linux/drivers/usb/misc/usbtest.c
Marcin Slusarz 6def755320 usbtest: comment on why this code "expects" negative and positive errnos
On Mon, May 12, 2008 at 01:02:22AM -0700, David Brownell wrote:
> On Sunday 11 May 2008, Marcin Slusarz wrote:
> > 
> > test_ctrl_queue expects (?) positive and negative errnos.
> > what is going on here?
> 
> The sign is just a way to flag something:
> 
>                 /* some faults are allowed, not required */
> 
> The negative ones are required.  Positive codes are optional,
> in the sense that, depending on how the peripheral happens
> to be implemented, they won't necessarily be triggered.
> 
> For example, the test to fetch a device qualifier desriptor
> must succeed if the device is running at high speed.  So that
> test is marked as negative.  But when it's full speed, it
> could legitimately fail; marked as positive.  And so on for
> other tests.
> 
> Look at how the codes are *interpreted* to see it work.

Lets document it.

Based on comment from David Brownell <david-b@pacbell.net>.

Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Cc: David Brownell <david-b@pacbell.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-05-14 10:00:29 -07:00

2198 lines
57 KiB
C

#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/scatterlist.h>
#include <linux/mutex.h>
#include <linux/usb.h>
/*-------------------------------------------------------------------------*/
// FIXME make these public somewhere; usbdevfs.h?
//
struct usbtest_param {
// inputs
unsigned test_num; /* 0..(TEST_CASES-1) */
unsigned iterations;
unsigned length;
unsigned vary;
unsigned sglen;
// outputs
struct timeval duration;
};
#define USBTEST_REQUEST _IOWR('U', 100, struct usbtest_param)
/*-------------------------------------------------------------------------*/
#define GENERIC /* let probe() bind using module params */
/* Some devices that can be used for testing will have "real" drivers.
* Entries for those need to be enabled here by hand, after disabling
* that "real" driver.
*/
//#define IBOT2 /* grab iBOT2 webcams */
//#define KEYSPAN_19Qi /* grab un-renumerated serial adapter */
/*-------------------------------------------------------------------------*/
struct usbtest_info {
const char *name;
u8 ep_in; /* bulk/intr source */
u8 ep_out; /* bulk/intr sink */
unsigned autoconf : 1;
unsigned ctrl_out : 1;
unsigned iso : 1; /* try iso in/out */
int alt;
};
/* this is accessed only through usbfs ioctl calls.
* one ioctl to issue a test ... one lock per device.
* tests create other threads if they need them.
* urbs and buffers are allocated dynamically,
* and data generated deterministically.
*/
struct usbtest_dev {
struct usb_interface *intf;
struct usbtest_info *info;
int in_pipe;
int out_pipe;
int in_iso_pipe;
int out_iso_pipe;
struct usb_endpoint_descriptor *iso_in, *iso_out;
struct mutex lock;
#define TBUF_SIZE 256
u8 *buf;
};
static struct usb_device *testdev_to_usbdev (struct usbtest_dev *test)
{
return interface_to_usbdev (test->intf);
}
/* set up all urbs so they can be used with either bulk or interrupt */
#define INTERRUPT_RATE 1 /* msec/transfer */
#define ERROR(tdev, fmt, args...) \
dev_err(&(tdev)->intf->dev , fmt , ## args)
#define WARN(tdev, fmt, args...) \
dev_warn(&(tdev)->intf->dev , fmt , ## args)
/*-------------------------------------------------------------------------*/
static int
get_endpoints (struct usbtest_dev *dev, struct usb_interface *intf)
{
int tmp;
struct usb_host_interface *alt;
struct usb_host_endpoint *in, *out;
struct usb_host_endpoint *iso_in, *iso_out;
struct usb_device *udev;
for (tmp = 0; tmp < intf->num_altsetting; tmp++) {
unsigned ep;
in = out = NULL;
iso_in = iso_out = NULL;
alt = intf->altsetting + tmp;
/* take the first altsetting with in-bulk + out-bulk;
* ignore other endpoints and altsetttings.
*/
for (ep = 0; ep < alt->desc.bNumEndpoints; ep++) {
struct usb_host_endpoint *e;
e = alt->endpoint + ep;
switch (e->desc.bmAttributes) {
case USB_ENDPOINT_XFER_BULK:
break;
case USB_ENDPOINT_XFER_ISOC:
if (dev->info->iso)
goto try_iso;
// FALLTHROUGH
default:
continue;
}
if (usb_endpoint_dir_in(&e->desc)) {
if (!in)
in = e;
} else {
if (!out)
out = e;
}
continue;
try_iso:
if (usb_endpoint_dir_in(&e->desc)) {
if (!iso_in)
iso_in = e;
} else {
if (!iso_out)
iso_out = e;
}
}
if ((in && out) || (iso_in && iso_out))
goto found;
}
return -EINVAL;
found:
udev = testdev_to_usbdev (dev);
if (alt->desc.bAlternateSetting != 0) {
tmp = usb_set_interface (udev,
alt->desc.bInterfaceNumber,
alt->desc.bAlternateSetting);
if (tmp < 0)
return tmp;
}
if (in) {
dev->in_pipe = usb_rcvbulkpipe (udev,
in->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
dev->out_pipe = usb_sndbulkpipe (udev,
out->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
}
if (iso_in) {
dev->iso_in = &iso_in->desc;
dev->in_iso_pipe = usb_rcvisocpipe (udev,
iso_in->desc.bEndpointAddress
& USB_ENDPOINT_NUMBER_MASK);
dev->iso_out = &iso_out->desc;
dev->out_iso_pipe = usb_sndisocpipe (udev,
iso_out->desc.bEndpointAddress
& USB_ENDPOINT_NUMBER_MASK);
}
return 0;
}
/*-------------------------------------------------------------------------*/
/* Support for testing basic non-queued I/O streams.
*
* These just package urbs as requests that can be easily canceled.
* Each urb's data buffer is dynamically allocated; callers can fill
* them with non-zero test data (or test for it) when appropriate.
*/
static void simple_callback (struct urb *urb)
{
complete(urb->context);
}
static struct urb *simple_alloc_urb (
struct usb_device *udev,
int pipe,
unsigned long bytes
)
{
struct urb *urb;
if (bytes < 0)
return NULL;
urb = usb_alloc_urb (0, GFP_KERNEL);
if (!urb)
return urb;
usb_fill_bulk_urb (urb, udev, pipe, NULL, bytes, simple_callback, NULL);
urb->interval = (udev->speed == USB_SPEED_HIGH)
? (INTERRUPT_RATE << 3)
: INTERRUPT_RATE;
urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
if (usb_pipein (pipe))
urb->transfer_flags |= URB_SHORT_NOT_OK;
urb->transfer_buffer = usb_buffer_alloc (udev, bytes, GFP_KERNEL,
&urb->transfer_dma);
if (!urb->transfer_buffer) {
usb_free_urb (urb);
urb = NULL;
} else
memset (urb->transfer_buffer, 0, bytes);
return urb;
}
static unsigned pattern = 0;
module_param (pattern, uint, S_IRUGO);
MODULE_PARM_DESC(pattern, "i/o pattern (0 == zeroes)");
static inline void simple_fill_buf (struct urb *urb)
{
unsigned i;
u8 *buf = urb->transfer_buffer;
unsigned len = urb->transfer_buffer_length;
switch (pattern) {
default:
// FALLTHROUGH
case 0:
memset (buf, 0, len);
break;
case 1: /* mod63 */
for (i = 0; i < len; i++)
*buf++ = (u8) (i % 63);
break;
}
}
static inline int simple_check_buf(struct usbtest_dev *tdev, struct urb *urb)
{
unsigned i;
u8 expected;
u8 *buf = urb->transfer_buffer;
unsigned len = urb->actual_length;
for (i = 0; i < len; i++, buf++) {
switch (pattern) {
/* all-zeroes has no synchronization issues */
case 0:
expected = 0;
break;
/* mod63 stays in sync with short-terminated transfers,
* or otherwise when host and gadget agree on how large
* each usb transfer request should be. resync is done
* with set_interface or set_config.
