a5fcf8a6c9
We need to push the chain index down to the drivers, so they have the information to which chain the rule belongs. For now, no driver supports multichain offload, so only chain 0 is supported. This is needed to prevent chain squashes during offload for now. Later this will be used to implement multichain offload. Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
8026 lines
203 KiB
C
8026 lines
203 KiB
C
/* Broadcom NetXtreme-C/E network driver.
|
|
*
|
|
* Copyright (c) 2014-2016 Broadcom Corporation
|
|
* Copyright (c) 2016-2017 Broadcom Limited
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/stringify.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/io.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/page.h>
|
|
#include <linux/time.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/if.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/bpf.h>
|
|
#include <net/ip.h>
|
|
#include <net/tcp.h>
|
|
#include <net/udp.h>
|
|
#include <net/checksum.h>
|
|
#include <net/ip6_checksum.h>
|
|
#include <net/udp_tunnel.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/aer.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/cpu_rmap.h>
|
|
|
|
#include "bnxt_hsi.h"
|
|
#include "bnxt.h"
|
|
#include "bnxt_ulp.h"
|
|
#include "bnxt_sriov.h"
|
|
#include "bnxt_ethtool.h"
|
|
#include "bnxt_dcb.h"
|
|
#include "bnxt_xdp.h"
|
|
|
|
#define BNXT_TX_TIMEOUT (5 * HZ)
|
|
|
|
static const char version[] =
|
|
"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
|
|
MODULE_VERSION(DRV_MODULE_VERSION);
|
|
|
|
#define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
|
|
#define BNXT_RX_DMA_OFFSET NET_SKB_PAD
|
|
#define BNXT_RX_COPY_THRESH 256
|
|
|
|
#define BNXT_TX_PUSH_THRESH 164
|
|
|
|
enum board_idx {
|
|
BCM57301,
|
|
BCM57302,
|
|
BCM57304,
|
|
BCM57417_NPAR,
|
|
BCM58700,
|
|
BCM57311,
|
|
BCM57312,
|
|
BCM57402,
|
|
BCM57404,
|
|
BCM57406,
|
|
BCM57402_NPAR,
|
|
BCM57407,
|
|
BCM57412,
|
|
BCM57414,
|
|
BCM57416,
|
|
BCM57417,
|
|
BCM57412_NPAR,
|
|
BCM57314,
|
|
BCM57417_SFP,
|
|
BCM57416_SFP,
|
|
BCM57404_NPAR,
|
|
BCM57406_NPAR,
|
|
BCM57407_SFP,
|
|
BCM57407_NPAR,
|
|
BCM57414_NPAR,
|
|
BCM57416_NPAR,
|
|
BCM57452,
|
|
BCM57454,
|
|
NETXTREME_E_VF,
|
|
NETXTREME_C_VF,
|
|
};
|
|
|
|
/* indexed by enum above */
|
|
static const struct {
|
|
char *name;
|
|
} board_info[] = {
|
|
{ "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
|
|
{ "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
|
|
{ "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
|
|
{ "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
|
|
{ "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
|
|
{ "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
|
|
{ "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
|
|
{ "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
|
|
{ "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
|
|
{ "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
|
|
{ "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
|
|
{ "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
|
|
{ "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
|
|
{ "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
|
|
{ "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
|
|
{ "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
|
|
{ "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
|
|
{ "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
|
|
{ "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
|
|
{ "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
|
|
{ "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
|
|
{ "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
|
|
{ "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
|
|
{ "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
|
|
{ "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
|
|
{ "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
|
|
{ "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
|
|
{ "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
|
|
{ "Broadcom NetXtreme-E Ethernet Virtual Function" },
|
|
{ "Broadcom NetXtreme-C Ethernet Virtual Function" },
|
|
};
|
|
|
|
static const struct pci_device_id bnxt_pci_tbl[] = {
|
|
{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
|
|
{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
|
|
#endif
|
|
{ 0 }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
|
|
|
|
static const u16 bnxt_vf_req_snif[] = {
|
|
HWRM_FUNC_CFG,
|
|
HWRM_PORT_PHY_QCFG,
|
|
HWRM_CFA_L2_FILTER_ALLOC,
|
|
};
|
|
|
|
static const u16 bnxt_async_events_arr[] = {
|
|
ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
|
|
ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
|
|
ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
|
|
ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
|
|
ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
|
|
};
|
|
|
|
static bool bnxt_vf_pciid(enum board_idx idx)
|
|
{
|
|
return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
|
|
}
|
|
|
|
#define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
|
|
#define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
|
|
#define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
|
|
|
|
#define BNXT_CP_DB_REARM(db, raw_cons) \
|
|
writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
|
|
|
|
#define BNXT_CP_DB(db, raw_cons) \
|
|
writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
|
|
|
|
#define BNXT_CP_DB_IRQ_DIS(db) \
|
|
writel(DB_CP_IRQ_DIS_FLAGS, db)
|
|
|
|
const u16 bnxt_lhint_arr[] = {
|
|
TX_BD_FLAGS_LHINT_512_AND_SMALLER,
|
|
TX_BD_FLAGS_LHINT_512_TO_1023,
|
|
TX_BD_FLAGS_LHINT_1024_TO_2047,
|
|
TX_BD_FLAGS_LHINT_1024_TO_2047,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
TX_BD_FLAGS_LHINT_2048_AND_LARGER,
|
|
};
|
|
|
|
static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
struct tx_bd *txbd;
|
|
struct tx_bd_ext *txbd1;
|
|
struct netdev_queue *txq;
|
|
int i;
|
|
dma_addr_t mapping;
|
|
unsigned int length, pad = 0;
|
|
u32 len, free_size, vlan_tag_flags, cfa_action, flags;
|
|
u16 prod, last_frag;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
struct bnxt_tx_ring_info *txr;
|
|
struct bnxt_sw_tx_bd *tx_buf;
|
|
|
|
i = skb_get_queue_mapping(skb);
|
|
if (unlikely(i >= bp->tx_nr_rings)) {
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
txq = netdev_get_tx_queue(dev, i);
|
|
txr = &bp->tx_ring[bp->tx_ring_map[i]];
|
|
prod = txr->tx_prod;
|
|
|
|
free_size = bnxt_tx_avail(bp, txr);
|
|
if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
|
|
netif_tx_stop_queue(txq);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
length = skb->len;
|
|
len = skb_headlen(skb);
|
|
last_frag = skb_shinfo(skb)->nr_frags;
|
|
|
|
txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
|
|
|
|
txbd->tx_bd_opaque = prod;
|
|
|
|
tx_buf = &txr->tx_buf_ring[prod];
|
|
tx_buf->skb = skb;
|
|
tx_buf->nr_frags = last_frag;
|
|
|
|
vlan_tag_flags = 0;
|
|
cfa_action = 0;
|
|
if (skb_vlan_tag_present(skb)) {
|
|
vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
|
|
skb_vlan_tag_get(skb);
|
|
/* Currently supports 8021Q, 8021AD vlan offloads
|
|
* QINQ1, QINQ2, QINQ3 vlan headers are deprecated
|
|
*/
|
|
if (skb->vlan_proto == htons(ETH_P_8021Q))
|
|
vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
|
|
}
|
|
|
|
if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
|
|
struct tx_push_buffer *tx_push_buf = txr->tx_push;
|
|
struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
|
|
struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
|
|
void *pdata = tx_push_buf->data;
|
|
u64 *end;
|
|
int j, push_len;
|
|
|
|
/* Set COAL_NOW to be ready quickly for the next push */
|
|
tx_push->tx_bd_len_flags_type =
|
|
cpu_to_le32((length << TX_BD_LEN_SHIFT) |
|
|
TX_BD_TYPE_LONG_TX_BD |
|
|
TX_BD_FLAGS_LHINT_512_AND_SMALLER |
|
|
TX_BD_FLAGS_COAL_NOW |
|
|
TX_BD_FLAGS_PACKET_END |
|
|
(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
|
|
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL)
|
|
tx_push1->tx_bd_hsize_lflags =
|
|
cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
|
|
else
|
|
tx_push1->tx_bd_hsize_lflags = 0;
|
|
|
|
tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
|
|
tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
|
|
|
|
end = pdata + length;
|
|
end = PTR_ALIGN(end, 8) - 1;
|
|
*end = 0;
|
|
|
|
skb_copy_from_linear_data(skb, pdata, len);
|
|
pdata += len;
|
|
for (j = 0; j < last_frag; j++) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
|
|
void *fptr;
|
|
|
|
fptr = skb_frag_address_safe(frag);
|
|
if (!fptr)
|
|
goto normal_tx;
|
|
|
|
memcpy(pdata, fptr, skb_frag_size(frag));
|
|
pdata += skb_frag_size(frag);
|
|
}
|
|
|
|
txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
|
|
txbd->tx_bd_haddr = txr->data_mapping;
|
|
prod = NEXT_TX(prod);
|
|
txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
|
|
memcpy(txbd, tx_push1, sizeof(*txbd));
|
|
prod = NEXT_TX(prod);
|
|
tx_push->doorbell =
|
|
cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
|
|
txr->tx_prod = prod;
|
|
|
|
tx_buf->is_push = 1;
|
|
netdev_tx_sent_queue(txq, skb->len);
|
|
wmb(); /* Sync is_push and byte queue before pushing data */
|
|
|
|
push_len = (length + sizeof(*tx_push) + 7) / 8;
|
|
if (push_len > 16) {
|
|
__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
|
|
__iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
|
|
(push_len - 16) << 1);
|
|
} else {
|
|
__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
|
|
push_len);
|
|
}
|
|
|
|
goto tx_done;
|
|
}
|
|
|
|
normal_tx:
|
|
if (length < BNXT_MIN_PKT_SIZE) {
|
|
pad = BNXT_MIN_PKT_SIZE - length;
|
|
if (skb_pad(skb, pad)) {
|
|
/* SKB already freed. */
|
|
tx_buf->skb = NULL;
|
|
return NETDEV_TX_OK;
|
|
}
|
|
length = BNXT_MIN_PKT_SIZE;
|
|
}
|
|
|
|
mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
|
|
|
|
if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
|
|
dev_kfree_skb_any(skb);
|
|
tx_buf->skb = NULL;
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
dma_unmap_addr_set(tx_buf, mapping, mapping);
|
|
flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
|
|
((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
|
|
|
|
txbd->tx_bd_haddr = cpu_to_le64(mapping);
|
|
|
|
prod = NEXT_TX(prod);
|
|
txbd1 = (struct tx_bd_ext *)
|
|
&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
|
|
|
|
txbd1->tx_bd_hsize_lflags = 0;
|
|
if (skb_is_gso(skb)) {
|
|
u32 hdr_len;
|
|
|
|
if (skb->encapsulation)
|
|
hdr_len = skb_inner_network_offset(skb) +
|
|
skb_inner_network_header_len(skb) +
|
|
inner_tcp_hdrlen(skb);
|
|
else
|
|
hdr_len = skb_transport_offset(skb) +
|
|
tcp_hdrlen(skb);
|
|
|
|
txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
|
|
TX_BD_FLAGS_T_IPID |
|
|
(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
|
|
length = skb_shinfo(skb)->gso_size;
|
|
txbd1->tx_bd_mss = cpu_to_le32(length);
|
|
length += hdr_len;
|
|
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
txbd1->tx_bd_hsize_lflags =
|
|
cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
|
|
txbd1->tx_bd_mss = 0;
|
|
}
|
|
|
|
length >>= 9;
|
|
flags |= bnxt_lhint_arr[length];
|
|
txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
|
|
|
|
txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
|
|
txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
|
|
for (i = 0; i < last_frag; i++) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
prod = NEXT_TX(prod);
|
|
txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
|
|
|
|
len = skb_frag_size(frag);
|
|
mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
|
|
DMA_TO_DEVICE);
|
|
|
|
if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
|
|
goto tx_dma_error;
|
|
|
|
tx_buf = &txr->tx_buf_ring[prod];
|
|
dma_unmap_addr_set(tx_buf, mapping, mapping);
|
|
|
|
txbd->tx_bd_haddr = cpu_to_le64(mapping);
|
|
|
|
flags = len << TX_BD_LEN_SHIFT;
|
|
txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
|
|
}
|
|
|
|
flags &= ~TX_BD_LEN;
|
|
txbd->tx_bd_len_flags_type =
|
|
cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
|
|
TX_BD_FLAGS_PACKET_END);
|
|
|
|
netdev_tx_sent_queue(txq, skb->len);
|
|
|
|
/* Sync BD data before updating doorbell */
|
|
wmb();
|
|
|
|
prod = NEXT_TX(prod);
|
|
txr->tx_prod = prod;
|
|
|
|
if (!skb->xmit_more || netif_xmit_stopped(txq))
|
|
bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
|
|
|
|
tx_done:
|
|
|
|
mmiowb();
|
|
|
|
if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
|
|
if (skb->xmit_more && !tx_buf->is_push)
|
|
bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
|
|
|
|
netif_tx_stop_queue(txq);
|
|
|
|
/* netif_tx_stop_queue() must be done before checking
|
|
* tx index in bnxt_tx_avail() below, because in
|
|
* bnxt_tx_int(), we update tx index before checking for
|
|
* netif_tx_queue_stopped().
