linux/drivers/gpu/drm/i915/i915_gem_gtt.h
Chris Wilson 3a891a6267 drm/i915: Move intel_engine_mask_t around for use by i915_request_types.h
We want to use intel_engine_mask_t inside i915_request.h, which means
extracting it from the general header file mess and placing it inside a
types.h. A knock on effect is that the compiler wants to warn about
type-contraction of ALL_ENGINES into intel_engine_maskt_t, so prepare
for the worst.

v2: Use intel_engine_mask_t consistently
v3: Move I915_NUM_ENGINES to its natural home at the end of the enum

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: John Harrison <John.C.Harrison@Intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190401162641.10963-1-chris@chris-wilson.co.uk
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
2019-04-02 15:09:08 +01:00

665 lines
20 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Please try to maintain the following order within this file unless it makes
* sense to do otherwise. From top to bottom:
* 1. typedefs
* 2. #defines, and macros
* 3. structure definitions
* 4. function prototypes
*
* Within each section, please try to order by generation in ascending order,
* from top to bottom (ie. gen6 on the top, gen8 on the bottom).
*/
#ifndef __I915_GEM_GTT_H__
#define __I915_GEM_GTT_H__
#include <linux/io-mapping.h>
#include <linux/mm.h>
#include <linux/pagevec.h>
#include "i915_request.h"
#include "i915_reset.h"
#include "i915_selftest.h"
#include "i915_timeline.h"
#define I915_GTT_PAGE_SIZE_4K BIT_ULL(12)
#define I915_GTT_PAGE_SIZE_64K BIT_ULL(16)
#define I915_GTT_PAGE_SIZE_2M BIT_ULL(21)
#define I915_GTT_PAGE_SIZE I915_GTT_PAGE_SIZE_4K
#define I915_GTT_MAX_PAGE_SIZE I915_GTT_PAGE_SIZE_2M
#define I915_GTT_PAGE_MASK -I915_GTT_PAGE_SIZE
#define I915_GTT_MIN_ALIGNMENT I915_GTT_PAGE_SIZE
#define I915_FENCE_REG_NONE -1
#define I915_MAX_NUM_FENCES 32
/* 32 fences + sign bit for FENCE_REG_NONE */
#define I915_MAX_NUM_FENCE_BITS 6
struct drm_i915_file_private;
struct drm_i915_fence_reg;
struct i915_vma;
typedef u32 gen6_pte_t;
typedef u64 gen8_pte_t;
typedef u64 gen8_pde_t;
typedef u64 gen8_ppgtt_pdpe_t;
typedef u64 gen8_ppgtt_pml4e_t;
#define ggtt_total_entries(ggtt) ((ggtt)->vm.total >> PAGE_SHIFT)
/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
#define GEN6_PTE_CACHE_LLC (2 << 1)
#define GEN6_PTE_UNCACHED (1 << 1)
#define GEN6_PTE_VALID (1 << 0)
#define I915_PTES(pte_len) ((unsigned int)(PAGE_SIZE / (pte_len)))
#define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
#define I915_PDES 512
#define I915_PDE_MASK (I915_PDES - 1)
#define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
#define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
#define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
#define GEN6_PDE_SHIFT 22
#define GEN6_PDE_VALID (1 << 0)
#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
#define BYT_PTE_WRITEABLE (1 << 1)
/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
* 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
*/
#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
(((bits) & 0x8) << (11 - 3)))
#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
#define HSW_PTE_UNCACHED (0)
#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
/* GEN8 32b style address is defined as a 3 level page table:
* 31:30 | 29:21 | 20:12 | 11:0
* PDPE | PDE | PTE | offset
* The difference as compared to normal x86 3 level page table is the PDPEs are
* programmed via register.