*/
case 1: /* mod63 */
expected = i % 63;
break;
/* always fail unsupported patterns */
default:
expected = !*buf;
break;
}
if (*buf == expected)
continue;
ERROR(tdev, "buf[%d] = %d (not %d)\n", i, *buf, expected);
return -EINVAL;
}
return 0;
}
static void simple_free_urb (struct urb *urb)
{
usb_buffer_free (urb->dev, urb->transfer_buffer_length,
urb->transfer_buffer, urb->transfer_dma);
usb_free_urb (urb);
}
static int simple_io (
struct usbtest_dev *tdev,
struct urb *urb,
int iterations,
int vary,
int expected,
const char *label
)
{
struct usb_device *udev = urb->dev;
int max = urb->transfer_buffer_length;
struct completion completion;
int retval = 0;
urb->context = &completion;
while (retval == 0 && iterations-- > 0) {
init_completion (&completion);
if (usb_pipeout (urb->pipe))
simple_fill_buf (urb);
if ((retval = usb_submit_urb (urb, GFP_KERNEL)) != 0)
break;
/* NOTE: no timeouts; can't be broken out of by interrupt */
wait_for_completion (&completion);
retval = urb->status;
urb->dev = udev;
if (retval == 0 && usb_pipein (urb->pipe))
retval = simple_check_buf(tdev, urb);
if (vary) {
int len = urb->transfer_buffer_length;
len += vary;
len %= max;
if (len == 0)
len = (vary < max) ? vary : max;
urb->transfer_buffer_length = len;
}
/* FIXME if endpoint halted, clear halt (and log) */
}
urb->transfer_buffer_length = max;
if (expected != retval)
dev_err(&udev->dev,
"%s failed, iterations left %d, status %d (not %d)\n",
label, iterations, retval, expected);
return retval;
}
/*-------------------------------------------------------------------------*/
/* We use scatterlist primitives to test queued I/O.
* Yes, this also tests the scatterlist primitives.
*/
static void free_sglist (struct scatterlist *sg, int nents)
{
unsigned i;
if (!sg)
return;
for (i = 0; i < nents; i++) {
if (!sg_page(&sg[i]))
continue;
kfree (sg_virt(&sg[i]));
}
kfree (sg);
}
static struct scatterlist *
alloc_sglist (int nents, int max, int vary)
{
struct scatterlist *sg;
unsigned i;
unsigned size = max;
sg = kmalloc (nents * sizeof *sg, GFP_KERNEL);
if (!sg)
return NULL;
sg_init_table(sg, nents);
for (i = 0; i < nents; i++) {
char *buf;
unsigned j;
buf = kzalloc (size, GFP_KERNEL);
if (!buf) {
free_sglist (sg, i);
return NULL;
}
/* kmalloc pages are always physically contiguous! */
sg_set_buf(&sg[i], buf, size);
switch (pattern) {
case 0:
/* already zeroed */
break;
case 1:
for (j = 0; j < size; j++)
*buf++ = (u8) (j % 63);
break;
}
if (vary) {
size += vary;
size %= max;
if (size == 0)
size = (vary < max) ? vary : max;
}
}
return sg;
}
static int perform_sglist (
struct usbtest_dev *tdev,
unsigned iterations,
int pipe,
struct usb_sg_request *req,
struct scatterlist *sg,
int nents
)
{
struct usb_device *udev = testdev_to_usbdev(tdev);
int retval = 0;
while (retval == 0 && iterations-- > 0) {
retval = usb_sg_init (req, udev, pipe,
(udev->speed == USB_SPEED_HIGH)
? (INTERRUPT_RATE << 3)
: INTERRUPT_RATE,
sg, nents, 0, GFP_KERNEL);
if (retval)
break;
usb_sg_wait (req);
retval = req->status;
/* FIXME check resulting data pattern */
/* FIXME if endpoint halted, clear halt (and log) */
}
// FIXME for unlink or fault handling tests, don't report
// failure if retval is as we expected ...
if (retval)
ERROR(tdev, "perform_sglist failed, "
"iterations left %d, status %d\n",
iterations, retval);
return retval;
}
/*-------------------------------------------------------------------------*/
/* unqueued control message testing
*
* there's a nice set of device functional requirements in chapter 9 of the
* usb 2.0 spec, which we can apply to ANY device, even ones that don't use
* special test firmware.
*
* we know the device is configured (or suspended) by the time it's visible
* through usbfs. we can't change that, so we won't test enumeration (which
* worked 'well enough' to get here, this time), power management (ditto),
* or remote wakeup (which needs human interaction).
*/
static unsigned realworld = 1;
module_param (realworld, uint, 0);
MODULE_PARM_DESC (realworld, "clear to demand stricter spec compliance");
static int get_altsetting (struct usbtest_dev *dev)
{
struct usb_interface *iface = dev->intf;
struct usb_device *udev = interface_to_usbdev (iface);
int retval;
retval = usb_control_msg (udev, usb_rcvctrlpipe (udev, 0),
USB_REQ_GET_INTERFACE, USB_DIR_IN|USB_RECIP_INTERFACE,
0, iface->altsetting [0].desc.bInterfaceNumber,
dev->buf, 1, USB_CTRL_GET_TIMEOUT);
switch (retval) {
case 1:
return dev->buf [0];
case 0:
retval = -ERANGE;
// FALLTHROUGH
default:
return retval;
}
}
static int set_altsetting (struct usbtest_dev *dev, int alternate)
{
struct usb_interface *iface = dev->intf;
struct usb_device *udev;
if (alternate < 0 || alternate >= 256)
return -EINVAL;
udev = interface_to_usbdev (iface);
return usb_set_interface (udev,
iface->altsetting [0].desc.bInterfaceNumber,
alternate);
}
static int is_good_config(struct usbtest_dev *tdev, int len)
{
struct usb_config_descriptor *config;
if (len < sizeof *config)
return 0;
config = (struct usb_config_descriptor *) tdev->buf;
switch (config->bDescriptorType) {
case USB_DT_CONFIG:
case USB_DT_OTHER_SPEED_CONFIG:
if (config->bLength != 9) {
ERROR(tdev, "bogus config descriptor length\n");
return 0;
}
/* this bit 'must be 1' but often isn't */
if (!realworld && !(config->bmAttributes & 0x80)) {
ERROR(tdev, "high bit of config attributes not set\n");
return 0;
}
if (config->bmAttributes & 0x1f) { /* reserved == 0 */
ERROR(tdev, "reserved config bits set\n");
return 0;
}
break;
default:
return 0;
}
if (le16_to_cpu(config->wTotalLength) == len) /* read it all */
return 1;
if (le16_to_cpu(config->wTotalLength) >= TBUF_SIZE) /* max partial read */
return 1;
ERROR(tdev, "bogus config descriptor read size\n");
return 0;
}
/* sanity test for standard requests working with usb_control_mesg() and some
* of the utility functions which use it.
*
* this doesn't test how endpoint halts behave or data toggles get set, since
* we won't do I/O to bulk/interrupt endpoints here (which is how to change
* halt or toggle). toggle testing is impractical without support from hcds.
*
* this avoids failing devices linux would normally work with, by not testing
* config/altsetting operations for devices that only support their defaults.
* such devices rarely support those needless operations.
*
* NOTE that since this is a sanity test, it's not examining boundary cases
* to see if usbcore, hcd, and device all behave right. such testing would
* involve varied read sizes and other operation sequences.
*/
static int ch9_postconfig (struct usbtest_dev *dev)
{
struct usb_interface *iface = dev->intf;
struct usb_device *udev = interface_to_usbdev (iface);
int i, alt, retval;
/* [9.2.3] if there's more than one altsetting, we need to be able to
* set and get each one. mostly trusts the descriptors from usbcore.
*/
for (i = 0; i < iface->num_altsetting; i++) {
/* 9.2.3 constrains the range here */
alt = iface->altsetting [i].desc.bAlternateSetting;
if (alt < 0 || alt >= iface->num_altsetting) {
dev_err(&iface->dev,
"invalid alt [%d].bAltSetting = %d\n",
i, alt);
}
/* [real world] get/set unimplemented if there's only one */
if (realworld && iface->num_altsetting == 1)
continue;
/* [9.4.10] set_interface */
retval = set_altsetting (dev, alt);
if (retval) {
dev_err(&iface->dev, "can't set_interface = %d, %d\n",
alt, retval);
return retval;
}
/* [9.4.4] get_interface always works */
retval = get_altsetting (dev);
if (retval != alt) {
dev_err(&iface->dev, "get alt should be %d, was %d\n",
alt, retval);
return (retval < 0) ? retval : -EDOM;
}
}
/* [real world] get_config unimplemented if there's only one */
if (!realworld || udev->descriptor.bNumConfigurations != 1) {
int expected = udev->actconfig->desc.bConfigurationValue;
/* [9.4.2] get_configuration always works
* ... although some cheap devices (like one TI Hub I've got)
* won't return config descriptors except before set_config.