|
|
*/
|
|
smp_mb();
|
|
if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
|
|
netif_tx_wake_queue(txq);
|
|
}
|
|
return NETDEV_TX_OK;
|
|
|
|
tx_dma_error:
|
|
last_frag = i;
|
|
|
|
/* start back at beginning and unmap skb */
|
|
prod = txr->tx_prod;
|
|
tx_buf = &txr->tx_buf_ring[prod];
|
|
tx_buf->skb = NULL;
|
|
dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
|
|
skb_headlen(skb), PCI_DMA_TODEVICE);
|
|
prod = NEXT_TX(prod);
|
|
|
|
/* unmap remaining mapped pages */
|
|
for (i = 0; i < last_frag; i++) {
|
|
prod = NEXT_TX(prod);
|
|
tx_buf = &txr->tx_buf_ring[prod];
|
|
dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
|
|
skb_frag_size(&skb_shinfo(skb)->frags[i]),
|
|
PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
|
|
{
|
|
struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
|
|
struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
|
|
u16 cons = txr->tx_cons;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
int i;
|
|
unsigned int tx_bytes = 0;
|
|
|
|
for (i = 0; i < nr_pkts; i++) {
|
|
struct bnxt_sw_tx_bd *tx_buf;
|
|
struct sk_buff *skb;
|
|
int j, last;
|
|
|
|
tx_buf = &txr->tx_buf_ring[cons];
|
|
cons = NEXT_TX(cons);
|
|
skb = tx_buf->skb;
|
|
tx_buf->skb = NULL;
|
|
|
|
if (tx_buf->is_push) {
|
|
tx_buf->is_push = 0;
|
|
goto next_tx_int;
|
|
}
|
|
|
|
dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
|
|
skb_headlen(skb), PCI_DMA_TODEVICE);
|
|
last = tx_buf->nr_frags;
|
|
|
|
for (j = 0; j < last; j++) {
|
|
cons = NEXT_TX(cons);
|
|
tx_buf = &txr->tx_buf_ring[cons];
|
|
dma_unmap_page(
|
|
&pdev->dev,
|
|
dma_unmap_addr(tx_buf, mapping),
|
|
skb_frag_size(&skb_shinfo(skb)->frags[j]),
|
|
PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
next_tx_int:
|
|
cons = NEXT_TX(cons);
|
|
|
|
tx_bytes += skb->len;
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
|
|
txr->tx_cons = cons;
|
|
|
|
/* Need to make the tx_cons update visible to bnxt_start_xmit()
|
|
* before checking for netif_tx_queue_stopped(). Without the
|
|
* memory barrier, there is a small possibility that bnxt_start_xmit()
|
|
* will miss it and cause the queue to be stopped forever.
|
|
*/
|
|
smp_mb();
|
|
|
|
if (unlikely(netif_tx_queue_stopped(txq)) &&
|
|
(bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
|
|
__netif_tx_lock(txq, smp_processor_id());
|
|
if (netif_tx_queue_stopped(txq) &&
|
|
bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
|
|
txr->dev_state != BNXT_DEV_STATE_CLOSING)
|
|
netif_tx_wake_queue(txq);
|
|
__netif_tx_unlock(txq);
|
|
}
|
|
}
|
|
|
|
static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
|
|
gfp_t gfp)
|
|
{
|
|
struct device *dev = &bp->pdev->dev;
|
|
struct page *page;
|
|
|
|
page = alloc_page(gfp);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
if (dma_mapping_error(dev, *mapping)) {
|
|
__free_page(page);
|
|
return NULL;
|
|
}
|
|
*mapping += bp->rx_dma_offset;
|
|
return page;
|
|
}
|
|
|
|
static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
|
|
gfp_t gfp)
|
|
{
|
|
u8 *data;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
data = kmalloc(bp->rx_buf_size, gfp);
|
|
if (!data)
|
|
return NULL;
|
|
|
|
*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
|
|
bp->rx_buf_use_size, bp->rx_dir,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
|
|
if (dma_mapping_error(&pdev->dev, *mapping)) {
|
|
kfree(data);
|
|
data = NULL;
|
|
}
|
|
return data;
|
|
}
|
|
|
|
int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
|
|
u16 prod, gfp_t gfp)
|
|
{
|
|
struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
|
|
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
|
|
dma_addr_t mapping;
|
|
|
|
if (BNXT_RX_PAGE_MODE(bp)) {
|
|
struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
|
|
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
rx_buf->data = page;
|
|
rx_buf->data_ptr = page_address(page) + bp->rx_offset;
|
|
} else {
|
|
u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
|
|
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
rx_buf->data = data;
|
|
rx_buf->data_ptr = data + bp->rx_offset;
|
|
}
|
|
rx_buf->mapping = mapping;
|
|
|
|
rxbd->rx_bd_haddr = cpu_to_le64(mapping);
|
|
return 0;
|
|
}
|
|
|
|
void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
|
|
{
|
|
u16 prod = rxr->rx_prod;
|
|
struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
|
|
struct rx_bd *cons_bd, *prod_bd;
|
|
|
|
prod_rx_buf = &rxr->rx_buf_ring[prod];
|
|
cons_rx_buf = &rxr->rx_buf_ring[cons];
|
|
|
|
prod_rx_buf->data = data;
|
|
prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
|
|
|
|
prod_rx_buf->mapping = cons_rx_buf->mapping;
|
|
|
|
prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
|
|
cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
|
|
|
|
prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
|
|
}
|
|
|
|
static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
|
|
{
|
|
u16 next, max = rxr->rx_agg_bmap_size;
|
|
|
|
next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
|
|
if (next >= max)
|
|
next = find_first_zero_bit(rxr->rx_agg_bmap, max);
|
|
return next;
|
|
}
|
|
|
|
static inline int bnxt_alloc_rx_page(struct bnxt *bp,
|
|
struct bnxt_rx_ring_info *rxr,
|
|
u16 prod, gfp_t gfp)
|
|
{
|
|
struct rx_bd *rxbd =
|
|
&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
|
|
struct bnxt_sw_rx_agg_bd *rx_agg_buf;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
struct page *page;
|
|
dma_addr_t mapping;
|
|
u16 sw_prod = rxr->rx_sw_agg_prod;
|
|
unsigned int offset = 0;
|
|
|
|
if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
|
|
page = rxr->rx_page;
|
|
if (!page) {
|
|
page = alloc_page(gfp);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
rxr->rx_page = page;
|
|
rxr->rx_page_offset = 0;
|
|
}
|
|
offset = rxr->rx_page_offset;
|
|
rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
|
|
if (rxr->rx_page_offset == PAGE_SIZE)
|
|
rxr->rx_page = NULL;
|
|
else
|
|
get_page(page);
|
|
} else {
|
|
page = alloc_page(gfp);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mapping = dma_map_page_attrs(&pdev->dev, page, offset,
|
|
BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
if (dma_mapping_error(&pdev->dev, mapping)) {
|
|
__free_page(page);
|
|
return -EIO;
|
|
}
|
|
|
|
if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
|
|
sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
|
|
|
|
__set_bit(sw_prod, rxr->rx_agg_bmap);
|
|
rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
|
|
rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
|
|
|
|
rx_agg_buf->page = page;
|
|
rx_agg_buf->offset = offset;
|
|
rx_agg_buf->mapping = mapping;
|
|
rxbd->rx_bd_haddr = cpu_to_le64(mapping);
|
|
rxbd->rx_bd_opaque = sw_prod;
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
|
|
u32 agg_bufs)
|
|
{
|
|
struct bnxt *bp = bnapi->bp;
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
|
|
u16 prod = rxr->rx_agg_prod;
|
|
u16 sw_prod = rxr->rx_sw_agg_prod;
|
|
u32 i;
|
|
|
|
for (i = 0; i < agg_bufs; i++) {
|
|
u16 cons;
|
|
struct rx_agg_cmp *agg;
|
|
struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
|
|
struct rx_bd *prod_bd;
|
|
struct page *page;
|
|
|
|
agg = (struct rx_agg_cmp *)
|
|
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
|
|
cons = agg->rx_agg_cmp_opaque;
|
|
__clear_bit(cons, rxr->rx_agg_bmap);
|
|
|
|
if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
|
|
sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
|
|
|
|
__set_bit(sw_prod, rxr->rx_agg_bmap);
|
|
prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
|
|
cons_rx_buf = &rxr->rx_agg_ring[cons];
|
|
|
|
/* It is possible for sw_prod to be equal to cons, so
|
|
* set cons_rx_buf->page to NULL first.
|
|
*/
|
|
page = cons_rx_buf->page;
|
|
cons_rx_buf->page = NULL;
|
|
prod_rx_buf->page = page;
|
|
prod_rx_buf->offset = cons_rx_buf->offset;
|
|
|
|
prod_rx_buf->mapping = cons_rx_buf->mapping;
|
|
|
|
prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
|
|
|
|
prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
|
|
prod_bd->rx_bd_opaque = sw_prod;
|
|
|
|
prod = NEXT_RX_AGG(prod);
|
|
sw_prod = NEXT_RX_AGG(sw_prod);
|
|
cp_cons = NEXT_CMP(cp_cons);
|
|
}
|
|
rxr->rx_agg_prod = prod;
|
|
rxr->rx_sw_agg_prod = sw_prod;
|
|
}
|
|
|
|
static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
|
|
struct bnxt_rx_ring_info *rxr,
|
|
u16 cons, void *data, u8 *data_ptr,
|
|
dma_addr_t dma_addr,
|
|
unsigned int offset_and_len)
|
|
{
|
|
unsigned int payload = offset_and_len >> 16;
|
|
unsigned int len = offset_and_len & 0xffff;
|
|
struct skb_frag_struct *frag;
|
|
struct page *page = data;
|
|
u16 prod = rxr->rx_prod;
|
|
struct sk_buff *skb;
|
|
int off, err;
|
|
|
|
err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
|
|
if (unlikely(err)) {
|
|
bnxt_reuse_rx_data(rxr, cons, data);
|
|
return NULL;
|
|
}
|
|
dma_addr -= bp->rx_dma_offset;
|
|
dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
|
|
if (unlikely(!payload))
|
|
payload = eth_get_headlen(data_ptr, len);
|
|
|
|
skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
|
|
if (!skb) {
|
|
__free_page(page);
|
|
return NULL;
|
|
}
|
|
|
|
off = (void *)data_ptr - page_address(page);
|
|
skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
|
|
memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
|
|
payload + NET_IP_ALIGN);
|
|
|
|
frag = &skb_shinfo(skb)->frags[0];
|
|
skb_frag_size_sub(frag, payload);
|
|
frag->page_offset += payload;
|
|
skb->data_len -= payload;
|
|
skb->tail += payload;
|
|
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
|
|
struct bnxt_rx_ring_info *rxr, u16 cons,
|
|
void *data, u8 *data_ptr,
|
|
dma_addr_t dma_addr,
|
|
unsigned int offset_and_len)
|
|
{
|
|
u16 prod = rxr->rx_prod;
|
|
struct sk_buff *skb;
|
|
int err;
|
|
|
|
err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
|
|
if (unlikely(err)) {
|
|
bnxt_reuse_rx_data(rxr, cons, data);
|
|
return NULL;
|
|
}
|
|
|
|
skb = build_skb(data, 0);
|
|
dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
|
|
bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
|
|
if (!skb) {
|
|
kfree(data);
|
|
return NULL;
|
|
}
|
|
|
|
skb_reserve(skb, bp->rx_offset);
|
|
skb_put(skb, offset_and_len & 0xffff);
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
|
|
struct sk_buff *skb, u16 cp_cons,
|
|
u32 agg_bufs)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
|
|
u16 prod = rxr->rx_agg_prod;
|
|
u32 i;
|
|
|
|
for (i = 0; i < agg_bufs; i++) {
|
|
u16 cons, frag_len;
|
|
struct rx_agg_cmp *agg;
|
|
struct bnxt_sw_rx_agg_bd *cons_rx_buf;
|
|
struct page *page;
|
|
dma_addr_t mapping;
|
|
|
|
agg = (struct rx_agg_cmp *)
|
|
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
|
|
cons = agg->rx_agg_cmp_opaque;
|
|
frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
|
|
RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
|
|
|
|
cons_rx_buf = &rxr->rx_agg_ring[cons];
|
|
skb_fill_page_desc(skb, i, cons_rx_buf->page,
|
|
cons_rx_buf->offset, frag_len);
|
|
__clear_bit(cons, rxr->rx_agg_bmap);
|
|
|
|
/* It is possible for bnxt_alloc_rx_page() to allocate
|
|
* a sw_prod index that equals the cons index, so we
|
|
* need to clear the cons entry now.
|
|
*/
|
|
mapping = cons_rx_buf->mapping;
|
|
page = cons_rx_buf->page;
|
|
cons_rx_buf->page = NULL;
|
|
|
|
if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
|
|
struct skb_shared_info *shinfo;
|
|
unsigned int nr_frags;
|
|
|
|
shinfo = skb_shinfo(skb);
|
|
nr_frags = --shinfo->nr_frags;
|
|
__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
cons_rx_buf->page = page;
|
|
|
|
/* Update prod since possibly some pages have been
|
|
* allocated already.