*/
#define GEN8_3LVL_PDPES 4
#define GEN8_PDE_SHIFT 21
#define GEN8_PDE_MASK 0x1ff
#define GEN8_PTE_SHIFT 12
#define GEN8_PTE_MASK 0x1ff
#define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
/* GEN8 48b style address is defined as a 4 level page table:
* 47:39 | 38:30 | 29:21 | 20:12 | 11:0
* PML4E | PDPE | PDE | PTE | offset
*/
#define GEN8_PML4ES_PER_PML4 512
#define GEN8_PML4E_SHIFT 39
#define GEN8_PML4E_MASK (GEN8_PML4ES_PER_PML4 - 1)
#define GEN8_PDPE_SHIFT 30
/* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
* tables */
#define GEN8_PDPE_MASK 0x1ff
#define PPAT_UNCACHED (_PAGE_PWT | _PAGE_PCD)
#define PPAT_CACHED_PDE 0 /* WB LLC */
#define PPAT_CACHED _PAGE_PAT /* WB LLCeLLC */
#define PPAT_DISPLAY_ELLC _PAGE_PCD /* WT eLLC */
#define CHV_PPAT_SNOOP (1<<6)
#define GEN8_PPAT_AGE(x) ((x)<<4)
#define GEN8_PPAT_LLCeLLC (3<<2)
#define GEN8_PPAT_LLCELLC (2<<2)
#define GEN8_PPAT_LLC (1<<2)
#define GEN8_PPAT_WB (3<<0)
#define GEN8_PPAT_WT (2<<0)
#define GEN8_PPAT_WC (1<<0)
#define GEN8_PPAT_UC (0<<0)
#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
#define GEN8_PPAT(i, x) ((u64)(x) << ((i) * 8))
#define GEN8_PPAT_GET_CA(x) ((x) & 3)
#define GEN8_PPAT_GET_TC(x) ((x) & (3 << 2))
#define GEN8_PPAT_GET_AGE(x) ((x) & (3 << 4))
#define CHV_PPAT_GET_SNOOP(x) ((x) & (1 << 6))
#define GEN8_PDE_IPS_64K BIT(11)
#define GEN8_PDE_PS_2M BIT(7)
struct sg_table;
struct intel_rotation_info {
struct intel_rotation_plane_info {
/* tiles */
unsigned int width, height, stride, offset;
} plane[2];
} __packed;
struct intel_partial_info {
u64 offset;
unsigned int size;
} __packed;
enum i915_ggtt_view_type {
I915_GGTT_VIEW_NORMAL = 0,
I915_GGTT_VIEW_ROTATED = sizeof(struct intel_rotation_info),
I915_GGTT_VIEW_PARTIAL = sizeof(struct intel_partial_info),
};
static inline void assert_i915_gem_gtt_types(void)
{
BUILD_BUG_ON(sizeof(struct intel_rotation_info) != 8*sizeof(unsigned int));
BUILD_BUG_ON(sizeof(struct intel_partial_info) != sizeof(u64) + sizeof(unsigned int));
/* As we encode the size of each branch inside the union into its type,
* we have to be careful that each branch has a unique size.
*/
switch ((enum i915_ggtt_view_type)0) {
case I915_GGTT_VIEW_NORMAL:
case I915_GGTT_VIEW_PARTIAL:
case I915_GGTT_VIEW_ROTATED:
/* gcc complains if these are identical cases */
break;
}
}
struct i915_ggtt_view {
enum i915_ggtt_view_type type;
union {
/* Members need to contain no holes/padding */
struct intel_partial_info partial;
struct intel_rotation_info rotated;
};
};
enum i915_cache_level;
struct i915_vma;
struct i915_page_dma {
struct page *page;
union {
dma_addr_t daddr;
/* For gen6/gen7 only. This is the offset in the GGTT
* where the page directory entries for PPGTT begin
*/
u32 ggtt_offset;
};
};
#define px_base(px) (&(px)->base)
#define px_dma(px) (px_base(px)->daddr)
struct i915_page_table {
struct i915_page_dma base;
unsigned int used_ptes;
};
struct i915_page_directory {
struct i915_page_dma base;
struct i915_page_table *page_table[I915_PDES]; /* PDEs */
unsigned int used_pdes;
};
struct i915_page_directory_pointer {
struct i915_page_dma base;
struct i915_page_directory **page_directory;
unsigned int used_pdpes;
};
struct i915_pml4 {
struct i915_page_dma base;
struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
};
struct i915_vma_ops {
/* Map an object into an address space with the given cache flags. */
int (*bind_vma)(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags);
/*
* Unmap an object from an address space. This usually consists of
* setting the valid PTE entries to a reserved scratch page.