*/
retval = usb_control_msg (udev, usb_rcvctrlpipe (udev, 0),
USB_REQ_GET_CONFIGURATION,
USB_DIR_IN | USB_RECIP_DEVICE,
0, 0, dev->buf, 1, USB_CTRL_GET_TIMEOUT);
if (retval != 1 || dev->buf [0] != expected) {
dev_err(&iface->dev, "get config --> %d %d (1 %d)\n",
retval, dev->buf[0], expected);
return (retval < 0) ? retval : -EDOM;
}
}
/* there's always [9.4.3] a device descriptor [9.6.1] */
retval = usb_get_descriptor (udev, USB_DT_DEVICE, 0,
dev->buf, sizeof udev->descriptor);
if (retval != sizeof udev->descriptor) {
dev_err(&iface->dev, "dev descriptor --> %d\n", retval);
return (retval < 0) ? retval : -EDOM;
}
/* there's always [9.4.3] at least one config descriptor [9.6.3] */
for (i = 0; i < udev->descriptor.bNumConfigurations; i++) {
retval = usb_get_descriptor (udev, USB_DT_CONFIG, i,
dev->buf, TBUF_SIZE);
if (!is_good_config(dev, retval)) {
dev_err(&iface->dev,
"config [%d] descriptor --> %d\n",
i, retval);
return (retval < 0) ? retval : -EDOM;
}
// FIXME cross-checking udev->config[i] to make sure usbcore
// parsed it right (etc) would be good testing paranoia
}
/* and sometimes [9.2.6.6] speed dependent descriptors */
if (le16_to_cpu(udev->descriptor.bcdUSB) == 0x0200) {
struct usb_qualifier_descriptor *d = NULL;
/* device qualifier [9.6.2] */
retval = usb_get_descriptor (udev,
USB_DT_DEVICE_QUALIFIER, 0, dev->buf,
sizeof (struct usb_qualifier_descriptor));
if (retval == -EPIPE) {
if (udev->speed == USB_SPEED_HIGH) {
dev_err(&iface->dev,
"hs dev qualifier --> %d\n",
retval);
return (retval < 0) ? retval : -EDOM;
}
/* usb2.0 but not high-speed capable; fine */
} else if (retval != sizeof (struct usb_qualifier_descriptor)) {
dev_err(&iface->dev, "dev qualifier --> %d\n", retval);
return (retval < 0) ? retval : -EDOM;
} else
d = (struct usb_qualifier_descriptor *) dev->buf;
/* might not have [9.6.2] any other-speed configs [9.6.4] */
if (d) {
unsigned max = d->bNumConfigurations;
for (i = 0; i < max; i++) {
retval = usb_get_descriptor (udev,
USB_DT_OTHER_SPEED_CONFIG, i,
dev->buf, TBUF_SIZE);
if (!is_good_config(dev, retval)) {
dev_err(&iface->dev,
"other speed config --> %d\n",
retval);
return (retval < 0) ? retval : -EDOM;
}
}
}
}
// FIXME fetch strings from at least the device descriptor
/* [9.4.5] get_status always works */
retval = usb_get_status (udev, USB_RECIP_DEVICE, 0, dev->buf);
if (retval != 2) {
dev_err(&iface->dev, "get dev status --> %d\n", retval);
return (retval < 0) ? retval : -EDOM;
}
// FIXME configuration.bmAttributes says if we could try to set/clear
// the device's remote wakeup feature ... if we can, test that here
retval = usb_get_status (udev, USB_RECIP_INTERFACE,
iface->altsetting [0].desc.bInterfaceNumber, dev->buf);
if (retval != 2) {
dev_err(&iface->dev, "get interface status --> %d\n", retval);
return (retval < 0) ? retval : -EDOM;
}
// FIXME get status for each endpoint in the interface
return 0;
}
/*-------------------------------------------------------------------------*/
/* use ch9 requests to test whether:
* (a) queues work for control, keeping N subtests queued and
* active (auto-resubmit) for M loops through the queue.
* (b) protocol stalls (control-only) will autorecover.
* it's not like bulk/intr; no halt clearing.
* (c) short control reads are reported and handled.
* (d) queues are always processed in-order
*/
struct ctrl_ctx {
spinlock_t lock;
struct usbtest_dev *dev;
struct completion complete;
unsigned count;
unsigned pending;
int status;
struct urb **urb;
struct usbtest_param *param;
int last;
};
#define NUM_SUBCASES 15 /* how many test subcases here? */
struct subcase {
struct usb_ctrlrequest setup;
int number;
int expected;
};
static void ctrl_complete (struct urb *urb)
{
struct ctrl_ctx *ctx = urb->context;
struct usb_ctrlrequest *reqp;
struct subcase *subcase;
int status = urb->status;
reqp = (struct usb_ctrlrequest *)urb->setup_packet;
subcase = container_of (reqp, struct subcase, setup);
spin_lock (&ctx->lock);
ctx->count--;
ctx->pending--;
/* queue must transfer and complete in fifo order, unless
* usb_unlink_urb() is used to unlink something not at the
* physical queue head (not tested).
*/
if (subcase->number > 0) {
if ((subcase->number - ctx->last) != 1) {
ERROR(ctx->dev,
"subcase %d completed out of order, last %d\n",
subcase->number, ctx->last);
status = -EDOM;
ctx->last = subcase->number;
goto error;
}
}
ctx->last = subcase->number;
/* succeed or fault in only one way? */
if (status == subcase->expected)
status = 0;
/* async unlink for cleanup? */
else if (status != -ECONNRESET) {
/* some faults are allowed, not required */
if (subcase->expected > 0 && (
((status == -subcase->expected /* happened */
|| status == 0)))) /* didn't */
status = 0;
/* sometimes more than one fault is allowed */
else if (subcase->number == 12 && status == -EPIPE)
status = 0;
else
ERROR(ctx->dev, "subtest %d error, status %d\n",
subcase->number, status);
}
/* unexpected status codes mean errors; ideally, in hardware */
if (status) {
error:
if (ctx->status == 0) {
int i;
ctx->status = status;
ERROR(ctx->dev, "control queue %02x.%02x, err %d, "
"%d left, subcase %d, len %d/%d\n",
reqp->bRequestType, reqp->bRequest,
status, ctx->count, subcase->number,
urb->actual_length,
urb->transfer_buffer_length);
/* FIXME this "unlink everything" exit route should
* be a separate test case.
*/
/* unlink whatever's still pending */
for (i = 1; i < ctx->param->sglen; i++) {
struct urb *u = ctx->urb [
(i + subcase->number)
% ctx->param->sglen];
if (u == urb || !u->dev)
continue;
spin_unlock(&ctx->lock);
status = usb_unlink_urb (u);
spin_lock(&ctx->lock);
switch (status) {
case -EINPROGRESS:
case -EBUSY:
case -EIDRM:
continue;
default:
ERROR(ctx->dev, "urb unlink --> %d\n",
status);
}
}
status = ctx->status;
}
}
/* resubmit if we need to, else mark this as done */
if ((status == 0) && (ctx->pending < ctx->count)) {
if ((status = usb_submit_urb (urb, GFP_ATOMIC)) != 0) {
ERROR(ctx->dev,
"can't resubmit ctrl %02x.%02x, err %d\n",
reqp->bRequestType, reqp->bRequest, status);
urb->dev = NULL;
} else
ctx->pending++;
} else
urb->dev = NULL;
/* signal completion when nothing's queued */
if (ctx->pending == 0)
complete (&ctx->complete);
spin_unlock (&ctx->lock);
}
static int
test_ctrl_queue (struct usbtest_dev *dev, struct usbtest_param *param)
{
struct usb_device *udev = testdev_to_usbdev (dev);
struct urb **urb;
struct ctrl_ctx context;
int i;
spin_lock_init (&context.lock);
context.dev = dev;
init_completion (&context.complete);
context.count = param->sglen * param->iterations;
context.pending = 0;
context.status = -ENOMEM;
context.param = param;
context.last = -1;
/* allocate and init the urbs we'll queue.
