/*
* MXC NANDFC can only perform full page+spare or spare-only read/write. When
* the upper layers perform a read/write buf operation, the saved column address
* is used to index into the full page. So usually this function is called with
* column == 0 (unless no column cycle is needed indicated by column == -1)
*/
static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
/* Write out column address, if necessary */
if (column != -1) {
host->devtype_data->send_addr(host, column & 0xff,
page_addr == -1);
if (mtd->writesize > 512)
/* another col addr cycle for 2k page */
host->devtype_data->send_addr(host,
(column >> 8) & 0xff,
false);
}
/* Write out page address, if necessary */
if (page_addr != -1) {
/* paddr_0 - p_addr_7 */
host->devtype_data->send_addr(host, (page_addr & 0xff), false);
if (mtd->writesize > 512) {
if (mtd->size >= 0x10000000) {
/* paddr_8 - paddr_15 */
host->devtype_data->send_addr(host,
(page_addr >> 8) & 0xff,
false);
host->devtype_data->send_addr(host,
(page_addr >> 16) & 0xff,
true);
} else
/* paddr_8 - paddr_15 */
host->devtype_data->send_addr(host,
(page_addr >> 8) & 0xff, true);
} else {
if (nand_chip->options & NAND_ROW_ADDR_3) {
/* paddr_8 - paddr_15 */
host->devtype_data->send_addr(host,
(page_addr >> 8) & 0xff,
false);
host->devtype_data->send_addr(host,
(page_addr >> 16) & 0xff,
true);
} else
/* paddr_8 - paddr_15 */
host->devtype_data->send_addr(host,
(page_addr >> 8) & 0xff, true);
}
}
}
static int check_int_v3(struct mxc_nand_host *host)
{
uint32_t tmp;
tmp = readl(NFC_V3_IPC);
if (!(tmp & NFC_V3_IPC_INT))
return 0;
tmp &= ~NFC_V3_IPC_INT;
writel(tmp, NFC_V3_IPC);
return 1;
}
static int check_int_v1_v2(struct mxc_nand_host *host)
{
uint32_t tmp;
tmp = readw(NFC_V1_V2_CONFIG2);
if (!(tmp & NFC_V1_V2_CONFIG2_INT))
return 0;
if (!host->devtype_data->irqpending_quirk)
writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
return 1;
}
static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
{
uint16_t tmp;
tmp = readw(NFC_V1_V2_CONFIG1);
if (activate)
tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
else
tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
writew(tmp, NFC_V1_V2_CONFIG1);
}
static void irq_control_v3(struct mxc_nand_host *host, int activate)
{
uint32_t tmp;
tmp = readl(NFC_V3_CONFIG2);
if (activate)
tmp &= ~NFC_V3_CONFIG2_INT_MSK;
else
tmp |= NFC_V3_CONFIG2_INT_MSK;
writel(tmp, NFC_V3_CONFIG2);
}
static void irq_control(struct mxc_nand_host *host, int activate)
{
if (host->devtype_data->irqpending_quirk) {
if (activate)
enable_irq(host->irq);
else
disable_irq_nosync(host->irq);
} else {
host->devtype_data->irq_control(host, activate);
}
}
static u32 get_ecc_status_v1(struct mxc_nand_host *host)
{
return readw(NFC_V1_V2_ECC_STATUS_RESULT);
}
static u32 get_ecc_status_v2(struct mxc_nand_host *host)
{
return readl(NFC_V1_V2_ECC_STATUS_RESULT);
}
static u32 get_ecc_status_v3(struct mxc_nand_host *host)
{
return readl(NFC_V3_ECC_STATUS_RESULT);
}
static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
{
struct mxc_nand_host *host = dev_id;
if (!host->devtype_data->check_int(host))
return IRQ_NONE;
irq_control(host, 0);
complete(&host->op_completion);
return IRQ_HANDLED;
}
/* This function polls the NANDFC to wait for the basic operation to
* complete by checking the INT bit of config2 register.
*/
static int wait_op_done(struct mxc_nand_host *host, int useirq)
{
int ret = 0;
/*
* If operation is already complete, don't bother to setup an irq or a
* loop.