|
|
*/
|
|
rxr->rx_agg_prod = prod;
|
|
bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
|
|
return NULL;
|
|
}
|
|
|
|
dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
|
|
skb->data_len += frag_len;
|
|
skb->len += frag_len;
|
|
skb->truesize += PAGE_SIZE;
|
|
|
|
prod = NEXT_RX_AGG(prod);
|
|
cp_cons = NEXT_CMP(cp_cons);
|
|
}
|
|
rxr->rx_agg_prod = prod;
|
|
return skb;
|
|
}
|
|
|
|
static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
|
|
u8 agg_bufs, u32 *raw_cons)
|
|
{
|
|
u16 last;
|
|
struct rx_agg_cmp *agg;
|
|
|
|
*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
|
|
last = RING_CMP(*raw_cons);
|
|
agg = (struct rx_agg_cmp *)
|
|
&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
|
|
return RX_AGG_CMP_VALID(agg, *raw_cons);
|
|
}
|
|
|
|
static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
|
|
unsigned int len,
|
|
dma_addr_t mapping)
|
|
{
|
|
struct bnxt *bp = bnapi->bp;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
struct sk_buff *skb;
|
|
|
|
skb = napi_alloc_skb(&bnapi->napi, len);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
|
|
bp->rx_dir);
|
|
|
|
memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
|
|
len + NET_IP_ALIGN);
|
|
|
|
dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
|
|
bp->rx_dir);
|
|
|
|
skb_put(skb, len);
|
|
return skb;
|
|
}
|
|
|
|
static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
|
|
u32 *raw_cons, void *cmp)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct rx_cmp *rxcmp = cmp;
|
|
u32 tmp_raw_cons = *raw_cons;
|
|
u8 cmp_type, agg_bufs = 0;
|
|
|
|
cmp_type = RX_CMP_TYPE(rxcmp);
|
|
|
|
if (cmp_type == CMP_TYPE_RX_L2_CMP) {
|
|
agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
|
|
RX_CMP_AGG_BUFS) >>
|
|
RX_CMP_AGG_BUFS_SHIFT;
|
|
} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
|
|
struct rx_tpa_end_cmp *tpa_end = cmp;
|
|
|
|
agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
|
|
RX_TPA_END_CMP_AGG_BUFS) >>
|
|
RX_TPA_END_CMP_AGG_BUFS_SHIFT;
|
|
}
|
|
|
|
if (agg_bufs) {
|
|
if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
|
|
return -EBUSY;
|
|
}
|
|
*raw_cons = tmp_raw_cons;
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
|
|
{
|
|
if (!rxr->bnapi->in_reset) {
|
|
rxr->bnapi->in_reset = true;
|
|
set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
|
|
schedule_work(&bp->sp_task);
|
|
}
|
|
rxr->rx_next_cons = 0xffff;
|
|
}
|
|
|
|
static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
|
|
struct rx_tpa_start_cmp *tpa_start,
|
|
struct rx_tpa_start_cmp_ext *tpa_start1)
|
|
{
|
|
u8 agg_id = TPA_START_AGG_ID(tpa_start);
|
|
u16 cons, prod;
|
|
struct bnxt_tpa_info *tpa_info;
|
|
struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
|
|
struct rx_bd *prod_bd;
|
|
dma_addr_t mapping;
|
|
|
|
cons = tpa_start->rx_tpa_start_cmp_opaque;
|
|
prod = rxr->rx_prod;
|
|
cons_rx_buf = &rxr->rx_buf_ring[cons];
|
|
prod_rx_buf = &rxr->rx_buf_ring[prod];
|
|
tpa_info = &rxr->rx_tpa[agg_id];
|
|
|
|
if (unlikely(cons != rxr->rx_next_cons)) {
|
|
bnxt_sched_reset(bp, rxr);
|
|
return;
|
|
}
|
|
|
|
prod_rx_buf->data = tpa_info->data;
|
|
prod_rx_buf->data_ptr = tpa_info->data_ptr;
|
|
|
|
mapping = tpa_info->mapping;
|
|
prod_rx_buf->mapping = mapping;
|
|
|
|
prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
|
|
|
|
prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
|
|
|
|
tpa_info->data = cons_rx_buf->data;
|
|
tpa_info->data_ptr = cons_rx_buf->data_ptr;
|
|
cons_rx_buf->data = NULL;
|
|
tpa_info->mapping = cons_rx_buf->mapping;
|
|
|
|
tpa_info->len =
|
|
le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
|
|
RX_TPA_START_CMP_LEN_SHIFT;
|
|
if (likely(TPA_START_HASH_VALID(tpa_start))) {
|
|
u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
|
|
|
|
tpa_info->hash_type = PKT_HASH_TYPE_L4;
|
|
tpa_info->gso_type = SKB_GSO_TCPV4;
|
|
/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
|
|
if (hash_type == 3)
|
|
tpa_info->gso_type = SKB_GSO_TCPV6;
|
|
tpa_info->rss_hash =
|
|
le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
|
|
} else {
|
|
tpa_info->hash_type = PKT_HASH_TYPE_NONE;
|
|
tpa_info->gso_type = 0;
|
|
if (netif_msg_rx_err(bp))
|
|
netdev_warn(bp->dev, "TPA packet without valid hash\n");
|
|
}
|
|
tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
|
|
tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
|
|
tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
|
|
|
|
rxr->rx_prod = NEXT_RX(prod);
|
|
cons = NEXT_RX(cons);
|
|
rxr->rx_next_cons = NEXT_RX(cons);
|
|
cons_rx_buf = &rxr->rx_buf_ring[cons];
|
|
|
|
bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
|
|
rxr->rx_prod = NEXT_RX(rxr->rx_prod);
|
|
cons_rx_buf->data = NULL;
|
|
}
|
|
|
|
static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
|
|
u16 cp_cons, u32 agg_bufs)
|
|
{
|
|
if (agg_bufs)
|
|
bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
|
|
}
|
|
|
|
static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
|
|
int payload_off, int tcp_ts,
|
|
struct sk_buff *skb)
|
|
{
|
|
#ifdef CONFIG_INET
|
|
struct tcphdr *th;
|
|
int len, nw_off;
|
|
u16 outer_ip_off, inner_ip_off, inner_mac_off;
|
|
u32 hdr_info = tpa_info->hdr_info;
|
|
bool loopback = false;
|
|
|
|
inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
|
|
inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
|
|
outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
|
|
|
|
/* If the packet is an internal loopback packet, the offsets will
|
|
* have an extra 4 bytes.
|
|
*/
|
|
if (inner_mac_off == 4) {
|
|
loopback = true;
|
|
} else if (inner_mac_off > 4) {
|
|
__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
|
|
ETH_HLEN - 2));
|
|
|
|
/* We only support inner iPv4/ipv6. If we don't see the
|
|
* correct protocol ID, it must be a loopback packet where
|
|
* the offsets are off by 4.
|
|
*/
|
|
if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
|
|
loopback = true;
|
|
}
|
|
if (loopback) {
|
|
/* internal loopback packet, subtract all offsets by 4 */
|
|
inner_ip_off -= 4;
|
|
inner_mac_off -= 4;
|
|
outer_ip_off -= 4;
|
|
}
|
|
|
|
nw_off = inner_ip_off - ETH_HLEN;
|
|
skb_set_network_header(skb, nw_off);
|
|
if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
|
|
struct ipv6hdr *iph = ipv6_hdr(skb);
|
|
|
|
skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
|
|
len = skb->len - skb_transport_offset(skb);
|
|
th = tcp_hdr(skb);
|
|
th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
|
|
} else {
|
|
struct iphdr *iph = ip_hdr(skb);
|
|
|
|
skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
|
|
len = skb->len - skb_transport_offset(skb);
|
|
th = tcp_hdr(skb);
|
|
th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
|
|
}
|
|
|
|
if (inner_mac_off) { /* tunnel */
|
|
struct udphdr *uh = NULL;
|
|
__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
|
|
ETH_HLEN - 2));
|
|
|
|
if (proto == htons(ETH_P_IP)) {
|
|
struct iphdr *iph = (struct iphdr *)skb->data;
|
|
|
|
if (iph->protocol == IPPROTO_UDP)
|
|
uh = (struct udphdr *)(iph + 1);
|
|
} else {
|
|
struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
|
|
|
|
if (iph->nexthdr == IPPROTO_UDP)
|
|
uh = (struct udphdr *)(iph + 1);
|
|
}
|
|
if (uh) {
|
|
if (uh->check)
|
|
skb_shinfo(skb)->gso_type |=
|
|
SKB_GSO_UDP_TUNNEL_CSUM;
|
|
else
|
|
skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
|
|
}
|
|
}
|
|
#endif
|
|
return skb;
|
|
}
|
|
|
|
#define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
|
|
#define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
|
|
|
|
static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
|
|
int payload_off, int tcp_ts,
|
|
struct sk_buff *skb)
|
|
{
|
|
#ifdef CONFIG_INET
|
|
struct tcphdr *th;
|
|
int len, nw_off, tcp_opt_len = 0;
|
|
|
|
if (tcp_ts)
|
|
tcp_opt_len = 12;
|
|
|
|
if (tpa_info->gso_type == SKB_GSO_TCPV4) {
|
|
struct iphdr *iph;
|
|
|
|
nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
|
|
ETH_HLEN;
|
|
skb_set_network_header(skb, nw_off);
|
|
iph = ip_hdr(skb);
|
|
skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
|
|
len = skb->len - skb_transport_offset(skb);
|
|
th = tcp_hdr(skb);
|
|
th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
|
|
} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
|
|
struct ipv6hdr *iph;
|
|
|
|
nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
|
|
ETH_HLEN;
|
|
skb_set_network_header(skb, nw_off);
|
|
iph = ipv6_hdr(skb);
|
|
skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
|
|
len = skb->len - skb_transport_offset(skb);
|
|
th = tcp_hdr(skb);
|
|
th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
|
|
} else {
|
|
dev_kfree_skb_any(skb);
|
|
return NULL;
|
|
}
|
|
|
|
if (nw_off) { /* tunnel */
|
|
struct udphdr *uh = NULL;
|
|
|
|
if (skb->protocol == htons(ETH_P_IP)) {
|
|
struct iphdr *iph = (struct iphdr *)skb->data;
|
|
|
|
if (iph->protocol == IPPROTO_UDP)
|
|
uh = (struct udphdr *)(iph + 1);
|
|
} else {
|
|
struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
|
|
|
|
if (iph->nexthdr == IPPROTO_UDP)
|
|
uh = (struct udphdr *)(iph + 1);
|
|
}
|
|
if (uh) {
|
|
if (uh->check)
|
|
skb_shinfo(skb)->gso_type |=
|
|
SKB_GSO_UDP_TUNNEL_CSUM;
|
|
else
|
|
skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
|
|
}
|
|
}
|
|
#endif
|
|
return skb;
|
|
}
|
|
|
|
static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
|
|
struct bnxt_tpa_info *tpa_info,
|
|
struct rx_tpa_end_cmp *tpa_end,
|
|
struct rx_tpa_end_cmp_ext *tpa_end1,
|
|
struct sk_buff *skb)
|
|
{
|
|
#ifdef CONFIG_INET
|
|
int payload_off;
|
|
u16 segs;
|
|
|
|
segs = TPA_END_TPA_SEGS(tpa_end);
|
|
if (segs == 1)
|
|
return skb;
|
|
|
|
NAPI_GRO_CB(skb)->count = segs;
|
|
skb_shinfo(skb)->gso_size =
|
|
le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
|
|
skb_shinfo(skb)->gso_type = tpa_info->gso_type;
|
|
payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
|
|
RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
|
|
RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
|
|
skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
|
|
if (likely(skb))
|
|
tcp_gro_complete(skb);
|
|
#endif
|
|
return skb;
|
|
}
|
|
|
|
static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
|
|
struct bnxt_napi *bnapi,
|
|
u32 *raw_cons,
|
|
struct rx_tpa_end_cmp *tpa_end,
|
|
struct rx_tpa_end_cmp_ext *tpa_end1,
|
|
u8 *event)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
|
|
u8 agg_id = TPA_END_AGG_ID(tpa_end);
|
|
u8 *data_ptr, agg_bufs;
|
|
u16 cp_cons = RING_CMP(*raw_cons);
|
|
unsigned int len;
|
|
struct bnxt_tpa_info *tpa_info;
|
|
dma_addr_t mapping;
|
|
struct sk_buff *skb;
|
|
void *data;
|
|
|
|
if (unlikely(bnapi->in_reset)) {
|
|
int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
|
|
|
|
if (rc < 0)
|
|
return ERR_PTR(-EBUSY);
|
|
return NULL;
|
|
}
|
|
|
|
tpa_info = &rxr->rx_tpa[agg_id];
|
|
data = tpa_info->data;
|
|
data_ptr = tpa_info->data_ptr;
|
|
prefetch(data_ptr);
|
|
len = tpa_info->len;
|
|
mapping = tpa_info->mapping;
|
|
|
|
agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
|
|
RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
|
|
|
|
if (agg_bufs) {
|
|
if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
|
|
return ERR_PTR(-EBUSY);
|
|
|
|
*event |= BNXT_AGG_EVENT;
|
|
cp_cons = NEXT_CMP(cp_cons);
|
|
}
|
|
|
|
if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
|
|
bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
|
|
netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
|
|
agg_bufs, (int)MAX_SKB_FRAGS);
|
|
return NULL;
|
|
}
|
|
|
|
if (len <= bp->rx_copy_thresh) {
|
|
skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
|
|
if (!skb) {
|
|
bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
|
|
return NULL;
|
|
}
|
|
} else {
|
|
u8 *new_data;
|
|
dma_addr_t new_mapping;
|
|
|
|
new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
|
|
if (!new_data) {
|
|
bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
|
|
return NULL;
|
|
}
|
|
|
|
tpa_info->data = new_data;
|
|
tpa_info->data_ptr = new_data + bp->rx_offset;
|
|
tpa_info->mapping = new_mapping;
|
|
|
|
skb = build_skb(data, 0);
|
|
dma_unmap_single_attrs(&bp->pdev->dev, mapping,
|
|
bp->rx_buf_use_size, bp->rx_dir,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
|
|
if (!skb) {
|
|
kfree(data);
|
|
bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
|
|