* as with bulk/intr sglists, sglen is the queue depth; it also
* controls which subtests run (more tests than sglen) or rerun.
*/
urb = kcalloc(param->sglen, sizeof(struct urb *), GFP_KERNEL);
if (!urb)
return -ENOMEM;
for (i = 0; i < param->sglen; i++) {
int pipe = usb_rcvctrlpipe (udev, 0);
unsigned len;
struct urb *u;
struct usb_ctrlrequest req;
struct subcase *reqp;
/* sign of this variable means:
* -: tested code must return this (negative) error code
* +: tested code may return this (negative too) error code
*/
int expected = 0;
/* requests here are mostly expected to succeed on any
* device, but some are chosen to trigger protocol stalls
* or short reads.
*/
memset (&req, 0, sizeof req);
req.bRequest = USB_REQ_GET_DESCRIPTOR;
req.bRequestType = USB_DIR_IN|USB_RECIP_DEVICE;
switch (i % NUM_SUBCASES) {
case 0: // get device descriptor
req.wValue = cpu_to_le16 (USB_DT_DEVICE << 8);
len = sizeof (struct usb_device_descriptor);
break;
case 1: // get first config descriptor (only)
req.wValue = cpu_to_le16 ((USB_DT_CONFIG << 8) | 0);
len = sizeof (struct usb_config_descriptor);
break;
case 2: // get altsetting (OFTEN STALLS)
req.bRequest = USB_REQ_GET_INTERFACE;
req.bRequestType = USB_DIR_IN|USB_RECIP_INTERFACE;
// index = 0 means first interface
len = 1;
expected = EPIPE;
break;
case 3: // get interface status
req.bRequest = USB_REQ_GET_STATUS;
req.bRequestType = USB_DIR_IN|USB_RECIP_INTERFACE;
// interface 0
len = 2;
break;
case 4: // get device status
req.bRequest = USB_REQ_GET_STATUS;
req.bRequestType = USB_DIR_IN|USB_RECIP_DEVICE;
len = 2;
break;
case 5: // get device qualifier (MAY STALL)
req.wValue = cpu_to_le16 (USB_DT_DEVICE_QUALIFIER << 8);
len = sizeof (struct usb_qualifier_descriptor);
if (udev->speed != USB_SPEED_HIGH)
expected = EPIPE;
break;
case 6: // get first config descriptor, plus interface
req.wValue = cpu_to_le16 ((USB_DT_CONFIG << 8) | 0);
len = sizeof (struct usb_config_descriptor);
len += sizeof (struct usb_interface_descriptor);
break;
case 7: // get interface descriptor (ALWAYS STALLS)
req.wValue = cpu_to_le16 (USB_DT_INTERFACE << 8);
// interface == 0
len = sizeof (struct usb_interface_descriptor);
expected = -EPIPE;
break;
// NOTE: two consecutive stalls in the queue here.
// that tests fault recovery a bit more aggressively.
case 8: // clear endpoint halt (MAY STALL)
req.bRequest = USB_REQ_CLEAR_FEATURE;
req.bRequestType = USB_RECIP_ENDPOINT;
// wValue 0 == ep halt
// wIndex 0 == ep0 (shouldn't halt!)
len = 0;
pipe = usb_sndctrlpipe (udev, 0);
expected = EPIPE;
break;
case 9: // get endpoint status
req.bRequest = USB_REQ_GET_STATUS;
req.bRequestType = USB_DIR_IN|USB_RECIP_ENDPOINT;
// endpoint 0
len = 2;
break;
case 10: // trigger short read (EREMOTEIO)
req.wValue = cpu_to_le16 ((USB_DT_CONFIG << 8) | 0);
len = 1024;
expected = -EREMOTEIO;
break;
// NOTE: two consecutive _different_ faults in the queue.
case 11: // get endpoint descriptor (ALWAYS STALLS)
req.wValue = cpu_to_le16 (USB_DT_ENDPOINT << 8);
// endpoint == 0
len = sizeof (struct usb_interface_descriptor);
expected = EPIPE;
break;
// NOTE: sometimes even a third fault in the queue!
case 12: // get string 0 descriptor (MAY STALL)
req.wValue = cpu_to_le16 (USB_DT_STRING << 8);
// string == 0, for language IDs
len = sizeof (struct usb_interface_descriptor);
// may succeed when > 4 languages
expected = EREMOTEIO; // or EPIPE, if no strings
break;
case 13: // short read, resembling case 10
req.wValue = cpu_to_le16 ((USB_DT_CONFIG << 8) | 0);
// last data packet "should" be DATA1, not DATA0
len = 1024 - udev->descriptor.bMaxPacketSize0;
expected = -EREMOTEIO;
break;
case 14: // short read; try to fill the last packet
req.wValue = cpu_to_le16 ((USB_DT_DEVICE << 8) | 0);
/* device descriptor size == 18 bytes */
len = udev->descriptor.bMaxPacketSize0;
switch (len) {
case 8: len = 24; break;
case 16: len = 32; break;
}
expected = -EREMOTEIO;
break;
default:
ERROR(dev, "bogus number of ctrl queue testcases!\n");
context.status = -EINVAL;
goto cleanup;
}
req.wLength = cpu_to_le16 (len);
urb [i] = u = simple_alloc_urb (udev, pipe, len);
if (!u)
goto cleanup;
reqp = usb_buffer_alloc (udev, sizeof *reqp, GFP_KERNEL,
&u->setup_dma);
if (!reqp)
goto cleanup;
reqp->setup = req;
reqp->number = i % NUM_SUBCASES;
reqp->expected = expected;
u->setup_packet = (char *) &reqp->setup;
u->transfer_flags |= URB_NO_SETUP_DMA_MAP;
u->context = &context;
u->complete = ctrl_complete;
}
/* queue the urbs */
context.urb = urb;
spin_lock_irq (&context.lock);
for (i = 0; i < param->sglen; i++) {
context.status = usb_submit_urb (urb [i], GFP_ATOMIC);
if (context.status != 0) {
ERROR(dev, "can't submit urb[%d], status %d\n",
i, context.status);
context.count = context.pending;
break;
}
context.pending++;
}
spin_unlock_irq (&context.lock);
/* FIXME set timer and time out; provide a disconnect hook */
/* wait for the last one to complete */
if (context.pending > 0)
wait_for_completion (&context.complete);
cleanup:
for (i = 0; i < param->sglen; i++) {
if (!urb [i])
continue;
urb [i]->dev = udev;
if (urb [i]->setup_packet)
usb_buffer_free (udev, sizeof (struct usb_ctrlrequest),
urb [i]->setup_packet,
urb [i]->setup_dma);
simple_free_urb (urb [i]);
}
kfree (urb);
return context.status;
}
#undef NUM_SUBCASES
/*-------------------------------------------------------------------------*/
static void unlink1_callback (struct urb *urb)
{
int status = urb->status;
// we "know" -EPIPE (stall) never happens
if (!status)
status = usb_submit_urb (urb, GFP_ATOMIC);
if (status) {
urb->status = status;
complete(urb->context);
}
}
static int unlink1 (struct usbtest_dev *dev, int pipe, int size, int async)
{
struct urb *urb;
struct completion completion;
int retval = 0;
init_completion (&completion);
urb = simple_alloc_urb (testdev_to_usbdev (dev), pipe, size);
if (!urb)
return -ENOMEM;
urb->context = &completion;
urb->complete = unlink1_callback;
/* keep the endpoint busy. there are lots of hc/hcd-internal
* states, and testing should get to all of them over time.
*
* FIXME want additional tests for when endpoint is STALLing
* due to errors, or is just NAKing requests.
*/
if ((retval = usb_submit_urb (urb, GFP_KERNEL)) != 0) {
dev_err(&dev->intf->dev, "submit fail %d\n", retval);
return retval;
}
/* unlinking that should always work. variable delay tests more
* hcd states and code paths, even with little other system load.
*/
msleep (jiffies % (2 * INTERRUPT_RATE));
if (async) {
retry:
retval = usb_unlink_urb (urb);
if (retval == -EBUSY || retval == -EIDRM) {
/* we can't unlink urbs while they're completing.