*/
if (host->devtype_data->check_int(host))
return 0;
if (useirq) {
unsigned long timeout;
reinit_completion(&host->op_completion);
irq_control(host, 1);
timeout = wait_for_completion_timeout(&host->op_completion, HZ);
if (!timeout && !host->devtype_data->check_int(host)) {
dev_dbg(host->dev, "timeout waiting for irq\n");
ret = -ETIMEDOUT;
}
} else {
int max_retries = 8000;
int done;
do {
udelay(1);
done = host->devtype_data->check_int(host);
if (done)
break;
} while (--max_retries);
if (!done) {
dev_dbg(host->dev, "timeout polling for completion\n");
ret = -ETIMEDOUT;
}
}
WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
return ret;
}
static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
{
/* fill command */
writel(cmd, NFC_V3_FLASH_CMD);
/* send out command */
writel(NFC_CMD, NFC_V3_LAUNCH);
/* Wait for operation to complete */
wait_op_done(host, useirq);
}
/* This function issues the specified command to the NAND device and
* waits for completion. */
static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
{
dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
writew(cmd, NFC_V1_V2_FLASH_CMD);
writew(NFC_CMD, NFC_V1_V2_CONFIG2);
if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
int max_retries = 100;
/* Reset completion is indicated by NFC_CONFIG2 */
/* being set to 0 */
while (max_retries-- > 0) {
if (readw(NFC_V1_V2_CONFIG2) == 0) {
break;
}
udelay(1);
}
if (max_retries < 0)
dev_dbg(host->dev, "%s: RESET failed\n", __func__);
} else {
/* Wait for operation to complete */
wait_op_done(host, useirq);
}
}
static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
{
/* fill address */
writel(addr, NFC_V3_FLASH_ADDR0);
/* send out address */
writel(NFC_ADDR, NFC_V3_LAUNCH);
wait_op_done(host, 0);
}
/* This function sends an address (or partial address) to the
* NAND device. The address is used to select the source/destination for
* a NAND command. */
static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
{
dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
writew(addr, NFC_V1_V2_FLASH_ADDR);
writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, islast);
}
static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
uint32_t tmp;
tmp = readl(NFC_V3_CONFIG1);
tmp &= ~(7 << 4);
writel(tmp, NFC_V3_CONFIG1);
/* transfer data from NFC ram to nand */
writel(ops, NFC_V3_LAUNCH);
wait_op_done(host, false);
}
static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
/* NANDFC buffer 0 is used for page read/write */
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
writew(ops, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
}
static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
int bufs, i;
if (mtd->writesize > 512)
bufs = 4;
else
bufs = 1;
for (i = 0; i < bufs; i++) {
/* NANDFC buffer 0 is used for page read/write */
writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
writew(ops, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
}
}
static void send_read_id_v3(struct mxc_nand_host *host)
{
/* Read ID into main buffer */
writel(NFC_ID, NFC_V3_LAUNCH);
wait_op_done(host, true);
memcpy32_fromio(host->data_buf, host->main_area0, 16);
}
/* Request the NANDFC to perform a read of the NAND device ID. */
static void send_read_id_v1_v2(struct mxc_nand_host *host)
{
/* NANDFC buffer 0 is used for device ID output */
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
writew(NFC_ID, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
memcpy32_fromio(host->data_buf, host->main_area0, 16);
}
static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
{
writew(NFC_STATUS, NFC_V3_LAUNCH);
wait_op_done(host, true);
return readl(NFC_V3_CONFIG1) >> 16;
}
/* This function requests the NANDFC to perform a read of the
* NAND device status and returns the current status. */
static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
{
void __iomem *main_buf = host->main_area0;
uint32_t store;
uint16_t ret;
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
/*
* The device status is stored in main_area0. To
* prevent corruption of the buffer save the value
* and restore it afterwards.
*/
store = readl(main_buf);
writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
wait_op_done(host, true);
ret = readw(main_buf);
writel(store, main_buf);
return ret;
}
static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
{
struct mxc_nand_host *host = nand_get_controller_data(chip);
uint16_t config1;
if (chip->ecc.mode != NAND_ECC_HW)
return;
config1 = readw(NFC_V1_V2_CONFIG1);
if (enable)
config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
else
config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
writew(config1, NFC_V1_V2_CONFIG1);
}
static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
{
struct mxc_nand_host *host = nand_get_controller_data(chip);
uint32_t config2;
if (chip->ecc.mode != NAND_ECC_HW)
return;
config2 = readl(NFC_V3_CONFIG2);
if (enable)
config2 |= NFC_V3_CONFIG2_ECC_EN;
else
config2 &= ~NFC_V3_CONFIG2_ECC_EN;
writel(config2, NFC_V3_CONFIG2);
}
/* This functions is used by upper layer to checks if device is ready */
static int mxc_nand_dev_ready(struct mtd_info *mtd)
{
/*
* NFC handles R/B internally. Therefore, this function
* always returns status as ready.