*/
void (*unbind_vma)(struct i915_vma *vma);
int (*set_pages)(struct i915_vma *vma);
void (*clear_pages)(struct i915_vma *vma);
};
struct pagestash {
spinlock_t lock;
struct pagevec pvec;
};
struct i915_address_space {
struct drm_mm mm;
struct drm_i915_private *i915;
struct device *dma;
/* Every address space belongs to a struct file - except for the global
* GTT that is owned by the driver (and so @file is set to NULL). In
* principle, no information should leak from one context to another
* (or between files/processes etc) unless explicitly shared by the
* owner. Tracking the owner is important in order to free up per-file
* objects along with the file, to aide resource tracking, and to
* assign blame.
*/
struct drm_i915_file_private *file;
u64 total; /* size addr space maps (ex. 2GB for ggtt) */
u64 reserved; /* size addr space reserved */
bool closed;
struct mutex mutex; /* protects vma and our lists */
#define VM_CLASS_GGTT 0
#define VM_CLASS_PPGTT 1
u64 scratch_pte;
int scratch_order;
struct i915_page_dma scratch_page;
struct i915_page_table *scratch_pt;
struct i915_page_directory *scratch_pd;
struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
/**
* List of vma currently bound.
*/
struct list_head bound_list;
/**
* List of vma that are not unbound.
*/
struct list_head unbound_list;
struct pagestash free_pages;
/* Global GTT */
bool is_ggtt:1;
/* Some systems require uncached updates of the page directories */
bool pt_kmap_wc:1;
/* Some systems support read-only mappings for GGTT and/or PPGTT */
bool has_read_only:1;
u64 (*pte_encode)(dma_addr_t addr,
enum i915_cache_level level,
u32 flags); /* Create a valid PTE */
#define PTE_READ_ONLY (1<<0)
int (*allocate_va_range)(struct i915_address_space *vm,
u64 start, u64 length);
void (*clear_range)(struct i915_address_space *vm,
u64 start, u64 length);
void (*insert_page)(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
enum i915_cache_level cache_level,
u32 flags);
void (*insert_entries)(struct i915_address_space *vm,
struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags);
void (*cleanup)(struct i915_address_space *vm);
struct i915_vma_ops vma_ops;
I915_SELFTEST_DECLARE(struct fault_attr fault_attr);
I915_SELFTEST_DECLARE(bool scrub_64K);
};
#define i915_is_ggtt(vm) ((vm)->is_ggtt)
static inline bool
i915_vm_is_4lvl(const struct i915_address_space *vm)
{
return (vm->total - 1) >> 32;
}
static inline bool
i915_vm_has_scratch_64K(struct i915_address_space *vm)
{
return vm->scratch_order == get_order(I915_GTT_PAGE_SIZE_64K);
}
/* The Graphics Translation Table is the way in which GEN hardware translates a
* Graphics Virtual Address into a Physical Address. In addition to the normal
* collateral associated with any va->pa translations GEN hardware also has a
* portion of the GTT which can be mapped by the CPU and remain both coherent
* and correct (in cases like swizzling). That region is referred to as GMADR in
* the spec.
*/
struct i915_ggtt {
struct i915_address_space vm;
struct io_mapping iomap; /* Mapping to our CPU mappable region */
struct resource gmadr; /* GMADR resource */
resource_size_t mappable_end; /* End offset that we can CPU map */
/** "Graphics Stolen Memory" holds the global PTEs */
void __iomem *gsm;
void (*invalidate)(struct drm_i915_private *dev_priv);
bool do_idle_maps;
int mtrr;
u32 pin_bias;
struct drm_mm_node error_capture;
};
struct i915_hw_ppgtt {
struct i915_address_space vm;
struct kref ref;
intel_engine_mask_t pd_dirty_engines;
union {
struct i915_pml4 pml4; /* GEN8+ & 48b PPGTT */
struct i915_page_directory_pointer pdp; /* GEN8+ */
struct i915_page_directory pd; /* GEN6-7 */
};
u32 user_handle;
};
struct gen6_hw_ppgtt {
struct i915_hw_ppgtt base;
struct i915_vma *vma;
gen6_pte_t __iomem *pd_addr;
unsigned int pin_count;
bool scan_for_unused_pt;
};
#define __to_gen6_ppgtt(base) container_of(base, struct gen6_hw_ppgtt, base)
static inline struct gen6_hw_ppgtt *to_gen6_ppgtt(struct i915_hw_ppgtt *base)
{
BUILD_BUG_ON(offsetof(struct gen6_hw_ppgtt, base));
return __to_gen6_ppgtt(base);
}
/*
* gen6_for_each_pde() iterates over every pde from start until start+length.