return NULL;
|
|
}
|
|
skb_reserve(skb, bp->rx_offset);
|
|
skb_put(skb, len);
|
|
}
|
|
|
|
if (agg_bufs) {
|
|
skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
|
|
if (!skb) {
|
|
/* Page reuse already handled by bnxt_rx_pages(). */
|
|
return NULL;
|
|
}
|
|
}
|
|
skb->protocol = eth_type_trans(skb, bp->dev);
|
|
|
|
if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
|
|
skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
|
|
|
|
if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
|
|
(skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
|
|
u16 vlan_proto = tpa_info->metadata >>
|
|
RX_CMP_FLAGS2_METADATA_TPID_SFT;
|
|
u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
|
|
|
|
__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
|
|
}
|
|
|
|
skb_checksum_none_assert(skb);
|
|
if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
skb->csum_level =
|
|
(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
|
|
}
|
|
|
|
if (TPA_END_GRO(tpa_end))
|
|
skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
|
|
|
|
return skb;
|
|
}
|
|
|
|
/* returns the following:
|
|
* 1 - 1 packet successfully received
|
|
* 0 - successful TPA_START, packet not completed yet
|
|
* -EBUSY - completion ring does not have all the agg buffers yet
|
|
* -ENOMEM - packet aborted due to out of memory
|
|
* -EIO - packet aborted due to hw error indicated in BD
|
|
*/
|
|
static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
|
|
u8 *event)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
|
|
struct net_device *dev = bp->dev;
|
|
struct rx_cmp *rxcmp;
|
|
struct rx_cmp_ext *rxcmp1;
|
|
u32 tmp_raw_cons = *raw_cons;
|
|
u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
|
|
struct bnxt_sw_rx_bd *rx_buf;
|
|
unsigned int len;
|
|
u8 *data_ptr, agg_bufs, cmp_type;
|
|
dma_addr_t dma_addr;
|
|
struct sk_buff *skb;
|
|
void *data;
|
|
int rc = 0;
|
|
u32 misc;
|
|
|
|
rxcmp = (struct rx_cmp *)
|
|
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
|
|
|
|
tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
|
|
cp_cons = RING_CMP(tmp_raw_cons);
|
|
rxcmp1 = (struct rx_cmp_ext *)
|
|
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
|
|
|
|
if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
|
|
return -EBUSY;
|
|
|
|
cmp_type = RX_CMP_TYPE(rxcmp);
|
|
|
|
prod = rxr->rx_prod;
|
|
|
|
if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
|
|
bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
|
|
(struct rx_tpa_start_cmp_ext *)rxcmp1);
|
|
|
|
*event |= BNXT_RX_EVENT;
|
|
goto next_rx_no_prod;
|
|
|
|
} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
|
|
skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
|
|
(struct rx_tpa_end_cmp *)rxcmp,
|
|
(struct rx_tpa_end_cmp_ext *)rxcmp1, event);
|
|
|
|
if (unlikely(IS_ERR(skb)))
|
|
return -EBUSY;
|
|
|
|
rc = -ENOMEM;
|
|
if (likely(skb)) {
|
|
skb_record_rx_queue(skb, bnapi->index);
|
|
napi_gro_receive(&bnapi->napi, skb);
|
|
rc = 1;
|
|
}
|
|
*event |= BNXT_RX_EVENT;
|
|
goto next_rx_no_prod;
|
|
}
|
|
|
|
cons = rxcmp->rx_cmp_opaque;
|
|
rx_buf = &rxr->rx_buf_ring[cons];
|
|
data = rx_buf->data;
|
|
data_ptr = rx_buf->data_ptr;
|
|
if (unlikely(cons != rxr->rx_next_cons)) {
|
|
int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
|
|
|
|
bnxt_sched_reset(bp, rxr);
|
|
return rc1;
|
|
}
|
|
prefetch(data_ptr);
|
|
|
|
misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
|
|
agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
|
|
|
|
if (agg_bufs) {
|
|
if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
|
|
return -EBUSY;
|
|
|
|
cp_cons = NEXT_CMP(cp_cons);
|
|
*event |= BNXT_AGG_EVENT;
|
|
}
|
|
*event |= BNXT_RX_EVENT;
|
|
|
|
rx_buf->data = NULL;
|
|
if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
|
|
bnxt_reuse_rx_data(rxr, cons, data);
|
|
if (agg_bufs)
|
|
bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
|
|
|
|
rc = -EIO;
|
|
goto next_rx;
|
|
}
|
|
|
|
len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
|
|
dma_addr = rx_buf->mapping;
|
|
|
|
if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
|
|
rc = 1;
|
|
goto next_rx;
|
|
}
|
|
|
|
if (len <= bp->rx_copy_thresh) {
|
|
skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
|
|
bnxt_reuse_rx_data(rxr, cons, data);
|
|
if (!skb) {
|
|
rc = -ENOMEM;
|
|
goto next_rx;
|
|
}
|
|
} else {
|
|
u32 payload;
|
|
|
|
if (rx_buf->data_ptr == data_ptr)
|
|
payload = misc & RX_CMP_PAYLOAD_OFFSET;
|
|
else
|
|
payload = 0;
|
|
skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
|
|
payload | len);
|
|
if (!skb) {
|
|
rc = -ENOMEM;
|
|
goto next_rx;
|
|
}
|
|
}
|
|
|
|
if (agg_bufs) {
|
|
skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
|
|
if (!skb) {
|
|
rc = -ENOMEM;
|
|
goto next_rx;
|
|
}
|
|
}
|
|
|
|
if (RX_CMP_HASH_VALID(rxcmp)) {
|
|
u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
|
|
enum pkt_hash_types type = PKT_HASH_TYPE_L4;
|
|
|
|
/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
|
|
if (hash_type != 1 && hash_type != 3)
|
|
type = PKT_HASH_TYPE_L3;
|
|
skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
|
|
}
|
|
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
|
|
if ((rxcmp1->rx_cmp_flags2 &
|
|
cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
|
|
(skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
|
|
u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
|
|
u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
|
|
u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
|
|
|
|
__vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
|
|
}
|
|
|
|
skb_checksum_none_assert(skb);
|
|
if (RX_CMP_L4_CS_OK(rxcmp1)) {
|
|
if (dev->features & NETIF_F_RXCSUM) {
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
skb->csum_level = RX_CMP_ENCAP(rxcmp1);
|
|
}
|
|
} else {
|
|
if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
|
|
if (dev->features & NETIF_F_RXCSUM)
|
|
cpr->rx_l4_csum_errors++;
|
|
}
|
|
}
|
|
|
|
skb_record_rx_queue(skb, bnapi->index);
|
|
napi_gro_receive(&bnapi->napi, skb);
|
|
rc = 1;
|
|
|
|
next_rx:
|
|
rxr->rx_prod = NEXT_RX(prod);
|
|
rxr->rx_next_cons = NEXT_RX(cons);
|
|
|
|
next_rx_no_prod:
|
|
*raw_cons = tmp_raw_cons;
|
|
|
|
return rc;
|
|
}
|
|
|
|
#define BNXT_GET_EVENT_PORT(data) \
|
|
((data) & \
|
|
ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
|
|
|
|
static int bnxt_async_event_process(struct bnxt *bp,
|
|
struct hwrm_async_event_cmpl *cmpl)
|
|
{
|
|
u16 event_id = le16_to_cpu(cmpl->event_id);
|
|
|
|
/* TODO CHIMP_FW: Define event id's for link change, error etc */
|
|
switch (event_id) {
|
|
case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
|
|
u32 data1 = le32_to_cpu(cmpl->event_data1);
|
|
struct bnxt_link_info *link_info = &bp->link_info;
|
|
|
|
if (BNXT_VF(bp))
|
|
goto async_event_process_exit;
|
|
if (data1 & 0x20000) {
|
|
u16 fw_speed = link_info->force_link_speed;
|
|
u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
|
|
|
|
netdev_warn(bp->dev, "Link speed %d no longer supported\n",
|
|
speed);
|
|
}
|
|
set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
|
|
/* fall thru */
|
|
}
|
|
case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
|
|
set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
|
|
break;
|
|
case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
|
|
set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
|
|
break;
|
|
case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
|
|
u32 data1 = le32_to_cpu(cmpl->event_data1);
|
|
u16 port_id = BNXT_GET_EVENT_PORT(data1);
|
|
|
|
if (BNXT_VF(bp))
|
|
break;
|
|
|
|
if (bp->pf.port_id != port_id)
|
|
break;
|
|
|
|
set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
|
|
break;
|
|
}
|
|
case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
|
|
if (BNXT_PF(bp))
|
|
goto async_event_process_exit;
|
|
set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
|
|
break;
|
|
default:
|
|
goto async_event_process_exit;
|
|
}
|
|
schedule_work(&bp->sp_task);
|
|
async_event_process_exit:
|
|
bnxt_ulp_async_events(bp, cmpl);
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
|
|
{
|
|
u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
|
|
struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
|
|
struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
|
|
(struct hwrm_fwd_req_cmpl *)txcmp;
|
|
|
|
switch (cmpl_type) {
|
|
case CMPL_BASE_TYPE_HWRM_DONE:
|
|
seq_id = le16_to_cpu(h_cmpl->sequence_id);
|
|
if (seq_id == bp->hwrm_intr_seq_id)
|
|
bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
|
|
else
|
|
netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
|
|
break;
|
|
|
|
case CMPL_BASE_TYPE_HWRM_FWD_REQ:
|
|
vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
|
|
|
|
if ((vf_id < bp->pf.first_vf_id) ||
|
|
(vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
|
|
netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
|
|
vf_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
|
|
set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
|
|
schedule_work(&bp->sp_task);
|
|
break;
|
|
|
|
case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
|
|
bnxt_async_event_process(bp,
|
|
(struct hwrm_async_event_cmpl *)txcmp);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t bnxt_msix(int irq, void *dev_instance)
|
|
{
|
|
struct bnxt_napi *bnapi = dev_instance;
|
|
struct bnxt *bp = bnapi->bp;
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
u32 cons = RING_CMP(cpr->cp_raw_cons);
|
|
|
|
prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
|
|
napi_schedule(&bnapi->napi);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
|
|
{
|
|
u32 raw_cons = cpr->cp_raw_cons;
|
|
u16 cons = RING_CMP(raw_cons);
|
|
struct tx_cmp *txcmp;
|
|
|
|
txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
|
|
|
|
return TX_CMP_VALID(txcmp, raw_cons);
|
|
}
|
|
|
|
static irqreturn_t bnxt_inta(int irq, void *dev_instance)
|
|
{
|
|
struct bnxt_napi *bnapi = dev_instance;
|
|
struct bnxt *bp = bnapi->bp;
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
u32 cons = RING_CMP(cpr->cp_raw_cons);
|
|
u32 int_status;
|
|
|
|
prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
|
|
|
|
if (!bnxt_has_work(bp, cpr)) {
|
|
int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
|
|
/* return if erroneous interrupt */
|
|
if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
/* disable ring IRQ */
|
|
BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
|
|
|
|
/* Return here if interrupt is shared and is disabled. */
|
|
if (unlikely(atomic_read(&bp->intr_sem) != 0))
|
|
return IRQ_HANDLED;
|
|
|
|
napi_schedule(&bnapi->napi);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
u32 raw_cons = cpr->cp_raw_cons;
|
|
u32 cons;
|
|
int tx_pkts = 0;
|
|
int rx_pkts = 0;
|
|
u8 event = 0;
|
|
struct tx_cmp *txcmp;
|
|
|
|
while (1) {
|
|
int rc;
|
|
|
|
cons = RING_CMP(raw_cons);
|
|
txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
|
|
|
|
if (!TX_CMP_VALID(txcmp, raw_cons))
|
|
break;
|
|
|
|
/* The valid test of the entry must be done first before
|
|
* reading any further.
|
|
*/
|
|
dma_rmb();
|
|
if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
|
|
tx_pkts++;
|
|
/* return full budget so NAPI will complete. */
|
|
if (unlikely(tx_pkts > bp->tx_wake_thresh))
|
|
rx_pkts = budget;
|
|
} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
|
|
rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
|
|
if (likely(rc >= 0))
|
|
rx_pkts += rc;
|
|
else if (rc == -EBUSY) /* partial completion */
|
|
break;
|
|
} else if (unlikely((TX_CMP_TYPE(txcmp) ==
|
|
CMPL_BASE_TYPE_HWRM_DONE) ||
|
|
(TX_CMP_TYPE(txcmp) ==
|
|
CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
|
|
(TX_CMP_TYPE(txcmp) ==
|
|
CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
|
|
bnxt_hwrm_handler(bp, txcmp);
|
|
}
|
|
raw_cons = NEXT_RAW_CMP(raw_cons);
|
|
|
|
if (rx_pkts == budget)
|
|
break;
|
|
}
|
|
|
|
if (event & BNXT_TX_EVENT) {
|
|
struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
|
|
void __iomem *db = txr->tx_doorbell;
|
|
u16 prod = txr->tx_prod;
|
|
|
|
/* Sync BD data before updating doorbell */
|
|
wmb();
|
|
|
|
bnxt_db_write(bp, db, DB_KEY_TX | prod);
|
|
}
|
|
|
|
cpr->cp_raw_cons = raw_cons;
|
|
/* ACK completion ring before freeing tx ring and producing new
|
|
* buffers in rx/agg rings to prevent overflowing the completion
|
|
* ring.