* or if they've completed, and we haven't resubmitted.
* "normal" drivers would prevent resubmission, but
* since we're testing unlink paths, we can't.
*/
ERROR(dev, "unlink retry\n");
goto retry;
}
} else
usb_kill_urb (urb);
if (!(retval == 0 || retval == -EINPROGRESS)) {
dev_err(&dev->intf->dev, "unlink fail %d\n", retval);
return retval;
}
wait_for_completion (&completion);
retval = urb->status;
simple_free_urb (urb);
if (async)
return (retval == -ECONNRESET) ? 0 : retval - 1000;
else
return (retval == -ENOENT || retval == -EPERM) ?
0 : retval - 2000;
}
static int unlink_simple (struct usbtest_dev *dev, int pipe, int len)
{
int retval = 0;
/* test sync and async paths */
retval = unlink1 (dev, pipe, len, 1);
if (!retval)
retval = unlink1 (dev, pipe, len, 0);
return retval;
}
/*-------------------------------------------------------------------------*/
static int verify_not_halted(struct usbtest_dev *tdev, int ep, struct urb *urb)
{
int retval;
u16 status;
/* shouldn't look or act halted */
retval = usb_get_status (urb->dev, USB_RECIP_ENDPOINT, ep, &status);
if (retval < 0) {
ERROR(tdev, "ep %02x couldn't get no-halt status, %d\n",
ep, retval);
return retval;
}
if (status != 0) {
ERROR(tdev, "ep %02x bogus status: %04x != 0\n", ep, status);
return -EINVAL;
}
retval = simple_io(tdev, urb, 1, 0, 0, __func__);
if (retval != 0)
return -EINVAL;
return 0;
}
static int verify_halted(struct usbtest_dev *tdev, int ep, struct urb *urb)
{
int retval;
u16 status;
/* should look and act halted */
retval = usb_get_status (urb->dev, USB_RECIP_ENDPOINT, ep, &status);
if (retval < 0) {
ERROR(tdev, "ep %02x couldn't get halt status, %d\n",
ep, retval);
return retval;
}
le16_to_cpus(&status);
if (status != 1) {
ERROR(tdev, "ep %02x bogus status: %04x != 1\n", ep, status);
return -EINVAL;
}
retval = simple_io(tdev, urb, 1, 0, -EPIPE, __func__);
if (retval != -EPIPE)
return -EINVAL;
retval = simple_io(tdev, urb, 1, 0, -EPIPE, "verify_still_halted");
if (retval != -EPIPE)
return -EINVAL;
return 0;
}
static int test_halt(struct usbtest_dev *tdev, int ep, struct urb *urb)
{
int retval;
/* shouldn't look or act halted now */
retval = verify_not_halted(tdev, ep, urb);
if (retval < 0)
return retval;
/* set halt (protocol test only), verify it worked */
retval = usb_control_msg (urb->dev, usb_sndctrlpipe (urb->dev, 0),
USB_REQ_SET_FEATURE, USB_RECIP_ENDPOINT,
USB_ENDPOINT_HALT, ep,
NULL, 0, USB_CTRL_SET_TIMEOUT);
if (retval < 0) {
ERROR(tdev, "ep %02x couldn't set halt, %d\n", ep, retval);
return retval;
}
retval = verify_halted(tdev, ep, urb);
if (retval < 0)
return retval;
/* clear halt (tests API + protocol), verify it worked */
retval = usb_clear_halt (urb->dev, urb->pipe);
if (retval < 0) {
ERROR(tdev, "ep %02x couldn't clear halt, %d\n", ep, retval);
return retval;
}
retval = verify_not_halted(tdev, ep, urb);
if (retval < 0)
return retval;
/* NOTE: could also verify SET_INTERFACE clear halts ... */
return 0;
}
static int halt_simple (struct usbtest_dev *dev)
{
int ep;
int retval = 0;
struct urb *urb;
urb = simple_alloc_urb (testdev_to_usbdev (dev), 0, 512);
if (urb == NULL)
return -ENOMEM;
if (dev->in_pipe) {
ep = usb_pipeendpoint (dev->in_pipe) | USB_DIR_IN;
urb->pipe = dev->in_pipe;
retval = test_halt(dev, ep, urb);
if (retval < 0)
goto done;
}
if (dev->out_pipe) {
ep = usb_pipeendpoint (dev->out_pipe);
urb->pipe = dev->out_pipe;
retval = test_halt(dev, ep, urb);
}
done:
simple_free_urb (urb);
return retval;
}
/*-------------------------------------------------------------------------*/
/* Control OUT tests use the vendor control requests from Intel's
* USB 2.0 compliance test device: write a buffer, read it back.
*
* Intel's spec only _requires_ that it work for one packet, which
* is pretty weak. Some HCDs place limits here; most devices will
* need to be able to handle more than one OUT data packet. We'll
* try whatever we're told to try.
*/
static int ctrl_out (struct usbtest_dev *dev,
unsigned count, unsigned length, unsigned vary)
{
unsigned i, j, len;
int retval;
u8 *buf;
char *what = "?";
struct usb_device *udev;
if (length < 1 || length > 0xffff || vary >= length)
return -EINVAL;
buf = kmalloc(length, GFP_KERNEL);
if (!buf)
return -ENOMEM;
udev = testdev_to_usbdev (dev);
len = length;
retval = 0;
/* NOTE: hardware might well act differently if we pushed it
* with lots back-to-back queued requests.
*/
for (i = 0; i < count; i++) {
/* write patterned data */
for (j = 0; j < len; j++)
buf [j] = i + j;
retval = usb_control_msg (udev, usb_sndctrlpipe (udev,0),
0x5b, USB_DIR_OUT|USB_TYPE_VENDOR,
0, 0, buf, len, USB_CTRL_SET_TIMEOUT);
if (retval != len) {
what = "write";
if (retval >= 0) {
ERROR(dev, "ctrl_out, wlen %d (expected %d)\n",
retval, len);
retval = -EBADMSG;
}
break;
}
/* read it back -- assuming nothing intervened!! */
retval = usb_control_msg (udev, usb_rcvctrlpipe (udev,0),
0x5c, USB_DIR_IN|USB_TYPE_VENDOR,
0, 0, buf, len, USB_CTRL_GET_TIMEOUT);
if (retval != len) {
what = "read";
if (retval >= 0) {
ERROR(dev, "ctrl_out, rlen %d (expected %d)\n",
retval, len);
retval = -EBADMSG;
}
break;
}
/* fail if we can't verify */
for (j = 0; j < len; j++) {
if (buf [j] != (u8) (i + j)) {
ERROR(dev, "ctrl_out, byte %d is %d not %d\n",
j, buf [j], (u8) i + j);
retval = -EBADMSG;
break;
}
}
if (retval < 0) {
what = "verify";
break;
}
len += vary;
/* [real world] the "zero bytes IN" case isn't really used.
* hardware can easily trip up in this weird case, since its
* status stage is IN, not OUT like other ep0in transfers.