*/
return 1;
}
static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
bool ecc, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct mxc_nand_host *host = nand_get_controller_data(chip);
unsigned int bitflips_corrected = 0;
int no_subpages;
int i;
host->devtype_data->enable_hwecc(chip, ecc);
host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
mxc_do_addr_cycle(mtd, 0, page);
if (mtd->writesize > 512)
host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
no_subpages = mtd->writesize >> 9;
for (i = 0; i < no_subpages; i++) {
uint16_t ecc_stats;
/* NANDFC buffer 0 is used for page read/write */
writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
ecc_stats = get_ecc_status_v1(host);
ecc_stats >>= 2;
if (buf && ecc) {
switch (ecc_stats & 0x3) {
case 0:
default:
break;
case 1:
mtd->ecc_stats.corrected++;
bitflips_corrected = 1;
break;
case 2:
mtd->ecc_stats.failed++;
break;
}
}
}
if (buf)
memcpy32_fromio(buf, host->main_area0, mtd->writesize);
if (oob)
copy_spare(mtd, true, oob);
return bitflips_corrected;
}
static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
void *oob, bool ecc, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct mxc_nand_host *host = nand_get_controller_data(chip);
unsigned int max_bitflips = 0;
u32 ecc_stat, err;
int no_subpages;
u8 ecc_bit_mask, err_limit;
host->devtype_data->enable_hwecc(chip, ecc);
host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
mxc_do_addr_cycle(mtd, 0, page);
if (mtd->writesize > 512)
host->devtype_data->send_cmd(host,
NAND_CMD_READSTART, true);
host->devtype_data->send_page(mtd, NFC_OUTPUT);
if (buf)
memcpy32_fromio(buf, host->main_area0, mtd->writesize);
if (oob)
copy_spare(mtd, true, oob);
ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
no_subpages = mtd->writesize >> 9;
ecc_stat = host->devtype_data->get_ecc_status(host);
do {
err = ecc_stat & ecc_bit_mask;
if (err > err_limit) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += err;
max_bitflips = max_t(unsigned int, max_bitflips, err);
}
ecc_stat >>= 4;
} while (--no_subpages);
return max_bitflips;
}
static int mxc_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct mxc_nand_host *host = nand_get_controller_data(chip);
void *oob_buf;
if (oob_required)
oob_buf = chip->oob_poi;
else
oob_buf = NULL;
return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
}
static int mxc_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct mxc_nand_host *host = nand_get_controller_data(chip);
void *oob_buf;
if (oob_required)
oob_buf = chip->oob_poi;
else
oob_buf = NULL;
return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
}
static int mxc_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
struct mxc_nand_host *host = nand_get_controller_data(chip);
return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
page);
}
static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
bool ecc, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct mxc_nand_host *host = nand_get_controller_data(chip);
host->devtype_data->enable_hwecc(chip, ecc);
host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
mxc_do_addr_cycle(mtd, 0, page);
memcpy32_toio(host->main_area0, buf, mtd->writesize);
copy_spare(mtd, false, chip->oob_poi);
host->devtype_data->send_page(mtd, NFC_INPUT);
host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
mxc_do_addr_cycle(mtd, 0, page);
return 0;
}
static int mxc_nand_write_page_ecc(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required,
int page)
{
return mxc_nand_write_page(chip, buf, true, page);
}
static int mxc_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required, int page)
{
return mxc_nand_write_page(chip, buf, false, page);
}
static int mxc_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
struct mxc_nand_host *host = nand_get_controller_data(chip);
memset(host->data_buf, 0xff, mtd->writesize);
return mxc_nand_write_page(chip, host->data_buf, false, page);
}
static u_char mxc_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
uint8_t ret;
/* Check for status request */
if (host->status_request)
return host->devtype_data->get_dev_status(host) & 0xFF;
if (nand_chip->options & NAND_BUSWIDTH_16) {
/* only take the lower byte of each word */
ret = *(uint16_t *)(host->data_buf + host->buf_start);
host->buf_start += 2;
} else {
ret = *(uint8_t *)(host->data_buf + host->buf_start);
host->buf_start++;
}
dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
return ret;
}
static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
uint16_t ret;
ret = *(uint16_t *)(host->data_buf + host->buf_start);
host->buf_start += 2;
return ret;
}
/* Write data of length len to buffer buf. The data to be
* written on NAND Flash is first copied to RAMbuffer. After the Data Input
* Operation by the NFC, the data is written to NAND Flash */
static void mxc_nand_write_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
u16 col = host->buf_start;
int n = mtd->oobsize + mtd->writesize - col;
n = min(n, len);
memcpy(host->data_buf + col, buf, n);
host->buf_start += n;
}
/* Read the data buffer from the NAND Flash. To read the data from NAND
* Flash first the data output cycle is initiated by the NFC, which copies
* the data to RAMbuffer. This data of length len is then copied to buffer buf.