|
|
*/
|
|
BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
|
|
|
|
if (tx_pkts)
|
|
bnapi->tx_int(bp, bnapi, tx_pkts);
|
|
|
|
if (event & BNXT_RX_EVENT) {
|
|
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
|
|
|
|
bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
|
|
if (event & BNXT_AGG_EVENT)
|
|
bnxt_db_write(bp, rxr->rx_agg_doorbell,
|
|
DB_KEY_RX | rxr->rx_agg_prod);
|
|
}
|
|
return rx_pkts;
|
|
}
|
|
|
|
static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
|
|
{
|
|
struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
|
|
struct bnxt *bp = bnapi->bp;
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
|
|
struct tx_cmp *txcmp;
|
|
struct rx_cmp_ext *rxcmp1;
|
|
u32 cp_cons, tmp_raw_cons;
|
|
u32 raw_cons = cpr->cp_raw_cons;
|
|
u32 rx_pkts = 0;
|
|
u8 event = 0;
|
|
|
|
while (1) {
|
|
int rc;
|
|
|
|
cp_cons = RING_CMP(raw_cons);
|
|
txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
|
|
|
|
if (!TX_CMP_VALID(txcmp, raw_cons))
|
|
break;
|
|
|
|
if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
|
|
tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
|
|
cp_cons = RING_CMP(tmp_raw_cons);
|
|
rxcmp1 = (struct rx_cmp_ext *)
|
|
&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
|
|
|
|
if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
|
|
break;
|
|
|
|
/* force an error to recycle the buffer */
|
|
rxcmp1->rx_cmp_cfa_code_errors_v2 |=
|
|
cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
|
|
|
|
rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
|
|
if (likely(rc == -EIO))
|
|
rx_pkts++;
|
|
else if (rc == -EBUSY) /* partial completion */
|
|
break;
|
|
} else if (unlikely(TX_CMP_TYPE(txcmp) ==
|
|
CMPL_BASE_TYPE_HWRM_DONE)) {
|
|
bnxt_hwrm_handler(bp, txcmp);
|
|
} else {
|
|
netdev_err(bp->dev,
|
|
"Invalid completion received on special ring\n");
|
|
}
|
|
raw_cons = NEXT_RAW_CMP(raw_cons);
|
|
|
|
if (rx_pkts == budget)
|
|
break;
|
|
}
|
|
|
|
cpr->cp_raw_cons = raw_cons;
|
|
BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
|
|
bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
|
|
|
|
if (event & BNXT_AGG_EVENT)
|
|
bnxt_db_write(bp, rxr->rx_agg_doorbell,
|
|
DB_KEY_RX | rxr->rx_agg_prod);
|
|
|
|
if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
|
|
napi_complete_done(napi, rx_pkts);
|
|
BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
|
|
}
|
|
return rx_pkts;
|
|
}
|
|
|
|
static int bnxt_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
|
|
struct bnxt *bp = bnapi->bp;
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
int work_done = 0;
|
|
|
|
while (1) {
|
|
work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
|
|
|
|
if (work_done >= budget)
|
|
break;
|
|
|
|
if (!bnxt_has_work(bp, cpr)) {
|
|
if (napi_complete_done(napi, work_done))
|
|
BNXT_CP_DB_REARM(cpr->cp_doorbell,
|
|
cpr->cp_raw_cons);
|
|
break;
|
|
}
|
|
}
|
|
mmiowb();
|
|
return work_done;
|
|
}
|
|
|
|
static void bnxt_free_tx_skbs(struct bnxt *bp)
|
|
{
|
|
int i, max_idx;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
if (!bp->tx_ring)
|
|
return;
|
|
|
|
max_idx = bp->tx_nr_pages * TX_DESC_CNT;
|
|
for (i = 0; i < bp->tx_nr_rings; i++) {
|
|
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
|
|
int j;
|
|
|
|
for (j = 0; j < max_idx;) {
|
|
struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
|
|
struct sk_buff *skb = tx_buf->skb;
|
|
int k, last;
|
|
|
|
if (!skb) {
|
|
j++;
|
|
continue;
|
|
}
|
|
|
|
tx_buf->skb = NULL;
|
|
|
|
if (tx_buf->is_push) {
|
|
dev_kfree_skb(skb);
|
|
j += 2;
|
|
continue;
|
|
}
|
|
|
|
dma_unmap_single(&pdev->dev,
|
|
dma_unmap_addr(tx_buf, mapping),
|
|
skb_headlen(skb),
|
|
PCI_DMA_TODEVICE);
|
|
|
|
last = tx_buf->nr_frags;
|
|
j += 2;
|
|
for (k = 0; k < last; k++, j++) {
|
|
int ring_idx = j & bp->tx_ring_mask;
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
|
|
|
|
tx_buf = &txr->tx_buf_ring[ring_idx];
|
|
dma_unmap_page(
|
|
&pdev->dev,
|
|
dma_unmap_addr(tx_buf, mapping),
|
|
skb_frag_size(frag), PCI_DMA_TODEVICE);
|
|
}
|
|
dev_kfree_skb(skb);
|
|
}
|
|
netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
|
|
}
|
|
}
|
|
|
|
static void bnxt_free_rx_skbs(struct bnxt *bp)
|
|
{
|
|
int i, max_idx, max_agg_idx;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
if (!bp->rx_ring)
|
|
return;
|
|
|
|
max_idx = bp->rx_nr_pages * RX_DESC_CNT;
|
|
max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
int j;
|
|
|
|
if (rxr->rx_tpa) {
|
|
for (j = 0; j < MAX_TPA; j++) {
|
|
struct bnxt_tpa_info *tpa_info =
|
|
&rxr->rx_tpa[j];
|
|
u8 *data = tpa_info->data;
|
|
|
|
if (!data)
|
|
continue;
|
|
|
|
dma_unmap_single_attrs(&pdev->dev,
|
|
tpa_info->mapping,
|
|
bp->rx_buf_use_size,
|
|
bp->rx_dir,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
|
|
tpa_info->data = NULL;
|
|
|
|
kfree(data);
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < max_idx; j++) {
|
|
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
|
|
dma_addr_t mapping = rx_buf->mapping;
|
|
void *data = rx_buf->data;
|
|
|
|
if (!data)
|
|
continue;
|
|
|
|
rx_buf->data = NULL;
|
|
|
|
if (BNXT_RX_PAGE_MODE(bp)) {
|
|
mapping -= bp->rx_dma_offset;
|
|
dma_unmap_page_attrs(&pdev->dev, mapping,
|
|
PAGE_SIZE, bp->rx_dir,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
__free_page(data);
|
|
} else {
|
|
dma_unmap_single_attrs(&pdev->dev, mapping,
|
|
bp->rx_buf_use_size,
|
|
bp->rx_dir,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
kfree(data);
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < max_agg_idx; j++) {
|
|
struct bnxt_sw_rx_agg_bd *rx_agg_buf =
|
|
&rxr->rx_agg_ring[j];
|
|
struct page *page = rx_agg_buf->page;
|
|
|
|
if (!page)
|
|
continue;
|
|
|
|
dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
|
|
BNXT_RX_PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE,
|
|
DMA_ATTR_WEAK_ORDERING);
|
|
|
|
rx_agg_buf->page = NULL;
|
|
__clear_bit(j, rxr->rx_agg_bmap);
|
|
|
|
__free_page(page);
|
|
}
|
|
if (rxr->rx_page) {
|
|
__free_page(rxr->rx_page);
|
|
rxr->rx_page = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bnxt_free_skbs(struct bnxt *bp)
|
|
{
|
|
bnxt_free_tx_skbs(bp);
|
|
bnxt_free_rx_skbs(bp);
|
|
}
|
|
|
|
static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
int i;
|
|
|
|
for (i = 0; i < ring->nr_pages; i++) {
|
|
if (!ring->pg_arr[i])
|
|
continue;
|
|
|
|
dma_free_coherent(&pdev->dev, ring->page_size,
|
|
ring->pg_arr[i], ring->dma_arr[i]);
|
|
|
|
ring->pg_arr[i] = NULL;
|
|
}
|
|
if (ring->pg_tbl) {
|
|
dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
|
|
ring->pg_tbl, ring->pg_tbl_map);
|
|
ring->pg_tbl = NULL;
|
|
}
|
|
if (ring->vmem_size && *ring->vmem) {
|
|
vfree(*ring->vmem);
|
|
*ring->vmem = NULL;
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
|
|
{
|
|
int i;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
if (ring->nr_pages > 1) {
|
|
ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
|
|
ring->nr_pages * 8,
|
|
&ring->pg_tbl_map,
|
|
GFP_KERNEL);
|
|
if (!ring->pg_tbl)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < ring->nr_pages; i++) {
|
|
ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
|
|
ring->page_size,
|
|
&ring->dma_arr[i],
|
|
GFP_KERNEL);
|
|
if (!ring->pg_arr[i])
|
|
return -ENOMEM;
|
|
|
|
if (ring->nr_pages > 1)
|
|
ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
|
|
}
|
|
|
|
if (ring->vmem_size) {
|
|
*ring->vmem = vzalloc(ring->vmem_size);
|
|
if (!(*ring->vmem))
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_rx_rings(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
if (!bp->rx_ring)
|
|
return;
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
struct bnxt_ring_struct *ring;
|
|
|
|
if (rxr->xdp_prog)
|
|
bpf_prog_put(rxr->xdp_prog);
|
|
|
|
kfree(rxr->rx_tpa);
|
|
rxr->rx_tpa = NULL;
|
|
|
|
kfree(rxr->rx_agg_bmap);
|
|
rxr->rx_agg_bmap = NULL;
|
|
|
|
ring = &rxr->rx_ring_struct;
|
|
bnxt_free_ring(bp, ring);
|
|
|
|
ring = &rxr->rx_agg_ring_struct;
|
|
bnxt_free_ring(bp, ring);
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_rx_rings(struct bnxt *bp)
|
|
{
|
|
int i, rc, agg_rings = 0, tpa_rings = 0;
|
|
|
|
if (!bp->rx_ring)
|
|
return -ENOMEM;
|
|
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS)
|
|
agg_rings = 1;
|
|
|
|
if (bp->flags & BNXT_FLAG_TPA)
|
|
tpa_rings = 1;
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
struct bnxt_ring_struct *ring;
|
|
|
|
ring = &rxr->rx_ring_struct;
|
|
|
|
rc = bnxt_alloc_ring(bp, ring);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (agg_rings) {
|
|
u16 mem_size;
|
|
|
|
ring = &rxr->rx_agg_ring_struct;
|
|
rc = bnxt_alloc_ring(bp, ring);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
|
|
mem_size = rxr->rx_agg_bmap_size / 8;
|
|
rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
|
|
if (!rxr->rx_agg_bmap)
|
|
return -ENOMEM;
|
|
|
|
if (tpa_rings) {
|
|
rxr->rx_tpa = kcalloc(MAX_TPA,
|
|
sizeof(struct bnxt_tpa_info),
|
|
GFP_KERNEL);
|
|
if (!rxr->rx_tpa)
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_tx_rings(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
if (!bp->tx_ring)
|
|
return;
|
|
|
|
for (i = 0; i < bp->tx_nr_rings; i++) {
|
|
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
|
|
struct bnxt_ring_struct *ring;
|
|
|
|
if (txr->tx_push) {
|
|
dma_free_coherent(&pdev->dev, bp->tx_push_size,
|
|
txr->tx_push, txr->tx_push_mapping);
|
|
txr->tx_push = NULL;
|
|
}
|
|
|
|
ring = &txr->tx_ring_struct;
|
|
|
|
bnxt_free_ring(bp, ring);
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_tx_rings(struct bnxt *bp)
|
|
{
|
|
int i, j, rc;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