*/
if (len > length)
len = realworld ? 1 : 0;
}
if (retval < 0)
ERROR (dev, "ctrl_out %s failed, code %d, count %d\n",
what, retval, i);
kfree (buf);
return retval;
}
/*-------------------------------------------------------------------------*/
/* ISO tests ... mimics common usage
* - buffer length is split into N packets (mostly maxpacket sized)
* - multi-buffers according to sglen
*/
struct iso_context {
unsigned count;
unsigned pending;
spinlock_t lock;
struct completion done;
int submit_error;
unsigned long errors;
unsigned long packet_count;
struct usbtest_dev *dev;
};
static void iso_callback (struct urb *urb)
{
struct iso_context *ctx = urb->context;
spin_lock(&ctx->lock);
ctx->count--;
ctx->packet_count += urb->number_of_packets;
if (urb->error_count > 0)
ctx->errors += urb->error_count;
else if (urb->status != 0)
ctx->errors += urb->number_of_packets;
if (urb->status == 0 && ctx->count > (ctx->pending - 1)
&& !ctx->submit_error) {
int status = usb_submit_urb (urb, GFP_ATOMIC);
switch (status) {
case 0:
goto done;
default:
dev_err(&ctx->dev->intf->dev,
"iso resubmit err %d\n",
status);
/* FALLTHROUGH */
case -ENODEV: /* disconnected */
case -ESHUTDOWN: /* endpoint disabled */
ctx->submit_error = 1;
break;
}
}
simple_free_urb (urb);
ctx->pending--;
if (ctx->pending == 0) {
if (ctx->errors)
dev_err(&ctx->dev->intf->dev,
"iso test, %lu errors out of %lu\n",
ctx->errors, ctx->packet_count);
complete (&ctx->done);
}
done:
spin_unlock(&ctx->lock);
}
static struct urb *iso_alloc_urb (
struct usb_device *udev,
int pipe,
struct usb_endpoint_descriptor *desc,
long bytes
)
{
struct urb *urb;
unsigned i, maxp, packets;
if (bytes < 0 || !desc)
return NULL;
maxp = 0x7ff & le16_to_cpu(desc->wMaxPacketSize);
maxp *= 1 + (0x3 & (le16_to_cpu(desc->wMaxPacketSize) >> 11));
packets = DIV_ROUND_UP(bytes, maxp);
urb = usb_alloc_urb (packets, GFP_KERNEL);
if (!urb)
return urb;
urb->dev = udev;
urb->pipe = pipe;
urb->number_of_packets = packets;
urb->transfer_buffer_length = bytes;
urb->transfer_buffer = usb_buffer_alloc (udev, bytes, GFP_KERNEL,
&urb->transfer_dma);
if (!urb->transfer_buffer) {
usb_free_urb (urb);
return NULL;
}
memset (urb->transfer_buffer, 0, bytes);
for (i = 0; i < packets; i++) {
/* here, only the last packet will be short */
urb->iso_frame_desc[i].length = min ((unsigned) bytes, maxp);
bytes -= urb->iso_frame_desc[i].length;
urb->iso_frame_desc[i].offset = maxp * i;
}
urb->complete = iso_callback;
// urb->context = SET BY CALLER
urb->interval = 1 << (desc->bInterval - 1);
urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
return urb;
}
static int
test_iso_queue (struct usbtest_dev *dev, struct usbtest_param *param,
int pipe, struct usb_endpoint_descriptor *desc)
{
struct iso_context context;
struct usb_device *udev;
unsigned i;
unsigned long packets = 0;
int status = 0;
struct urb *urbs[10]; /* FIXME no limit */
if (param->sglen > 10)
return -EDOM;
memset(&context, 0, sizeof context);
context.count = param->iterations * param->sglen;
context.dev = dev;
init_completion (&context.done);
spin_lock_init (&context.lock);
memset (urbs, 0, sizeof urbs);
udev = testdev_to_usbdev (dev);
dev_info(&dev->intf->dev,
"... iso period %d %sframes, wMaxPacket %04x\n",
1 << (desc->bInterval - 1),
(udev->speed == USB_SPEED_HIGH) ? "micro" : "",
le16_to_cpu(desc->wMaxPacketSize));
for (i = 0; i < param->sglen; i++) {
urbs [i] = iso_alloc_urb (udev, pipe, desc,
param->length);
if (!urbs [i]) {
status = -ENOMEM;
goto fail;
}
packets += urbs[i]->number_of_packets;
urbs [i]->context = &context;
}
packets *= param->iterations;
dev_info(&dev->intf->dev,
"... total %lu msec (%lu packets)\n",
(packets * (1 << (desc->bInterval - 1)))
/ ((udev->speed == USB_SPEED_HIGH) ? 8 : 1),
packets);
spin_lock_irq (&context.lock);
for (i = 0; i < param->sglen; i++) {
++context.pending;
status = usb_submit_urb (urbs [i], GFP_ATOMIC);
if (status < 0) {
ERROR (dev, "submit iso[%d], error %d\n", i, status);
if (i == 0) {
spin_unlock_irq (&context.lock);
goto fail;
}
simple_free_urb (urbs [i]);
context.pending--;
context.submit_error = 1;
break;
}
}
spin_unlock_irq (&context.lock);
wait_for_completion (&context.done);
/*
* Isochronous transfers are expected to fail sometimes. As an
* arbitrary limit, we will report an error if any submissions
* fail or if the transfer failure rate is > 10%.
*/
if (status != 0)
;
else if (context.submit_error)
status = -EACCES;
else if (context.errors > context.packet_count / 10)
status = -EIO;
return status;
fail:
for (i = 0; i < param->sglen; i++) {
if (urbs [i])
simple_free_urb (urbs [i]);
}
return status;
}
/*-------------------------------------------------------------------------*/
/* We only have this one interface to user space, through usbfs.
* User mode code can scan usbfs to find N different devices (maybe on
* different busses) to use when testing, and allocate one thread per
* test. So discovery is simplified, and we have no device naming issues.
*
* Don't use these only as stress/load tests. Use them along with with
* other USB bus activity: plugging, unplugging, mousing, mp3 playback,
* video capture, and so on. Run different tests at different times, in
* different sequences. Nothing here should interact with other devices,
* except indirectly by consuming USB bandwidth and CPU resources for test
* threads and request completion. But the only way to know that for sure
* is to test when HC queues are in use by many devices.
*
* WARNING: Because usbfs grabs udev->dev.sem before calling this ioctl(),
* it locks out usbcore in certain code paths. Notably, if you disconnect
* the device-under-test, khubd will wait block forever waiting for the
* ioctl to complete ... so that usb_disconnect() can abort the pending
* urbs and then call usbtest_disconnect(). To abort a test, you're best
* off just killing the userspace task and waiting for it to exit.
*/
static int
usbtest_ioctl (struct usb_interface *intf, unsigned int code, void *buf)
{
struct usbtest_dev *dev = usb_get_intfdata (intf);
struct usb_device *udev = testdev_to_usbdev (dev);
struct usbtest_param *param = buf;
int retval = -EOPNOTSUPP;
struct urb *urb;
struct scatterlist *sg;
struct usb_sg_request req;
struct timeval start;
unsigned i;
// FIXME USBDEVFS_CONNECTINFO doesn't say how fast the device is.
if (code != USBTEST_REQUEST)
return -EOPNOTSUPP;
if (param->iterations <= 0 || param->length < 0
|| param->sglen < 0 || param->vary < 0)
return -EINVAL;
if (mutex_lock_interruptible(&dev->lock))
return -ERESTARTSYS;
/* FIXME: What if a system sleep starts while a test is running? */
if (!intf->is_active) {
mutex_unlock(&dev->lock);
return -EHOSTUNREACH;
}
/* some devices, like ez-usb default devices, need a non-default
* altsetting to have any active endpoints. some tests change
* altsettings; force a default so most tests don't need to check.
*/
if (dev->info->alt >= 0) {
int res;
if (intf->altsetting->desc.bInterfaceNumber) {
mutex_unlock(&dev->lock);
return -ENODEV;
}
res = set_altsetting (dev, dev->info->alt);
if (res) {
dev_err (&intf->dev,
"set altsetting to %d failed, %d\n",
dev->info->alt, res);
mutex_unlock(&dev->lock);
return res;
}
}
/*
* Just a bunch of test cases that every HCD is expected to handle.
*
* Some may need specific firmware, though it'd be good to have
* one firmware image to handle all the test cases.
*
* FIXME add more tests! cancel requests, verify the data, control
* queueing, concurrent read+write threads, and so on.