*/
static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
u16 col = host->buf_start;
int n = mtd->oobsize + mtd->writesize - col;
n = min(n, len);
memcpy(buf, host->data_buf + col, n);
host->buf_start += n;
}
/* This function is used by upper layer for select and
* deselect of the NAND chip */
static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
if (chip == -1) {
/* Disable the NFC clock */
if (host->clk_act) {
clk_disable_unprepare(host->clk);
host->clk_act = 0;
}
return;
}
if (!host->clk_act) {
/* Enable the NFC clock */
clk_prepare_enable(host->clk);
host->clk_act = 1;
}
}
static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
if (chip == -1) {
/* Disable the NFC clock */
if (host->clk_act) {
clk_disable_unprepare(host->clk);
host->clk_act = 0;
}
return;
}
if (!host->clk_act) {
/* Enable the NFC clock */
clk_prepare_enable(host->clk);
host->clk_act = 1;
}
host->active_cs = chip;
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
}
#define MXC_V1_ECCBYTES 5
static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
if (section >= nand_chip->ecc.steps)
return -ERANGE;
oobregion->offset = (section * 16) + 6;
oobregion->length = MXC_V1_ECCBYTES;
return 0;
}
static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
if (section > nand_chip->ecc.steps)
return -ERANGE;
if (!section) {
if (mtd->writesize <= 512) {
oobregion->offset = 0;
oobregion->length = 5;
} else {
oobregion->offset = 2;
oobregion->length = 4;
}
} else {
oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
if (section < nand_chip->ecc.steps)
oobregion->length = (section * 16) + 6 -
oobregion->offset;
else
oobregion->length = mtd->oobsize - oobregion->offset;
}
return 0;
}
static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
.ecc = mxc_v1_ooblayout_ecc,
.free = mxc_v1_ooblayout_free,
};
static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
if (section >= nand_chip->ecc.steps)
return -ERANGE;
oobregion->offset = (section * stepsize) + 7;
oobregion->length = nand_chip->ecc.bytes;
return 0;
}
static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
if (section >= nand_chip->ecc.steps)
return -ERANGE;
if (!section) {
if (mtd->writesize <= 512) {
oobregion->offset = 0;
oobregion->length = 5;
} else {
oobregion->offset = 2;
oobregion->length = 4;
}
} else {
oobregion->offset = section * stepsize;
oobregion->length = 7;
}
return 0;
}
static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
.ecc = mxc_v2_ooblayout_ecc,
.free = mxc_v2_ooblayout_free,
};
/*
* v2 and v3 type controllers can do 4bit or 8bit ecc depending
* on how much oob the nand chip has. For 8bit ecc we need at least
* 26 bytes of oob data per 512 byte block.
*/
static int get_eccsize(struct mtd_info *mtd)
{
int oobbytes_per_512 = 0;
oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
if (oobbytes_per_512 < 26)
return 4;
else
return 8;
}
static void preset_v1(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
uint16_t config1 = 0;
if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
if (!host->devtype_data->irqpending_quirk)
config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
host->eccsize = 1;
writew(config1, NFC_V1_V2_CONFIG1);
/* preset operation */
/* Unlock the internal RAM Buffer */
writew(0x2, NFC_V1_V2_CONFIG);
/* Blocks to be unlocked */
writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
/* Unlock Block Command for given address range */
writew(0x4, NFC_V1_V2_WRPROT);
}
static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd, int csline,
const struct nand_data_interface *conf)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
int tRC_min_ns, tRC_ps, ret;
unsigned long rate, rate_round;
const struct nand_sdr_timings *timings;
u16 config1;
timings = nand_get_sdr_timings(conf);
if (IS_ERR(timings))
return -ENOTSUPP;
config1 = readw(NFC_V1_V2_CONFIG1);
tRC_min_ns = timings->tRC_min / 1000;
rate = 1000000000 / tRC_min_ns;
/*
* For tRC < 30ns we have to use EDO mode. In this case the controller
* does one access per clock cycle. Otherwise the controller does one
* access in two clock cycles, thus we have to double the rate to the
* controller.