bp->tx_push_size = 0;
|
|
if (bp->tx_push_thresh) {
|
|
int push_size;
|
|
|
|
push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
|
|
bp->tx_push_thresh);
|
|
|
|
if (push_size > 256) {
|
|
push_size = 0;
|
|
bp->tx_push_thresh = 0;
|
|
}
|
|
|
|
bp->tx_push_size = push_size;
|
|
}
|
|
|
|
for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
|
|
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
|
|
struct bnxt_ring_struct *ring;
|
|
|
|
ring = &txr->tx_ring_struct;
|
|
|
|
rc = bnxt_alloc_ring(bp, ring);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (bp->tx_push_size) {
|
|
dma_addr_t mapping;
|
|
|
|
/* One pre-allocated DMA buffer to backup
|
|
* TX push operation
|
|
*/
|
|
txr->tx_push = dma_alloc_coherent(&pdev->dev,
|
|
bp->tx_push_size,
|
|
&txr->tx_push_mapping,
|
|
GFP_KERNEL);
|
|
|
|
if (!txr->tx_push)
|
|
return -ENOMEM;
|
|
|
|
mapping = txr->tx_push_mapping +
|
|
sizeof(struct tx_push_bd);
|
|
txr->data_mapping = cpu_to_le64(mapping);
|
|
|
|
memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
|
|
}
|
|
ring->queue_id = bp->q_info[j].queue_id;
|
|
if (i < bp->tx_nr_rings_xdp)
|
|
continue;
|
|
if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
|
|
j++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_cp_rings(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr;
|
|
struct bnxt_ring_struct *ring;
|
|
|
|
if (!bnapi)
|
|
continue;
|
|
|
|
cpr = &bnapi->cp_ring;
|
|
ring = &cpr->cp_ring_struct;
|
|
|
|
bnxt_free_ring(bp, ring);
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_cp_rings(struct bnxt *bp)
|
|
{
|
|
int i, rc;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr;
|
|
struct bnxt_ring_struct *ring;
|
|
|
|
if (!bnapi)
|
|
continue;
|
|
|
|
cpr = &bnapi->cp_ring;
|
|
ring = &cpr->cp_ring_struct;
|
|
|
|
rc = bnxt_alloc_ring(bp, ring);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_init_ring_struct(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr;
|
|
struct bnxt_rx_ring_info *rxr;
|
|
struct bnxt_tx_ring_info *txr;
|
|
struct bnxt_ring_struct *ring;
|
|
|
|
if (!bnapi)
|
|
continue;
|
|
|
|
cpr = &bnapi->cp_ring;
|
|
ring = &cpr->cp_ring_struct;
|
|
ring->nr_pages = bp->cp_nr_pages;
|
|
ring->page_size = HW_CMPD_RING_SIZE;
|
|
ring->pg_arr = (void **)cpr->cp_desc_ring;
|
|
ring->dma_arr = cpr->cp_desc_mapping;
|
|
ring->vmem_size = 0;
|
|
|
|
rxr = bnapi->rx_ring;
|
|
if (!rxr)
|
|
goto skip_rx;
|
|
|
|
ring = &rxr->rx_ring_struct;
|
|
ring->nr_pages = bp->rx_nr_pages;
|
|
ring->page_size = HW_RXBD_RING_SIZE;
|
|
ring->pg_arr = (void **)rxr->rx_desc_ring;
|
|
ring->dma_arr = rxr->rx_desc_mapping;
|
|
ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
|
|
ring->vmem = (void **)&rxr->rx_buf_ring;
|
|
|
|
ring = &rxr->rx_agg_ring_struct;
|
|
ring->nr_pages = bp->rx_agg_nr_pages;
|
|
ring->page_size = HW_RXBD_RING_SIZE;
|
|
ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
|
|
ring->dma_arr = rxr->rx_agg_desc_mapping;
|
|
ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
|
|
ring->vmem = (void **)&rxr->rx_agg_ring;
|
|
|
|
skip_rx:
|
|
txr = bnapi->tx_ring;
|
|
if (!txr)
|
|
continue;
|
|
|
|
ring = &txr->tx_ring_struct;
|
|
ring->nr_pages = bp->tx_nr_pages;
|
|
ring->page_size = HW_RXBD_RING_SIZE;
|
|
ring->pg_arr = (void **)txr->tx_desc_ring;
|
|
ring->dma_arr = txr->tx_desc_mapping;
|
|
ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
|
|
ring->vmem = (void **)&txr->tx_buf_ring;
|
|
}
|
|
}
|
|
|
|
static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
|
|
{
|
|
int i;
|
|
u32 prod;
|
|
struct rx_bd **rx_buf_ring;
|
|
|
|
rx_buf_ring = (struct rx_bd **)ring->pg_arr;
|
|
for (i = 0, prod = 0; i < ring->nr_pages; i++) {
|
|
int j;
|
|
struct rx_bd *rxbd;
|
|
|
|
rxbd = rx_buf_ring[i];
|
|
if (!rxbd)
|
|
continue;
|
|
|
|
for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
|
|
rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
|
|
rxbd->rx_bd_opaque = prod;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
|
|
{
|
|
struct net_device *dev = bp->dev;
|
|
struct bnxt_rx_ring_info *rxr;
|
|
struct bnxt_ring_struct *ring;
|
|
u32 prod, type;
|
|
int i;
|
|
|
|
type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
|
|
RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
|
|
|
|
if (NET_IP_ALIGN == 2)
|
|
type |= RX_BD_FLAGS_SOP;
|
|
|
|
rxr = &bp->rx_ring[ring_nr];
|
|
ring = &rxr->rx_ring_struct;
|
|
bnxt_init_rxbd_pages(ring, type);
|
|
|
|
if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
|
|
rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
|
|
if (IS_ERR(rxr->xdp_prog)) {
|
|
int rc = PTR_ERR(rxr->xdp_prog);
|
|
|
|
rxr->xdp_prog = NULL;
|
|
return rc;
|
|
}
|
|
}
|
|
prod = rxr->rx_prod;
|
|
for (i = 0; i < bp->rx_ring_size; i++) {
|
|
if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
|
|
netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
|
|
ring_nr, i, bp->rx_ring_size);
|
|
break;
|
|
}
|
|
prod = NEXT_RX(prod);
|
|
}
|
|
rxr->rx_prod = prod;
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
|
|
ring = &rxr->rx_agg_ring_struct;
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
|
|
return 0;
|
|
|
|
type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
|
|
RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
|
|
|
|
bnxt_init_rxbd_pages(ring, type);
|
|
|
|
prod = rxr->rx_agg_prod;
|
|
for (i = 0; i < bp->rx_agg_ring_size; i++) {
|
|
if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
|
|
netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
|
|
ring_nr, i, bp->rx_ring_size);
|
|
break;
|
|
}
|
|
prod = NEXT_RX_AGG(prod);
|
|
}
|
|
rxr->rx_agg_prod = prod;
|
|
|
|
if (bp->flags & BNXT_FLAG_TPA) {
|
|
if (rxr->rx_tpa) {
|
|
u8 *data;
|
|
dma_addr_t mapping;
|
|
|
|
for (i = 0; i < MAX_TPA; i++) {
|
|
data = __bnxt_alloc_rx_data(bp, &mapping,
|
|
GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
rxr->rx_tpa[i].data = data;
|
|
rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
|
|
rxr->rx_tpa[i].mapping = mapping;
|
|
}
|
|
} else {
|
|
netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_init_cp_rings(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
|
|
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
|
|
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
}
|
|
}
|
|
|
|
static int bnxt_init_rx_rings(struct bnxt *bp)
|
|
{
|
|
int i, rc = 0;
|
|
|
|
if (BNXT_RX_PAGE_MODE(bp)) {
|
|
bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
|
|
bp->rx_dma_offset = XDP_PACKET_HEADROOM;
|
|
} else {
|
|
bp->rx_offset = BNXT_RX_OFFSET;
|
|
bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
|
|
}
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
rc = bnxt_init_one_rx_ring(bp, i);
|
|
if (rc)
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_init_tx_rings(struct bnxt *bp)
|
|
{
|
|
u16 i;
|
|
|
|
bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
|
|
MAX_SKB_FRAGS + 1);
|
|
|
|
for (i = 0; i < bp->tx_nr_rings; i++) {
|
|
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
|
|
struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
|
|
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_ring_grps(struct bnxt *bp)
|
|
{
|
|
kfree(bp->grp_info);
|
|
bp->grp_info = NULL;
|
|
}
|
|
|
|
static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
|
|
{
|
|
int i;
|
|
|
|
if (irq_re_init) {
|
|
bp->grp_info = kcalloc(bp->cp_nr_rings,
|
|
sizeof(struct bnxt_ring_grp_info),
|
|
GFP_KERNEL);
|
|
if (!bp->grp_info)
|
|
return -ENOMEM;
|
|
}
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
if (irq_re_init)
|
|
bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
|
|
bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
|
|
bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
|
|
bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
|
|
bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_vnics(struct bnxt *bp)
|
|
{
|
|
kfree(bp->vnic_info);
|
|
bp->vnic_info = NULL;
|
|
bp->nr_vnics = 0;
|
|
}
|
|
|
|
static int bnxt_alloc_vnics(struct bnxt *bp)
|
|
{
|
|
int num_vnics = 1;
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
if (bp->flags & BNXT_FLAG_RFS)
|
|
num_vnics += bp->rx_nr_rings;
|
|
#endif
|
|
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
num_vnics++;
|
|
|
|
bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
|
|
GFP_KERNEL);
|
|
if (!bp->vnic_info)
|
|
return -ENOMEM;
|
|
|
|
bp->nr_vnics = num_vnics;
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_init_vnics(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->nr_vnics; i++) {
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
|
|
|
|
vnic->fw_vnic_id = INVALID_HW_RING_ID;
|
|
vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
|
|
vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
|
|
vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
|
|
|
|
if (bp->vnic_info[i].rss_hash_key) {
|
|
if (i == 0)
|
|
prandom_bytes(vnic->rss_hash_key,
|
|
HW_HASH_KEY_SIZE);
|
|
else
|
|
memcpy(vnic->rss_hash_key,
|
|
bp->vnic_info[0].rss_hash_key,
|
|
HW_HASH_KEY_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
|
|
{
|
|
int pages;
|
|
|
|
pages = ring_size / desc_per_pg;
|
|
|
|
if (!pages)
|
|
return 1;
|
|
|
|
pages++;
|
|
|
|
while (pages & (pages - 1))
|
|
pages++;
|
|
|
|
return pages;
|
|
}
|
|
|
|
void bnxt_set_tpa_flags(struct bnxt *bp)
|
|
{
|
|
bp->flags &= ~BNXT_FLAG_TPA;
|
|
if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
|
|
return;
|
|
if (bp->dev->features & NETIF_F_LRO)
|
|
bp->flags |= BNXT_FLAG_LRO;
|
|
if (bp->dev->features & NETIF_F_GRO)
|
|
bp->flags |= BNXT_FLAG_GRO;
|
|
}
|
|
|
|
/* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
|
|
* be set on entry.