* If start and start+length are not perfectly divisible, the macro will round
* down and up as needed. Start=0 and length=2G effectively iterates over
* every PDE in the system. The macro modifies ALL its parameters except 'pd',
* so each of the other parameters should preferably be a simple variable, or
* at most an lvalue with no side-effects!
*/
#define gen6_for_each_pde(pt, pd, start, length, iter) \
for (iter = gen6_pde_index(start); \
length > 0 && iter < I915_PDES && \
(pt = (pd)->page_table[iter], true); \
({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT); \
temp = min(temp - start, length); \
start += temp, length -= temp; }), ++iter)
#define gen6_for_all_pdes(pt, pd, iter) \
for (iter = 0; \
iter < I915_PDES && \
(pt = (pd)->page_table[iter], true); \
++iter)
static inline u32 i915_pte_index(u64 address, unsigned int pde_shift)
{
const u32 mask = NUM_PTE(pde_shift) - 1;
return (address >> PAGE_SHIFT) & mask;
}
/* Helper to counts the number of PTEs within the given length. This count
* does not cross a page table boundary, so the max value would be
* GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
*/
static inline u32 i915_pte_count(u64 addr, u64 length, unsigned int pde_shift)
{
const u64 mask = ~((1ULL << pde_shift) - 1);
u64 end;
GEM_BUG_ON(length == 0);
GEM_BUG_ON(offset_in_page(addr | length));
end = addr + length;
if ((addr & mask) != (end & mask))
return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
}
static inline u32 i915_pde_index(u64 addr, u32 shift)
{
return (addr >> shift) & I915_PDE_MASK;
}
static inline u32 gen6_pte_index(u32 addr)
{
return i915_pte_index(addr, GEN6_PDE_SHIFT);
}
static inline u32 gen6_pte_count(u32 addr, u32 length)
{
return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
}
static inline u32 gen6_pde_index(u32 addr)
{
return i915_pde_index(addr, GEN6_PDE_SHIFT);
}
static inline unsigned int
i915_pdpes_per_pdp(const struct i915_address_space *vm)
{
if (i915_vm_is_4lvl(vm))
return GEN8_PML4ES_PER_PML4;
return GEN8_3LVL_PDPES;
}
/* Equivalent to the gen6 version, For each pde iterates over every pde
* between from start until start + length. On gen8+ it simply iterates
* over every page directory entry in a page directory.