*/
if (tRC_min_ns < 30) {
rate_round = clk_round_rate(host->clk, rate);
config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
tRC_ps = 1000000000 / (rate_round / 1000);
} else {
rate *= 2;
rate_round = clk_round_rate(host->clk, rate);
config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
tRC_ps = 1000000000 / (rate_round / 1000 / 2);
}
/*
* The timing values compared against are from the i.MX25 Automotive
* datasheet, Table 50. NFC Timing Parameters
*/
if (timings->tCLS_min > tRC_ps - 1000 ||
timings->tCLH_min > tRC_ps - 2000 ||
timings->tCS_min > tRC_ps - 1000 ||
timings->tCH_min > tRC_ps - 2000 ||
timings->tWP_min > tRC_ps - 1500 ||
timings->tALS_min > tRC_ps ||
timings->tALH_min > tRC_ps - 3000 ||
timings->tDS_min > tRC_ps ||
timings->tDH_min > tRC_ps - 5000 ||
timings->tWC_min > 2 * tRC_ps ||
timings->tWH_min > tRC_ps - 2500 ||
timings->tRR_min > 6 * tRC_ps ||
timings->tRP_min > 3 * tRC_ps / 2 ||
timings->tRC_min > 2 * tRC_ps ||
timings->tREH_min > (tRC_ps / 2) - 2500) {
dev_dbg(host->dev, "Timing out of bounds\n");
return -EINVAL;
}
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
ret = clk_set_rate(host->clk, rate);
if (ret)
return ret;
writew(config1, NFC_V1_V2_CONFIG1);
dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
"normal");
return 0;
}
static void preset_v2(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
uint16_t config1 = 0;
config1 |= NFC_V2_CONFIG1_FP_INT;
if (!host->devtype_data->irqpending_quirk)
config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
if (mtd->writesize) {
uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
if (nand_chip->ecc.mode == NAND_ECC_HW)
config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
host->eccsize = get_eccsize(mtd);
if (host->eccsize == 4)
config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
} else {
host->eccsize = 1;
}
writew(config1, NFC_V1_V2_CONFIG1);
/* preset operation */
/* spare area size in 16-bit half-words */
writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
/* Unlock the internal RAM Buffer */
writew(0x2, NFC_V1_V2_CONFIG);
/* Blocks to be unlocked */
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
/* Unlock Block Command for given address range */
writew(0x4, NFC_V1_V2_WRPROT);
}
static void preset_v3(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(chip);
uint32_t config2, config3;
int i, addr_phases;
writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
/* Unlock the internal RAM Buffer */
writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
NFC_V3_WRPROT);
/* Blocks to be unlocked */
for (i = 0; i < NAND_MAX_CHIPS; i++)
writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
writel(0, NFC_V3_IPC);
config2 = NFC_V3_CONFIG2_ONE_CYCLE |
NFC_V3_CONFIG2_2CMD_PHASES |
NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
NFC_V3_CONFIG2_ST_CMD(0x70) |
NFC_V3_CONFIG2_INT_MSK |
NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
addr_phases = fls(chip->pagemask) >> 3;
if (mtd->writesize == 2048) {
config2 |= NFC_V3_CONFIG2_PS_2048;
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
} else if (mtd->writesize == 4096) {
config2 |= NFC_V3_CONFIG2_PS_4096;
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
} else {
config2 |= NFC_V3_CONFIG2_PS_512;
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
}
if (mtd->writesize) {
if (chip->ecc.mode == NAND_ECC_HW)
config2 |= NFC_V3_CONFIG2_ECC_EN;
config2 |= NFC_V3_CONFIG2_PPB(
ffs(mtd->erasesize / mtd->writesize) - 6,
host->devtype_data->ppb_shift);
host->eccsize = get_eccsize(mtd);
if (host->eccsize == 8)
config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
}
writel(config2, NFC_V3_CONFIG2);
config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
NFC_V3_CONFIG3_NO_SDMA |
NFC_V3_CONFIG3_RBB_MODE |
NFC_V3_CONFIG3_SBB(6) | /* Reset default */
NFC_V3_CONFIG3_ADD_OP(0);
if (!(chip->options & NAND_BUSWIDTH_16))
config3 |= NFC_V3_CONFIG3_FW8;
writel(config3, NFC_V3_CONFIG3);
writel(0, NFC_V3_DELAY_LINE);
}
/* Used by the upper layer to write command to NAND Flash for
* different operations to be carried out on NAND Flash */
static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
command, column, page_addr);
/* Reset command state information */
host->status_request = false;
/* Command pre-processing step */
switch (command) {
case NAND_CMD_RESET:
host->devtype_data->preset(mtd);
host->devtype_data->send_cmd(host, command, false);
break;
case NAND_CMD_STATUS:
host->buf_start = 0;
host->status_request = true;
host->devtype_data->send_cmd(host, command, true);
WARN_ONCE(column != -1 || page_addr != -1,
"Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
command, column, page_addr);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_READID:
host->devtype_data->send_cmd(host, command, true);
mxc_do_addr_cycle(mtd, column, page_addr);
host->devtype_data->send_read_id(host);