|
|
*/
|
|
void bnxt_set_ring_params(struct bnxt *bp)
|
|
{
|
|
u32 ring_size, rx_size, rx_space;
|
|
u32 agg_factor = 0, agg_ring_size = 0;
|
|
|
|
/* 8 for CRC and VLAN */
|
|
rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
|
|
|
|
rx_space = rx_size + NET_SKB_PAD +
|
|
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
|
|
|
|
bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
|
|
ring_size = bp->rx_ring_size;
|
|
bp->rx_agg_ring_size = 0;
|
|
bp->rx_agg_nr_pages = 0;
|
|
|
|
if (bp->flags & BNXT_FLAG_TPA)
|
|
agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
|
|
|
|
bp->flags &= ~BNXT_FLAG_JUMBO;
|
|
if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
|
|
u32 jumbo_factor;
|
|
|
|
bp->flags |= BNXT_FLAG_JUMBO;
|
|
jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
|
|
if (jumbo_factor > agg_factor)
|
|
agg_factor = jumbo_factor;
|
|
}
|
|
agg_ring_size = ring_size * agg_factor;
|
|
|
|
if (agg_ring_size) {
|
|
bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
|
|
RX_DESC_CNT);
|
|
if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
|
|
u32 tmp = agg_ring_size;
|
|
|
|
bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
|
|
agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
|
|
netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
|
|
tmp, agg_ring_size);
|
|
}
|
|
bp->rx_agg_ring_size = agg_ring_size;
|
|
bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
|
|
rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
|
|
rx_space = rx_size + NET_SKB_PAD +
|
|
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
|
|
}
|
|
|
|
bp->rx_buf_use_size = rx_size;
|
|
bp->rx_buf_size = rx_space;
|
|
|
|
bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
|
|
bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
|
|
|
|
ring_size = bp->tx_ring_size;
|
|
bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
|
|
bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
|
|
|
|
ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
|
|
bp->cp_ring_size = ring_size;
|
|
|
|
bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
|
|
if (bp->cp_nr_pages > MAX_CP_PAGES) {
|
|
bp->cp_nr_pages = MAX_CP_PAGES;
|
|
bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
|
|
netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
|
|
ring_size, bp->cp_ring_size);
|
|
}
|
|
bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
|
|
bp->cp_ring_mask = bp->cp_bit - 1;
|
|
}
|
|
|
|
int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
|
|
{
|
|
if (page_mode) {
|
|
if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
|
|
return -EOPNOTSUPP;
|
|
bp->dev->max_mtu = BNXT_MAX_PAGE_MODE_MTU;
|
|
bp->flags &= ~BNXT_FLAG_AGG_RINGS;
|
|
bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
|
|
bp->dev->hw_features &= ~NETIF_F_LRO;
|
|
bp->dev->features &= ~NETIF_F_LRO;
|
|
bp->rx_dir = DMA_BIDIRECTIONAL;
|
|
bp->rx_skb_func = bnxt_rx_page_skb;
|
|
} else {
|
|
bp->dev->max_mtu = BNXT_MAX_MTU;
|
|
bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
|
|
bp->rx_dir = DMA_FROM_DEVICE;
|
|
bp->rx_skb_func = bnxt_rx_skb;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_vnic_attributes(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
struct bnxt_vnic_info *vnic;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
if (!bp->vnic_info)
|
|
return;
|
|
|
|
for (i = 0; i < bp->nr_vnics; i++) {
|
|
vnic = &bp->vnic_info[i];
|
|
|
|
kfree(vnic->fw_grp_ids);
|
|
vnic->fw_grp_ids = NULL;
|
|
|
|
kfree(vnic->uc_list);
|
|
vnic->uc_list = NULL;
|
|
|
|
if (vnic->mc_list) {
|
|
dma_free_coherent(&pdev->dev, vnic->mc_list_size,
|
|
vnic->mc_list, vnic->mc_list_mapping);
|
|
vnic->mc_list = NULL;
|
|
}
|
|
|
|
if (vnic->rss_table) {
|
|
dma_free_coherent(&pdev->dev, PAGE_SIZE,
|
|
vnic->rss_table,
|
|
vnic->rss_table_dma_addr);
|
|
vnic->rss_table = NULL;
|
|
}
|
|
|
|
vnic->rss_hash_key = NULL;
|
|
vnic->flags = 0;
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
|
|
{
|
|
int i, rc = 0, size;
|
|
struct bnxt_vnic_info *vnic;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
int max_rings;
|
|
|
|
for (i = 0; i < bp->nr_vnics; i++) {
|
|
vnic = &bp->vnic_info[i];
|
|
|
|
if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
|
|
int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
|
|
|
|
if (mem_size > 0) {
|
|
vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
|
|
if (!vnic->uc_list) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
|
|
vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
|
|
vnic->mc_list =
|
|
dma_alloc_coherent(&pdev->dev,
|
|
vnic->mc_list_size,
|
|
&vnic->mc_list_mapping,
|
|
GFP_KERNEL);
|
|
if (!vnic->mc_list) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (vnic->flags & BNXT_VNIC_RSS_FLAG)
|
|
max_rings = bp->rx_nr_rings;
|
|
else
|
|
max_rings = 1;
|
|
|
|
vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
|
|
if (!vnic->fw_grp_ids) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
|
|
!(vnic->flags & BNXT_VNIC_RSS_FLAG))
|
|
continue;
|
|
|
|
/* Allocate rss table and hash key */
|
|
vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
|
|
&vnic->rss_table_dma_addr,
|
|
GFP_KERNEL);
|
|
if (!vnic->rss_table) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
|
|
|
|
vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
|
|
vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
|
|
}
|
|
return 0;
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_free_hwrm_resources(struct bnxt *bp)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
|
|
bp->hwrm_cmd_resp_dma_addr);
|
|
|
|
bp->hwrm_cmd_resp_addr = NULL;
|
|
if (bp->hwrm_dbg_resp_addr) {
|
|
dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
|
|
bp->hwrm_dbg_resp_addr,
|
|
bp->hwrm_dbg_resp_dma_addr);
|
|
|
|
bp->hwrm_dbg_resp_addr = NULL;
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
|
|
&bp->hwrm_cmd_resp_dma_addr,
|
|
GFP_KERNEL);
|
|
if (!bp->hwrm_cmd_resp_addr)
|
|
return -ENOMEM;
|
|
bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
|
|
HWRM_DBG_REG_BUF_SIZE,
|
|
&bp->hwrm_dbg_resp_dma_addr,
|
|
GFP_KERNEL);
|
|
if (!bp->hwrm_dbg_resp_addr)
|
|
netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
|
|
{
|
|
if (bp->hwrm_short_cmd_req_addr) {
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
|
|
bp->hwrm_short_cmd_req_addr,
|
|
bp->hwrm_short_cmd_req_dma_addr);
|
|
bp->hwrm_short_cmd_req_addr = NULL;
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
|
|
{
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
bp->hwrm_short_cmd_req_addr =
|
|
dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
|
|
&bp->hwrm_short_cmd_req_dma_addr,
|
|
GFP_KERNEL);
|
|
if (!bp->hwrm_short_cmd_req_addr)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_free_stats(struct bnxt *bp)
|
|
{
|
|
u32 size, i;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
if (bp->hw_rx_port_stats) {
|
|
dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
|
|
bp->hw_rx_port_stats,
|
|
bp->hw_rx_port_stats_map);
|
|
bp->hw_rx_port_stats = NULL;
|
|
bp->flags &= ~BNXT_FLAG_PORT_STATS;
|
|
}
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
size = sizeof(struct ctx_hw_stats);
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
|
|
if (cpr->hw_stats) {
|
|
dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
|
|
cpr->hw_stats_map);
|
|
cpr->hw_stats = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_stats(struct bnxt *bp)
|
|
{
|
|
u32 size, i;
|
|
struct pci_dev *pdev = bp->pdev;
|
|
|
|
size = sizeof(struct ctx_hw_stats);
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
|
|
cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
|
|
&cpr->hw_stats_map,
|
|
GFP_KERNEL);
|
|
if (!cpr->hw_stats)
|
|
return -ENOMEM;
|
|
|
|
cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
|
|
}
|
|
|
|
if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
|
|
bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
|
|
sizeof(struct tx_port_stats) + 1024;
|
|
|
|
bp->hw_rx_port_stats =
|
|
dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
|
|
&bp->hw_rx_port_stats_map,
|
|
GFP_KERNEL);
|
|
if (!bp->hw_rx_port_stats)
|
|
return -ENOMEM;
|
|
|
|
bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
|
|
512;
|
|
bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
|
|
sizeof(struct rx_port_stats) + 512;
|
|
bp->flags |= BNXT_FLAG_PORT_STATS;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_clear_ring_indices(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr;
|
|
struct bnxt_rx_ring_info *rxr;
|
|
struct bnxt_tx_ring_info *txr;
|
|
|
|
if (!bnapi)
|
|
continue;
|
|
|
|
cpr = &bnapi->cp_ring;
|
|
cpr->cp_raw_cons = 0;
|
|
|
|
txr = bnapi->tx_ring;
|
|
if (txr) {
|
|
txr->tx_prod = 0;
|
|
txr->tx_cons = 0;
|
|
}
|
|
|
|
rxr = bnapi->rx_ring;
|
|
if (rxr) {
|
|
rxr->rx_prod = 0;
|
|
rxr->rx_agg_prod = 0;
|
|
rxr->rx_sw_agg_prod = 0;
|
|
rxr->rx_next_cons = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
|
|
{
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
int i;
|
|
|
|
/* Under rtnl_lock and all our NAPIs have been disabled. It's
|
|
* safe to delete the hash table.
|
|
*/
|
|
for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
|
|
struct hlist_head *head;
|
|
struct hlist_node *tmp;
|
|
struct bnxt_ntuple_filter *fltr;
|
|
|
|
head = &bp->ntp_fltr_hash_tbl[i];
|
|
hlist_for_each_entry_safe(fltr, tmp, head, hash) {
|
|
hlist_del(&fltr->hash);
|
|
kfree(fltr);
|
|
}
|
|
}
|
|
if (irq_reinit) {
|
|
kfree(bp->ntp_fltr_bmap);
|
|
bp->ntp_fltr_bmap = NULL;
|
|
}
|
|
bp->ntp_fltr_count = 0;
|
|
#endif
|
|
}
|
|
|
|
static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
|
|
{
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
int i, rc = 0;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_RFS))
|
|
return 0;
|
|
|
|
for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
|
|
INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
|
|
|
|
bp->ntp_fltr_count = 0;
|
|
bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
|
|
sizeof(long),
|
|
GFP_KERNEL);
|
|
|
|
if (!bp->ntp_fltr_bmap)
|
|
rc = -ENOMEM;
|
|
|
|
return rc;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
|
|
{
|
|
bnxt_free_vnic_attributes(bp);
|
|
bnxt_free_tx_rings(bp);
|
|
bnxt_free_rx_rings(bp);
|
|
bnxt_free_cp_rings(bp);
|
|
bnxt_free_ntp_fltrs(bp, irq_re_init);
|
|
if (irq_re_init) {
|
|
bnxt_free_stats(bp);
|
|
bnxt_free_ring_grps(bp);
|
|
bnxt_free_vnics(bp);
|
|
kfree(bp->tx_ring_map);
|
|
bp->tx_ring_map = NULL;
|
|
kfree(bp->tx_ring);
|
|
bp->tx_ring = NULL;
|
|
kfree(bp->rx_ring);
|
|
bp->rx_ring = NULL;
|
|
kfree(bp->bnapi);
|
|
bp->bnapi = NULL;
|
|
} else {
|
|
bnxt_clear_ring_indices(bp);
|
|
}
|
|
}
|
|
|
|
static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
|
|
{
|
|
int i, j, rc, size, arr_size;
|
|
void *bnapi;
|
|
|
|
if (irq_re_init) {
|
|
/* Allocate bnapi mem pointer array and mem block for
|
|
* all queues
|
|
*/
|
|
arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
|
|
bp->cp_nr_rings);
|
|
size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
|
|
bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
|
|
if (!bnapi)
|
|
return -ENOMEM;
|
|
|
|
bp->bnapi = bnapi;
|
|
bnapi += arr_size;
|
|
for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
|
|
bp->bnapi[i] = bnapi;
|
|
bp->bnapi[i]->index = i;
|
|
bp->bnapi[i]->bp = bp;
|
|
}
|
|
|
|
bp->rx_ring = kcalloc(bp->rx_nr_rings,
|
|
sizeof(struct bnxt_rx_ring_info),
|
|
GFP_KERNEL);
|
|
if (!bp->rx_ring)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
bp->rx_ring[i].bnapi = bp->bnapi[i];
|
|
bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
|
|
}
|
|
|
|
bp->tx_ring = kcalloc(bp->tx_nr_rings,
|
|
sizeof(struct bnxt_tx_ring_info),
|
|
GFP_KERNEL);
|
|
if (!bp->tx_ring)
|
|
return -ENOMEM;
|
|
|
|
bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
|
|
GFP_KERNEL);
|
|
|
|
if (!bp->tx_ring_map)
|
|
return -ENOMEM;
|
|
|
|
if (bp->flags & BNXT_FLAG_SHARED_RINGS)
|
|
j = 0;
|
|
else
|
|
j = bp->rx_nr_rings;
|
|
|
|
for (i = 0; i < bp->tx_nr_rings; i++, j++) {
|
|
bp->tx_ring[i].bnapi = bp->bnapi[j];
|
|
bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
|
|
bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
|
|
if (i >= bp->tx_nr_rings_xdp) {
|
|
bp->tx_ring[i].txq_index = i -
|
|
bp->tx_nr_rings_xdp;
|
|
bp->bnapi[j]->tx_int = bnxt_tx_int;
|
|
} else {
|
|
bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
|
|
bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
|
|
}
|
|
}
|
|
|
|
rc = bnxt_alloc_stats(bp);
|
|
if (rc)
|
|
goto alloc_mem_err;
|
|
|
|
rc = bnxt_alloc_ntp_fltrs(bp);
|
|
if (rc)
|
|
goto alloc_mem_err;
|
|
|
|
rc = bnxt_alloc_vnics(bp);
|
|
if (rc)
|
|
goto alloc_mem_err;
|
|
}
|
|
|
|
bnxt_init_ring_struct(bp);
|
|
|
|
rc = bnxt_alloc_rx_rings(bp);
|
|
if (rc)
|
|
goto alloc_mem_err;
|
|
|
|
rc = bnxt_alloc_tx_rings(bp);
|
|
if (rc)
|
|
goto alloc_mem_err;
|
|
|
|
rc = bnxt_alloc_cp_rings(bp);
|
|
if (rc)
|
|
goto alloc_mem_err;
|
|
|
|
bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
|
|
BNXT_VNIC_UCAST_FLAG;
|
|
rc = bnxt_alloc_vnic_attributes(bp);
|
|
if (rc)
|
|
goto alloc_mem_err;
|
|
return 0;
|
|
|
|
alloc_mem_err:
|
|
bnxt_free_mem(bp, true);
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_disable_int(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
|
|
|
|
if (ring->fw_ring_id != INVALID_HW_RING_ID)
|
|
BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
|
|
}
|
|
}
|
|
|
|
static void bnxt_disable_int_sync(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
atomic_inc(&bp->intr_sem);
|
|
|
|
bnxt_disable_int(bp);
|
|
for (i = 0; i < bp->cp_nr_rings; i++)
|
|
synchronize_irq(bp->irq_tbl[i].vector);
|
|
}
|
|
|
|
static void bnxt_enable_int(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
atomic_set(&bp->intr_sem, 0);
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
|
|
BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
|
|
}
|
|
}
|
|
|
|
void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
|
|
u16 cmpl_ring, u16 target_id)
|
|
{
|
|
struct input *req = request;
|
|
|
|
req->req_type = cpu_to_le16(req_type);
|
|
req->cmpl_ring = cpu_to_le16(cmpl_ring);
|
|
req->target_id = cpu_to_le16(target_id);
|
|
req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
|
|
}
|
|
|
|
static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
|
|
int timeout, bool silent)
|
|
{
|
|
int i, intr_process, rc, tmo_count;
|
|
struct input *req = msg;
|
|
u32 *data = msg;
|
|
__le32 *resp_len, *valid;
|
|
u16 cp_ring_id, len = 0;
|
|
struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
|
|
u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
|
|
|
|
req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
|
|
memset(resp, 0, PAGE_SIZE);
|
|
cp_ring_id = le16_to_cpu(req->cmpl_ring);
|
|
intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
|
|
|
|
if (bp->flags & BNXT_FLAG_SHORT_CMD) {
|
|
void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
|
|
struct hwrm_short_input short_input = {0};
|
|
|
|
memcpy(short_cmd_req, req, msg_len);
|
|
memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
|
|
msg_len);
|
|
|
|
short_input.req_type = req->req_type;
|
|
short_input.signature =
|
|
cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
|
|
short_input.size = cpu_to_le16(msg_len);
|
|
short_input.req_addr =
|
|
cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
|
|
|
|
data = (u32 *)&short_input;
|
|
msg_len = sizeof(short_input);
|
|
|
|
/* Sync memory write before updating doorbell */
|
|
wmb();
|
|
|
|
max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