*/
#define gen8_for_each_pde(pt, pd, start, length, iter) \
for (iter = gen8_pde_index(start); \
length > 0 && iter < I915_PDES && \
(pt = (pd)->page_table[iter], true); \
({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT); \
temp = min(temp - start, length); \
start += temp, length -= temp; }), ++iter)
#define gen8_for_each_pdpe(pd, pdp, start, length, iter) \
for (iter = gen8_pdpe_index(start); \
length > 0 && iter < i915_pdpes_per_pdp(vm) && \
(pd = (pdp)->page_directory[iter], true); \
({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT); \
temp = min(temp - start, length); \
start += temp, length -= temp; }), ++iter)
#define gen8_for_each_pml4e(pdp, pml4, start, length, iter) \
for (iter = gen8_pml4e_index(start); \
length > 0 && iter < GEN8_PML4ES_PER_PML4 && \
(pdp = (pml4)->pdps[iter], true); \
({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT); \
temp = min(temp - start, length); \
start += temp, length -= temp; }), ++iter)
static inline u32 gen8_pte_index(u64 address)
{
return i915_pte_index(address, GEN8_PDE_SHIFT);
}
static inline u32 gen8_pde_index(u64 address)
{
return i915_pde_index(address, GEN8_PDE_SHIFT);
}
static inline u32 gen8_pdpe_index(u64 address)
{
return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
}
static inline u32 gen8_pml4e_index(u64 address)
{
return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
}
static inline u64 gen8_pte_count(u64 address, u64 length)
{
return i915_pte_count(address, length, GEN8_PDE_SHIFT);
}
static inline dma_addr_t
i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
{
return px_dma(ppgtt->pdp.page_directory[n]);
}
static inline struct i915_ggtt *
i915_vm_to_ggtt(struct i915_address_space *vm)
{
GEM_BUG_ON(!i915_is_ggtt(vm));
return container_of(vm, struct i915_ggtt, vm);
}
#define INTEL_MAX_PPAT_ENTRIES 8
#define INTEL_PPAT_PERFECT_MATCH (~0U)
struct intel_ppat;
struct intel_ppat_entry {
struct intel_ppat *ppat;
struct kref ref;
u8 value;
};
struct intel_ppat {
struct intel_ppat_entry entries[INTEL_MAX_PPAT_ENTRIES];
DECLARE_BITMAP(used, INTEL_MAX_PPAT_ENTRIES);
DECLARE_BITMAP(dirty, INTEL_MAX_PPAT_ENTRIES);
unsigned int max_entries;
u8 clear_value;
/*
* Return a score to show how two PPAT values match,
* a INTEL_PPAT_PERFECT_MATCH indicates a perfect match
*/
unsigned int (*match)(u8 src, u8 dst);
void (*update_hw)(struct drm_i915_private *i915);
struct drm_i915_private *i915;
};
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value);
void intel_ppat_put(const struct intel_ppat_entry *entry);
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915);
void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915);
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv);
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv);
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv);
void i915_ggtt_enable_guc(struct drm_i915_private *i915);
void i915_ggtt_disable_guc(struct drm_i915_private *i915);
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv);
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv);
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv);
struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_i915_private *dev_priv);
void i915_ppgtt_release(struct kref *kref);
static inline struct i915_hw_ppgtt *i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
{
kref_get(&ppgtt->ref);
return ppgtt;
}
static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
{
if (ppgtt)
kref_put(&ppgtt->ref, i915_ppgtt_release);
}
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base);
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base);
void gen6_ppgtt_unpin_all(struct i915_hw_ppgtt *base);
void i915_check_and_clear_faults(struct drm_i915_private *dev_priv);
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv);
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv);
int __must_check i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages);
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages);
int i915_gem_gtt_reserve(struct i915_address_space *vm,
struct drm_mm_node *node,
u64 size, u64 offset, unsigned long color,
unsigned int flags);
int i915_gem_gtt_insert(struct i915_address_space *vm,
struct drm_mm_node *node,
u64 size, u64 alignment, unsigned long color,
u64 start, u64 end, unsigned int flags);
/* Flags used by pin/bind&friends. */
#define PIN_NONBLOCK BIT_ULL(0)
#define PIN_NONFAULT BIT_ULL(1)
#define PIN_NOEVICT BIT_ULL(2)
#define PIN_MAPPABLE BIT_ULL(3)
#define PIN_ZONE_4G BIT_ULL(4)
#define PIN_HIGH BIT_ULL(5)
#define PIN_OFFSET_BIAS BIT_ULL(6)
#define PIN_OFFSET_FIXED BIT_ULL(7)
#define PIN_MBZ BIT_ULL(8) /* I915_VMA_PIN_OVERFLOW */
#define PIN_GLOBAL BIT_ULL(9) /* I915_VMA_GLOBAL_BIND */
#define PIN_USER BIT_ULL(10) /* I915_VMA_LOCAL_BIND */
#define PIN_UPDATE BIT_ULL(11)
#define PIN_OFFSET_MASK (-I915_GTT_PAGE_SIZE)
#endif