host->buf_start = 0;
break;
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
host->devtype_data->send_cmd(host, command, false);
WARN_ONCE(column != -1,
"Unexpected column value (cmd=%u, col=%d)\n",
command, column);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_PARAM:
host->devtype_data->send_cmd(host, command, false);
mxc_do_addr_cycle(mtd, column, page_addr);
host->devtype_data->send_page(mtd, NFC_OUTPUT);
memcpy32_fromio(host->data_buf, host->main_area0, 512);
host->buf_start = 0;
break;
default:
WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
command);
break;
}
}
static int mxc_nand_set_features(struct mtd_info *mtd, struct nand_chip *chip,
int addr, u8 *subfeature_param)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
int i;
host->buf_start = 0;
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
chip->write_byte(mtd, subfeature_param[i]);
memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
mxc_do_addr_cycle(mtd, addr, -1);
host->devtype_data->send_page(mtd, NFC_INPUT);
return 0;
}
static int mxc_nand_get_features(struct mtd_info *mtd, struct nand_chip *chip,
int addr, u8 *subfeature_param)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
int i;
host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
mxc_do_addr_cycle(mtd, addr, -1);
host->devtype_data->send_page(mtd, NFC_OUTPUT);
memcpy32_fromio(host->data_buf, host->main_area0, 512);
host->buf_start = 0;
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
*subfeature_param++ = chip->read_byte(mtd);
return 0;
}
/*
* The generic flash bbt decriptors overlap with our ecc
* hardware, so define some i.MX specific ones.
*/
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = mirror_pattern,
};
/* v1 + irqpending_quirk: i.MX21 */
static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
.preset = preset_v1,
.read_page = mxc_nand_read_page_v1,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v1,
.send_read_id = send_read_id_v1_v2,
.get_dev_status = get_dev_status_v1_v2,
.check_int = check_int_v1_v2,
.irq_control = irq_control_v1_v2,
.get_ecc_status = get_ecc_status_v1,
.ooblayout = &mxc_v1_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
.irqpending_quirk = 1,
.needs_ip = 0,
.regs_offset = 0xe00,
.spare0_offset = 0x800,
.spare_len = 16,
.eccbytes = 3,
.eccsize = 1,
};
/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
.preset = preset_v1,
.read_page = mxc_nand_read_page_v1,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v1,
.send_read_id = send_read_id_v1_v2,
.get_dev_status = get_dev_status_v1_v2,
.check_int = check_int_v1_v2,
.irq_control = irq_control_v1_v2,
.get_ecc_status = get_ecc_status_v1,
.ooblayout = &mxc_v1_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
.irqpending_quirk = 0,
.needs_ip = 0,
.regs_offset = 0xe00,
.spare0_offset = 0x800,
.axi_offset = 0,
.spare_len = 16,
.eccbytes = 3,
.eccsize = 1,
};
/* v21: i.MX25, i.MX35 */
static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
.preset = preset_v2,
.read_page = mxc_nand_read_page_v2_v3,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v2,
.send_read_id = send_read_id_v1_v2,
.get_dev_status = get_dev_status_v1_v2,
.check_int = check_int_v1_v2,
.irq_control = irq_control_v1_v2,
.get_ecc_status = get_ecc_status_v2,
.ooblayout = &mxc_v2_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v2,
.setup_data_interface = mxc_nand_v2_setup_data_interface,
.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
.irqpending_quirk = 0,
.needs_ip = 0,
.regs_offset = 0x1e00,
.spare0_offset = 0x1000,
.axi_offset = 0,
.spare_len = 64,
.eccbytes = 9,
.eccsize = 0,
};
/* v3.2a: i.MX51 */
static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
.preset = preset_v3,
.read_page = mxc_nand_read_page_v2_v3,
.send_cmd = send_cmd_v3,
.send_addr = send_addr_v3,
.send_page = send_page_v3,
.send_read_id = send_read_id_v3,
.get_dev_status = get_dev_status_v3,
.check_int = check_int_v3,
.irq_control = irq_control_v3,
.get_ecc_status = get_ecc_status_v3,
.ooblayout = &mxc_v2_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
.enable_hwecc = mxc_nand_enable_hwecc_v3,
.irqpending_quirk = 0,
.needs_ip = 1,
.regs_offset = 0,
.spare0_offset = 0x1000,
.axi_offset = 0x1e00,
.spare_len = 64,
.eccbytes = 0,
.eccsize = 0,
.ppb_shift = 7,
};
/* v3.2b: i.MX53 */
static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
.preset = preset_v3,
.read_page = mxc_nand_read_page_v2_v3,
.send_cmd = send_cmd_v3,
.send_addr = send_addr_v3,
.send_page = send_page_v3,
.send_read_id = send_read_id_v3,
.get_dev_status = get_dev_status_v3,
.check_int = check_int_v3,
.irq_control = irq_control_v3,
.get_ecc_status = get_ecc_status_v3,
.ooblayout = &mxc_v2_ooblayout_ops,
.select_chip = mxc_nand_select_chip_v1_v3,
.enable_hwecc = mxc_nand_enable_hwecc_v3,
.irqpending_quirk = 0,
.needs_ip = 1,
.regs_offset = 0,
.spare0_offset = 0x1000,