*/
do_gettimeofday (&start);
switch (param->test_num) {
case 0:
dev_info(&intf->dev, "TEST 0: NOP\n");
retval = 0;
break;
/* Simple non-queued bulk I/O tests */
case 1:
if (dev->out_pipe == 0)
break;
dev_info(&intf->dev,
"TEST 1: write %d bytes %u times\n",
param->length, param->iterations);
urb = simple_alloc_urb (udev, dev->out_pipe, param->length);
if (!urb) {
retval = -ENOMEM;
break;
}
// FIRMWARE: bulk sink (maybe accepts short writes)
retval = simple_io(dev, urb, param->iterations, 0, 0, "test1");
simple_free_urb (urb);
break;
case 2:
if (dev->in_pipe == 0)
break;
dev_info(&intf->dev,
"TEST 2: read %d bytes %u times\n",
param->length, param->iterations);
urb = simple_alloc_urb (udev, dev->in_pipe, param->length);
if (!urb) {
retval = -ENOMEM;
break;
}
// FIRMWARE: bulk source (maybe generates short writes)
retval = simple_io(dev, urb, param->iterations, 0, 0, "test2");
simple_free_urb (urb);
break;
case 3:
if (dev->out_pipe == 0 || param->vary == 0)
break;
dev_info(&intf->dev,
"TEST 3: write/%d 0..%d bytes %u times\n",
param->vary, param->length, param->iterations);
urb = simple_alloc_urb (udev, dev->out_pipe, param->length);
if (!urb) {
retval = -ENOMEM;
break;
}
// FIRMWARE: bulk sink (maybe accepts short writes)
retval = simple_io(dev, urb, param->iterations, param->vary,
0, "test3");
simple_free_urb (urb);
break;
case 4:
if (dev->in_pipe == 0 || param->vary == 0)
break;
dev_info(&intf->dev,
"TEST 4: read/%d 0..%d bytes %u times\n",
param->vary, param->length, param->iterations);
urb = simple_alloc_urb (udev, dev->in_pipe, param->length);
if (!urb) {
retval = -ENOMEM;
break;
}
// FIRMWARE: bulk source (maybe generates short writes)
retval = simple_io(dev, urb, param->iterations, param->vary,
0, "test4");
simple_free_urb (urb);
break;
/* Queued bulk I/O tests */
case 5:
if (dev->out_pipe == 0 || param->sglen == 0)
break;
dev_info(&intf->dev,
"TEST 5: write %d sglists %d entries of %d bytes\n",
param->iterations,
param->sglen, param->length);
sg = alloc_sglist (param->sglen, param->length, 0);
if (!sg) {
retval = -ENOMEM;
break;
}
// FIRMWARE: bulk sink (maybe accepts short writes)
retval = perform_sglist(dev, param->iterations, dev->out_pipe,
&req, sg, param->sglen);
free_sglist (sg, param->sglen);
break;
case 6:
if (dev->in_pipe == 0 || param->sglen == 0)
break;
dev_info(&intf->dev,
"TEST 6: read %d sglists %d entries of %d bytes\n",
param->iterations,
param->sglen, param->length);
sg = alloc_sglist (param->sglen, param->length, 0);
if (!sg) {
retval = -ENOMEM;
break;
}
// FIRMWARE: bulk source (maybe generates short writes)
retval = perform_sglist(dev, param->iterations, dev->in_pipe,
&req, sg, param->sglen);
free_sglist (sg, param->sglen);
break;
case 7:
if (dev->out_pipe == 0 || param->sglen == 0 || param->vary == 0)
break;
dev_info(&intf->dev,
"TEST 7: write/%d %d sglists %d entries 0..%d bytes\n",
param->vary, param->iterations,
param->sglen, param->length);
sg = alloc_sglist (param->sglen, param->length, param->vary);
if (!sg) {
retval = -ENOMEM;
break;
}
// FIRMWARE: bulk sink (maybe accepts short writes)
retval = perform_sglist(dev, param->iterations, dev->out_pipe,
&req, sg, param->sglen);
free_sglist (sg, param->sglen);
break;
case 8:
if (dev->in_pipe == 0 || param->sglen == 0 || param->vary == 0)
break;
dev_info(&intf->dev,
"TEST 8: read/%d %d sglists %d entries 0..%d bytes\n",
param->vary, param->iterations,
param->sglen, param->length);
sg = alloc_sglist (param->sglen, param->length, param->vary);
if (!sg) {
retval = -ENOMEM;
break;
}
// FIRMWARE: bulk source (maybe generates short writes)
retval = perform_sglist(dev, param->iterations, dev->in_pipe,
&req, sg, param->sglen);
free_sglist (sg, param->sglen);
break;
/* non-queued sanity tests for control (chapter 9 subset) */
case 9:
retval = 0;
dev_info(&intf->dev,
"TEST 9: ch9 (subset) control tests, %d times\n",
param->iterations);
for (i = param->iterations; retval == 0 && i--; /* NOP */)
retval = ch9_postconfig (dev);
if (retval)
dev_err(&intf->dev, "ch9 subset failed, "
"iterations left %d\n", i);
break;
/* queued control messaging */
case 10:
if (param->sglen == 0)
break;
retval = 0;
dev_info(&intf->dev,
"TEST 10: queue %d control calls, %d times\n",
param->sglen,
param->iterations);
retval = test_ctrl_queue (dev, param);
break;
/* simple non-queued unlinks (ring with one urb) */
case 11:
if (dev->in_pipe == 0 || !param->length)
break;
retval = 0;
dev_info(&intf->dev, "TEST 11: unlink %d reads of %d\n",
param->iterations, param->length);
for (i = param->iterations; retval == 0 && i--; /* NOP */)
retval = unlink_simple (dev, dev->in_pipe,
param->length);
if (retval)
dev_err(&intf->dev, "unlink reads failed %d, "
"iterations left %d\n", retval, i);
break;
case 12:
if (dev->out_pipe == 0 || !param->length)
break;
retval = 0;
dev_info(&intf->dev, "TEST 12: unlink %d writes of %d\n",
param->iterations, param->length);
for (i = param->iterations; retval == 0 && i--; /* NOP */)
retval = unlink_simple (dev, dev->out_pipe,
param->length);
if (retval)
dev_err(&intf->dev, "unlink writes failed %d, "
"iterations left %d\n", retval, i);
break;
/* ep halt tests */
case 13:
if (dev->out_pipe == 0 && dev->in_pipe == 0)
break;
retval = 0;
dev_info(&intf->dev, "TEST 13: set/clear %d halts\n",
param->iterations);
for (i = param->iterations; retval == 0 && i--; /* NOP */)
retval = halt_simple (dev);
if (retval)
ERROR(dev, "halts failed, iterations left %d\n", i);
break;
/* control write tests */
case 14:
if (!dev->info->ctrl_out)
break;
dev_info(&intf->dev, "TEST 14: %d ep0out, %d..%d vary %d\n",
param->iterations,
realworld ? 1 : 0, param->length,
param->vary);
retval = ctrl_out(dev, param->iterations,
param->length, param->vary);
break;
/* iso write tests */
case 15:
if (dev->out_iso_pipe == 0 || param->sglen == 0)
break;
dev_info(&intf->dev,
"TEST 15: write %d iso, %d entries of %d bytes\n",
param->iterations,
param->sglen, param->length);
// FIRMWARE: iso sink
retval = test_iso_queue (dev, param,
dev->out_iso_pipe, dev->iso_out);
break;
/* iso read tests */
case 16:
if (dev->in_iso_pipe == 0 || param->sglen == 0)
break;
dev_info(&intf->dev,
"TEST 16: read %d iso, %d entries of %d bytes\n",
param->iterations,
param->sglen, param->length);
// FIRMWARE: iso source
retval = test_iso_queue (dev, param,
dev->in_iso_pipe, dev->iso_in);
break;
// FIXME unlink from queue (ring with N urbs)
// FIXME scatterlist cancel (needs helper thread)
}
do_gettimeofday (&param->duration);
param->duration.tv_sec -= start.tv_sec;
param->duration.tv_usec -= start.tv_usec;
if (param->duration.tv_usec < 0) {
param->duration.tv_usec += 1000 * 1000;
param->duration.tv_sec -= 1;
}
mutex_unlock(&dev->lock);
return retval;
}
/*-------------------------------------------------------------------------*/
static unsigned force_interrupt = 0;
module_param (force_interrupt, uint, 0);
MODULE_PARM_DESC (force_interrupt, "0 = test default; else interrupt");
#ifdef GENERIC
static unsigned short vendor;
module_param(vendor, ushort, 0);
MODULE_PARM_DESC (vendor, "vendor code (from usb-if)");
static unsigned short product;
module_param(product, ushort, 0);
MODULE_PARM_DESC (product, "product code (from vendor)");
#endif
static int
usbtest_probe (struct usb_interface *intf, const struct usb_device_id *id)
{
struct usb_device *udev;
struct usbtest_dev *dev;
struct usbtest_info *info;
char *rtest, *wtest;
char *irtest, *iwtest;
udev = interface_to_usbdev (intf);
#ifdef GENERIC
/* specify devices by module parameters? */
if (id->match_flags == 0) {
/* vendor match required, product match optional */
if (!vendor || le16_to_cpu(udev->descriptor.idVendor) != (u16)vendor)
return -ENODEV;
if (product && le16_to_cpu(udev->descriptor.idProduct) != (u16)product)
return -ENODEV;
dev_info(&intf->dev, "matched module params, "
"vend=0x%04x prod=0x%04x\n",
le16_to_cpu(udev->descriptor.idVendor),
le16_to_cpu(udev->descriptor.idProduct));
}
#endif
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
info = (struct usbtest_info *) id->driver_info;
dev->info = info;
mutex_init(&dev->lock);
dev->intf = intf;
/* cacheline-aligned scratch for i/o */
if ((dev->buf = kmalloc (TBUF_SIZE, GFP_KERNEL)) == NULL) {
kfree (dev);
return -ENOMEM;
}
/* NOTE this doesn't yet test the handful of difference that are
* visible with high speed interrupts: bigger maxpacket (1K) and
* "high bandwidth" modes (up to 3 packets/uframe).