.axi_offset = 0x1e00,
.spare_len = 64,
.eccbytes = 0,
.eccsize = 0,
.ppb_shift = 8,
};
static inline int is_imx21_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx21_nand_devtype_data;
}
static inline int is_imx27_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx27_nand_devtype_data;
}
static inline int is_imx25_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx25_nand_devtype_data;
}
static inline int is_imx51_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx51_nand_devtype_data;
}
static inline int is_imx53_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx53_nand_devtype_data;
}
static const struct platform_device_id mxcnd_devtype[] = {
{
.name = "imx21-nand",
.driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
}, {
.name = "imx27-nand",
.driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
}, {
.name = "imx25-nand",
.driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
}, {
.name = "imx51-nand",
.driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
}, {
.name = "imx53-nand",
.driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
#ifdef CONFIG_OF
static const struct of_device_id mxcnd_dt_ids[] = {
{
.compatible = "fsl,imx21-nand",
.data = &imx21_nand_devtype_data,
}, {
.compatible = "fsl,imx27-nand",
.data = &imx27_nand_devtype_data,
}, {
.compatible = "fsl,imx25-nand",
.data = &imx25_nand_devtype_data,
}, {
.compatible = "fsl,imx51-nand",
.data = &imx51_nand_devtype_data,
}, {
.compatible = "fsl,imx53-nand",
.data = &imx53_nand_devtype_data,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
{
struct device_node *np = host->dev->of_node;
const struct of_device_id *of_id =
of_match_device(mxcnd_dt_ids, host->dev);
if (!np)
return 1;
host->devtype_data = of_id->data;
return 0;
}
#else
static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
{
return 1;
}
#endif
static int mxcnd_probe(struct platform_device *pdev)
{
struct nand_chip *this;
struct mtd_info *mtd;
struct mxc_nand_host *host;
struct resource *res;
int err = 0;
/* Allocate memory for MTD device structure and private data */
host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
GFP_KERNEL);
if (!host)
return -ENOMEM;
/* allocate a temporary buffer for the nand_scan_ident() */
host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
if (!host->data_buf)
return -ENOMEM;
host->dev = &pdev->dev;
/* structures must be linked */
this = &host->nand;
mtd = nand_to_mtd(this);
mtd->dev.parent = &pdev->dev;
mtd->name = DRIVER_NAME;
/* 50 us command delay time */
this->chip_delay = 5;
nand_set_controller_data(this, host);
nand_set_flash_node(this, pdev->dev.of_node),
this->dev_ready = mxc_nand_dev_ready;
this->cmdfunc = mxc_nand_command;
this->read_byte = mxc_nand_read_byte;
this->read_word = mxc_nand_read_word;
this->write_buf = mxc_nand_write_buf;
this->read_buf = mxc_nand_read_buf;
this->set_features = mxc_nand_set_features;
this->get_features = mxc_nand_get_features;
host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk))
return PTR_ERR(host->clk);
err = mxcnd_probe_dt(host);
if (err > 0) {
struct mxc_nand_platform_data *pdata =
dev_get_platdata(&pdev->dev);
if (pdata) {
host->pdata = *pdata;
host->devtype_data = (struct mxc_nand_devtype_data *)
pdev->id_entry->driver_data;
} else {
err = -ENODEV;
}
}
if (err < 0)
return err;
this->setup_data_interface = host->devtype_data->setup_data_interface;
if (host->devtype_data->needs_ip) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(host->regs_ip))
return PTR_ERR(host->regs_ip);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
} else {
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
}
host->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(host->base))
return PTR_ERR(host->base);
host->main_area0 = host->base;
if (host->devtype_data->regs_offset)
host->regs = host->base + host->devtype_data->regs_offset;
host->spare0 = host->base + host->devtype_data->spare0_offset;
if (host->devtype_data->axi_offset)
host->regs_axi = host->base + host->devtype_data->axi_offset;
this->ecc.bytes = host->devtype_data->eccbytes;
host->eccsize = host->devtype_data->eccsize;
this->select_chip = host->devtype_data->select_chip;
this->ecc.size = 512;
mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
if (host->pdata.hw_ecc) {
this->ecc.mode = NAND_ECC_HW;
} else {
this->ecc.mode = NAND_ECC_SOFT;
this->ecc.algo = NAND_ECC_HAMMING;
}
/* NAND bus width determines access functions used by upper layer */
if (host->pdata.width == 2)
this->options |= NAND_BUSWIDTH_16;
/* update flash based bbt */
if (host->pdata.flash_bbt)
this->bbt_options |= NAND_BBT_USE_FLASH;
init_completion(&host->op_completion);
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0)
return host->irq;
/*
* Use host->devtype_data->irq_control() here instead of irq_control()
* because we must not disable_irq_nosync without having requested the
* irq.
*/
host->devtype_data->irq_control(host, 0);
err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
0, DRIVER_NAME, host);
if (err)
return err;
err = clk_prepare_enable(host->clk);
if (err)
return err;
host->clk_act = 1;
/*
* Now that we "own" the interrupt make sure the interrupt mask bit is
* cleared on i.MX21. Otherwise we can't read the interrupt status bit
* on this machine.
*/
if (host->devtype_data->irqpending_quirk) {
disable_irq_nosync(host->irq);
host->devtype_data->irq_control(host, 1);
}
/* first scan to find the device and get the page size */
err = nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL);
if (err)
goto escan;
switch (this->ecc.mode) {
case NAND_ECC_HW:
this->ecc.read_page = mxc_nand_read_page;
this->ecc.read_page_raw = mxc_nand_read_page_raw;
this->ecc.read_oob = mxc_nand_read_oob;
this->ecc.write_page = mxc_nand_write_page_ecc;
this->ecc.write_page_raw = mxc_nand_write_page_raw;
this->ecc.write_oob = mxc_nand_write_oob;
break;
case NAND_ECC_SOFT:
break;
default:
err = -EINVAL;
goto escan;
}
if (this->bbt_options & NAND_BBT_USE_FLASH) {
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
}
/* allocate the right size buffer now */
devm_kfree(&pdev->dev, (void *)host->data_buf);
host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
GFP_KERNEL);
if (!host->data_buf) {
err = -ENOMEM;
goto escan;
}
/* Call preset again, with correct writesize this time */
host->devtype_data->preset(mtd);
if (!this->ecc.bytes) {
if (host->eccsize == 8)
this->ecc.bytes = 18;
else if (host->eccsize == 4)
this->ecc.bytes = 9;
}
/*
* Experimentation shows that i.MX NFC can only handle up to 218 oob
* bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
* into copying invalid data to/from the spare IO buffer, as this
* might cause ECC data corruption when doing sub-page write to a
* partially written page.
*/
host->used_oobsize = min(mtd->oobsize, 218U);
if (this->ecc.mode == NAND_ECC_HW) {
if (is_imx21_nfc(host) || is_imx27_nfc(host))
this->ecc.strength = 1;
else
this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
}
/* second phase scan */
err = nand_scan_tail(mtd);
if (err)
goto escan;
/* Register the partitions */
err = mtd_device_parse_register(mtd, part_probes, NULL,
host->pdata.parts,
host->pdata.nr_parts);
if (err)
goto cleanup_nand;
platform_set_drvdata(pdev, host);
return 0;
cleanup_nand:
nand_cleanup(this);
escan:
if (host->clk_act)
clk_disable_unprepare(host->clk);
return err;
}
static int mxcnd_remove(struct platform_device *pdev)
{
struct mxc_nand_host *host = platform_get_drvdata(pdev);
nand_release(nand_to_mtd(&host->nand));
if (host->clk_act)
clk_disable_unprepare(host->clk);
return 0;
}
static struct platform_driver mxcnd_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = of_match_ptr(mxcnd_dt_ids),
},
.id_table = mxcnd_devtype,
.probe = mxcnd_probe,
.remove = mxcnd_remove,
};
module_platform_driver(mxcnd_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("MXC NAND MTD driver");
MODULE_LICENSE("GPL");