*/
rtest = wtest = "";
irtest = iwtest = "";
if (force_interrupt || udev->speed == USB_SPEED_LOW) {
if (info->ep_in) {
dev->in_pipe = usb_rcvintpipe (udev, info->ep_in);
rtest = " intr-in";
}
if (info->ep_out) {
dev->out_pipe = usb_sndintpipe (udev, info->ep_out);
wtest = " intr-out";
}
} else {
if (info->autoconf) {
int status;
status = get_endpoints (dev, intf);
if (status < 0) {
WARN(dev, "couldn't get endpoints, %d\n",
status);
return status;
}
/* may find bulk or ISO pipes */
} else {
if (info->ep_in)
dev->in_pipe = usb_rcvbulkpipe (udev,
info->ep_in);
if (info->ep_out)
dev->out_pipe = usb_sndbulkpipe (udev,
info->ep_out);
}
if (dev->in_pipe)
rtest = " bulk-in";
if (dev->out_pipe)
wtest = " bulk-out";
if (dev->in_iso_pipe)
irtest = " iso-in";
if (dev->out_iso_pipe)
iwtest = " iso-out";
}
usb_set_intfdata (intf, dev);
dev_info (&intf->dev, "%s\n", info->name);
dev_info (&intf->dev, "%s speed {control%s%s%s%s%s} tests%s\n",
({ char *tmp;
switch (udev->speed) {
case USB_SPEED_LOW: tmp = "low"; break;
case USB_SPEED_FULL: tmp = "full"; break;
case USB_SPEED_HIGH: tmp = "high"; break;
default: tmp = "unknown"; break;
}; tmp; }),
info->ctrl_out ? " in/out" : "",
rtest, wtest,
irtest, iwtest,
info->alt >= 0 ? " (+alt)" : "");
return 0;
}
static int usbtest_suspend (struct usb_interface *intf, pm_message_t message)
{
return 0;
}
static int usbtest_resume (struct usb_interface *intf)
{
return 0;
}
static void usbtest_disconnect (struct usb_interface *intf)
{
struct usbtest_dev *dev = usb_get_intfdata (intf);
usb_set_intfdata (intf, NULL);
dev_dbg (&intf->dev, "disconnect\n");
kfree (dev);
}
/* Basic testing only needs a device that can source or sink bulk traffic.
* Any device can test control transfers (default with GENERIC binding).
*
* Several entries work with the default EP0 implementation that's built
* into EZ-USB chips. There's a default vendor ID which can be overridden
* by (very) small config EEPROMS, but otherwise all these devices act
* identically until firmware is loaded: only EP0 works. It turns out
* to be easy to make other endpoints work, without modifying that EP0
* behavior. For now, we expect that kind of firmware.
*/
/* an21xx or fx versions of ez-usb */
static struct usbtest_info ez1_info = {
.name = "EZ-USB device",
.ep_in = 2,
.ep_out = 2,
.alt = 1,
};
/* fx2 version of ez-usb */
static struct usbtest_info ez2_info = {
.name = "FX2 device",
.ep_in = 6,
.ep_out = 2,
.alt = 1,
};
/* ezusb family device with dedicated usb test firmware,
*/
static struct usbtest_info fw_info = {
.name = "usb test device",
.ep_in = 2,
.ep_out = 2,
.alt = 1,
.autoconf = 1, // iso and ctrl_out need autoconf
.ctrl_out = 1,
.iso = 1, // iso_ep's are #8 in/out
};
/* peripheral running Linux and 'zero.c' test firmware, or
* its user-mode cousin. different versions of this use
* different hardware with the same vendor/product codes.
* host side MUST rely on the endpoint descriptors.
*/
static struct usbtest_info gz_info = {
.name = "Linux gadget zero",
.autoconf = 1,
.ctrl_out = 1,
.alt = 0,
};
static struct usbtest_info um_info = {
.name = "Linux user mode test driver",
.autoconf = 1,
.alt = -1,
};
static struct usbtest_info um2_info = {
.name = "Linux user mode ISO test driver",
.autoconf = 1,
.iso = 1,
.alt = -1,
};
#ifdef IBOT2
/* this is a nice source of high speed bulk data;
* uses an FX2, with firmware provided in the device
*/
static struct usbtest_info ibot2_info = {
.name = "iBOT2 webcam",
.ep_in = 2,
.alt = -1,
};
#endif
#ifdef GENERIC
/* we can use any device to test control traffic */
static struct usbtest_info generic_info = {
.name = "Generic USB device",
.alt = -1,
};
#endif
static struct usb_device_id id_table [] = {
/*-------------------------------------------------------------*/
/* EZ-USB devices which download firmware to replace (or in our
* case augment) the default device implementation.
*/
/* generic EZ-USB FX controller */
{ USB_DEVICE (0x0547, 0x2235),
.driver_info = (unsigned long) &ez1_info,
},
/* CY3671 development board with EZ-USB FX */
{ USB_DEVICE (0x0547, 0x0080),
.driver_info = (unsigned long) &ez1_info,
},
/* generic EZ-USB FX2 controller (or development board) */
{ USB_DEVICE (0x04b4, 0x8613),
.driver_info = (unsigned long) &ez2_info,
},
/* re-enumerated usb test device firmware */
{ USB_DEVICE (0xfff0, 0xfff0),
.driver_info = (unsigned long) &fw_info,
},
/* "Gadget Zero" firmware runs under Linux */
{ USB_DEVICE (0x0525, 0xa4a0),
.driver_info = (unsigned long) &gz_info,
},
/* so does a user-mode variant */
{ USB_DEVICE (0x0525, 0xa4a4),
.driver_info = (unsigned long) &um_info,
},
/* ... and a user-mode variant that talks iso */
{ USB_DEVICE (0x0525, 0xa4a3),
.driver_info = (unsigned long) &um2_info,
},
#ifdef KEYSPAN_19Qi
/* Keyspan 19qi uses an21xx (original EZ-USB) */
// this does not coexist with the real Keyspan 19qi driver!
{ USB_DEVICE (0x06cd, 0x010b),
.driver_info = (unsigned long) &ez1_info,
},
#endif
/*-------------------------------------------------------------*/
#ifdef IBOT2
/* iBOT2 makes a nice source of high speed bulk-in data */
// this does not coexist with a real iBOT2 driver!
{ USB_DEVICE (0x0b62, 0x0059),
.driver_info = (unsigned long) &ibot2_info,
},
#endif
/*-------------------------------------------------------------*/
#ifdef GENERIC
/* module params can specify devices to use for control tests */
{ .driver_info = (unsigned long) &generic_info, },
#endif
/*-------------------------------------------------------------*/
{ }
};
MODULE_DEVICE_TABLE (usb, id_table);
static struct usb_driver usbtest_driver = {
.name = "usbtest",
.id_table = id_table,
.probe = usbtest_probe,
.ioctl = usbtest_ioctl,
.disconnect = usbtest_disconnect,
.suspend = usbtest_suspend,
.resume = usbtest_resume,
};
/*-------------------------------------------------------------------------*/
static int __init usbtest_init (void)
{
#ifdef GENERIC
if (vendor)
pr_debug("params: vend=0x%04x prod=0x%04x\n", vendor, product);
#endif
return usb_register (&usbtest_driver);
}
module_init (usbtest_init);
static void __exit usbtest_exit (void)
{
usb_deregister (&usbtest_driver);
}
module_exit (usbtest_exit);
MODULE_DESCRIPTION ("USB Core/HCD Testing Driver");
MODULE_LICENSE ("GPL");