|
|
}
|
|
|
|
/* Write request msg to hwrm channel */
|
|
__iowrite32_copy(bp->bar0, data, msg_len / 4);
|
|
|
|
for (i = msg_len; i < max_req_len; i += 4)
|
|
writel(0, bp->bar0 + i);
|
|
|
|
/* currently supports only one outstanding message */
|
|
if (intr_process)
|
|
bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
|
|
|
|
/* Ring channel doorbell */
|
|
writel(1, bp->bar0 + 0x100);
|
|
|
|
if (!timeout)
|
|
timeout = DFLT_HWRM_CMD_TIMEOUT;
|
|
|
|
i = 0;
|
|
tmo_count = timeout * 40;
|
|
if (intr_process) {
|
|
/* Wait until hwrm response cmpl interrupt is processed */
|
|
while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
|
|
i++ < tmo_count) {
|
|
usleep_range(25, 40);
|
|
}
|
|
|
|
if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
|
|
netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
|
|
le16_to_cpu(req->req_type));
|
|
return -1;
|
|
}
|
|
} else {
|
|
/* Check if response len is updated */
|
|
resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
|
|
for (i = 0; i < tmo_count; i++) {
|
|
len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
|
|
HWRM_RESP_LEN_SFT;
|
|
if (len)
|
|
break;
|
|
usleep_range(25, 40);
|
|
}
|
|
|
|
if (i >= tmo_count) {
|
|
netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
|
|
timeout, le16_to_cpu(req->req_type),
|
|
le16_to_cpu(req->seq_id), len);
|
|
return -1;
|
|
}
|
|
|
|
/* Last word of resp contains valid bit */
|
|
valid = bp->hwrm_cmd_resp_addr + len - 4;
|
|
for (i = 0; i < 5; i++) {
|
|
if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
if (i >= 5) {
|
|
netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
|
|
timeout, le16_to_cpu(req->req_type),
|
|
le16_to_cpu(req->seq_id), len, *valid);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
rc = le16_to_cpu(resp->error_code);
|
|
if (rc && !silent)
|
|
netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
|
|
le16_to_cpu(resp->req_type),
|
|
le16_to_cpu(resp->seq_id), rc);
|
|
return rc;
|
|
}
|
|
|
|
int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
|
|
{
|
|
return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
|
|
}
|
|
|
|
int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
|
|
{
|
|
int rc;
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, msg, msg_len, timeout);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
|
|
int timeout)
|
|
{
|
|
int rc;
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
|
|
int bmap_size)
|
|
{
|
|
struct hwrm_func_drv_rgtr_input req = {0};
|
|
DECLARE_BITMAP(async_events_bmap, 256);
|
|
u32 *events = (u32 *)async_events_bmap;
|
|
int i;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
|
|
|
|
req.enables =
|
|
cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
|
|
|
|
memset(async_events_bmap, 0, sizeof(async_events_bmap));
|
|
for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
|
|
__set_bit(bnxt_async_events_arr[i], async_events_bmap);
|
|
|
|
if (bmap && bmap_size) {
|
|
for (i = 0; i < bmap_size; i++) {
|
|
if (test_bit(i, bmap))
|
|
__set_bit(i, async_events_bmap);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 8; i++)
|
|
req.async_event_fwd[i] |= cpu_to_le32(events[i]);
|
|
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
|
|
{
|
|
struct hwrm_func_drv_rgtr_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
|
|
|
|
req.enables =
|
|
cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
|
|
FUNC_DRV_RGTR_REQ_ENABLES_VER);
|
|
|
|
req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
|
|
req.ver_maj = DRV_VER_MAJ;
|
|
req.ver_min = DRV_VER_MIN;
|
|
req.ver_upd = DRV_VER_UPD;
|
|
|
|
if (BNXT_PF(bp)) {
|
|
DECLARE_BITMAP(vf_req_snif_bmap, 256);
|
|
u32 *data = (u32 *)vf_req_snif_bmap;
|
|
int i;
|
|
|
|
memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
|
|
for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
|
|
__set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
req.vf_req_fwd[i] = cpu_to_le32(data[i]);
|
|
|
|
req.enables |=
|
|
cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
|
|
}
|
|
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
|
|
{
|
|
struct hwrm_func_drv_unrgtr_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
|
|
{
|
|
u32 rc = 0;
|
|
struct hwrm_tunnel_dst_port_free_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
|
|
req.tunnel_type = tunnel_type;
|
|
|
|
switch (tunnel_type) {
|
|
case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
|
|
req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
|
|
break;
|
|
case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
|
|
req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
|
|
u8 tunnel_type)
|
|
{
|
|
u32 rc = 0;
|
|
struct hwrm_tunnel_dst_port_alloc_input req = {0};
|
|
struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
|
|
|
|
req.tunnel_type = tunnel_type;
|
|
req.tunnel_dst_port_val = port;
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
|
|
rc);
|
|
goto err_out;
|
|
}
|
|
|
|
switch (tunnel_type) {
|
|
case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
|
|
bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
|
|
break;
|
|
case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
|
|
bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
err_out:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
|
|
{
|
|
struct hwrm_cfa_l2_set_rx_mask_input req = {0};
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
|
|
req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
|
|
|
|
req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
|
|
req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
|
|
req.mask = cpu_to_le32(vnic->rx_mask);
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
|
|
struct bnxt_ntuple_filter *fltr)
|
|
{
|
|
struct hwrm_cfa_ntuple_filter_free_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
|
|
req.ntuple_filter_id = fltr->filter_id;
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
#define BNXT_NTP_FLTR_FLAGS \
|
|
(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
|
|
|
|
#define BNXT_NTP_TUNNEL_FLTR_FLAG \
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
|
|
|
|
static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
|
|
struct bnxt_ntuple_filter *fltr)
|
|
{
|
|
int rc = 0;
|
|
struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
|
|
struct hwrm_cfa_ntuple_filter_alloc_output *resp =
|
|
bp->hwrm_cmd_resp_addr;
|
|
struct flow_keys *keys = &fltr->fkeys;
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
|
|
req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
|
|
|
|
req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
|
|
|
|
req.ethertype = htons(ETH_P_IP);
|
|
memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
|
|
req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
|
|
req.ip_protocol = keys->basic.ip_proto;
|
|
|
|
if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
|
|
int i;
|
|
|
|
req.ethertype = htons(ETH_P_IPV6);
|
|
req.ip_addr_type =
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
|
|
*(struct in6_addr *)&req.src_ipaddr[0] =
|
|
keys->addrs.v6addrs.src;
|
|
*(struct in6_addr *)&req.dst_ipaddr[0] =
|
|
keys->addrs.v6addrs.dst;
|
|
for (i = 0; i < 4; i++) {
|
|
req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
|
|
req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
|
|
}
|
|
} else {
|
|
req.src_ipaddr[0] = keys->addrs.v4addrs.src;
|
|
req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
|
|
req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
|
|
req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
|
|
}
|
|
if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
|
|
req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
|
|
req.tunnel_type =
|
|
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
|
|
}
|
|
|
|
req.src_port = keys->ports.src;
|
|
req.src_port_mask = cpu_to_be16(0xffff);
|
|
req.dst_port = keys->ports.dst;
|
|
req.dst_port_mask = cpu_to_be16(0xffff);
|
|
|
|
req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc)
|
|
fltr->filter_id = resp->ntuple_filter_id;
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
#endif
|
|
|
|
static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
|
|
u8 *mac_addr)
|
|
{
|
|
u32 rc = 0;
|
|
struct hwrm_cfa_l2_filter_alloc_input req = {0};
|
|
struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
|
|
req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
|
|
if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
req.flags |=
|
|
cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
|
|
req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
|
|
req.enables =
|
|
cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
|
|
CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
|
|
CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
|
|
memcpy(req.l2_addr, mac_addr, ETH_ALEN);
|
|
req.l2_addr_mask[0] = 0xff;
|
|
req.l2_addr_mask[1] = 0xff;
|
|
req.l2_addr_mask[2] = 0xff;
|
|
req.l2_addr_mask[3] = 0xff;
|
|
req.l2_addr_mask[4] = 0xff;
|
|
req.l2_addr_mask[5] = 0xff;
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc)
|
|
bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
|
|
resp->l2_filter_id;
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
|
|
{
|
|
u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
|
|
int rc = 0;
|
|
|
|
/* Any associated ntuple filters will also be cleared by firmware. */
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
for (i = 0; i < num_of_vnics; i++) {
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
|
|
|
|
for (j = 0; j < vnic->uc_filter_count; j++) {
|
|
struct hwrm_cfa_l2_filter_free_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req,
|
|
HWRM_CFA_L2_FILTER_FREE, -1, -1);
|
|
|
|
req.l2_filter_id = vnic->fw_l2_filter_id[j];
|
|
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req),
|
|
HWRM_CMD_TIMEOUT);
|
|
}
|
|
vnic->uc_filter_count = 0;
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
|
|
{
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
|
|
struct hwrm_vnic_tpa_cfg_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
|
|
|
|
if (tpa_flags) {
|
|
u16 mss = bp->dev->mtu - 40;
|
|
u32 nsegs, n, segs = 0, flags;
|
|
|
|
flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
|
|
VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
|
|
VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
|
|
VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
|
|
VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
|
|
if (tpa_flags & BNXT_FLAG_GRO)
|
|
flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
|
|
|
|
req.flags = cpu_to_le32(flags);
|
|
|
|
req.enables =
|
|
cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
|
|
VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
|
|
VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
|
|
|
|
/* Number of segs are log2 units, and first packet is not
|
|
* included as part of this units.
|
|
*/
|
|
if (mss <= BNXT_RX_PAGE_SIZE) {
|
|
n = BNXT_RX_PAGE_SIZE / mss;
|
|
nsegs = (MAX_SKB_FRAGS - 1) * n;
|
|
} else {
|
|
n = mss / BNXT_RX_PAGE_SIZE;
|
|
if (mss & (BNXT_RX_PAGE_SIZE - 1))
|
|
n++;
|
|
nsegs = (MAX_SKB_FRAGS - n) / n;
|
|
}
|
|
|
|
segs = ilog2(nsegs);
|
|
req.max_agg_segs = cpu_to_le16(segs);
|
|
req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
|
|
|
|
req.min_agg_len = cpu_to_le32(512);
|
|
}
|
|
req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
|
|
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
|
|
{
|
|
u32 i, j, max_rings;
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
|
|
struct hwrm_vnic_rss_cfg_input req = {0};
|
|
|
|
if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
|
|
if (set_rss) {
|
|
req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
|
|
if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
max_rings = bp->rx_nr_rings - 1;
|
|
else
|
|
max_rings = bp->rx_nr_rings;
|
|
} else {
|
|
max_rings = 1;
|
|
}
|
|
|
|
/* Fill the RSS indirection table with ring group ids */
|
|
for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
|
|
if (j == max_rings)
|
|
j = 0;
|
|
vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
|
|
}
|
|
|
|
req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
|
|
req.hash_key_tbl_addr =
|
|
cpu_to_le64(vnic->rss_hash_key_dma_addr);
|
|
}
|
|
req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
|
|
{
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
|
|
struct hwrm_vnic_plcmodes_cfg_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
|
|
req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
|
|
VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
|
|
VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
|
|
req.enables =
|
|
cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
|
|
VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
|
|
/* thresholds not implemented in firmware yet */
|
|
req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
|
|
req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
|
|
req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
|
|
u16 ctx_idx)
|
|
{
|
|
struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
|
|
req.rss_cos_lb_ctx_id =
|
|
cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
|
|
|
|
hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
|
|
}
|
|
|
|
static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < bp->nr_vnics; i++) {
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
|
|
|
|
for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
|
|
if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
|
|
bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
|
|
}
|
|
}
|
|
bp->rsscos_nr_ctxs = 0;
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
|
|
{
|
|
int rc;
|
|
struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
|
|
struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
|
|
bp->hwrm_cmd_resp_addr;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
|
|
-1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc)
|
|
bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
|
|
le16_to_cpu(resp->rss_cos_lb_ctx_id);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
|
|
{
|
|
unsigned int ring = 0, grp_idx;
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
|
|
struct hwrm_vnic_cfg_input req = {0};
|
|
u16 def_vlan = 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
|
|
|
|
req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
|
|
/* Only RSS support for now TBD: COS & LB */
|
|
if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
|
|
req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
|
|
req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
|
|
VNIC_CFG_REQ_ENABLES_MRU);
|
|
} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
|
|
req.rss_rule =
|
|
cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
|
|
req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
|
|
VNIC_CFG_REQ_ENABLES_MRU);
|
|
req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
|
|
} else {
|
|
req.rss_rule = cpu_to_le16(0xffff);
|
|
}
|
|
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
|
|
(vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
|
|
req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
|
|
req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
|
|
} else {
|
|
req.cos_rule = cpu_to_le16(0xffff);
|
|
}
|
|
|
|
if (vnic->flags & BNXT_VNIC_RSS_FLAG)
|
|
ring = 0;
|
|
else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
|
|
ring = vnic_id - 1;
|
|
else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
ring = bp->rx_nr_rings - 1;
|
|
|
|
grp_idx = bp->rx_ring[ring].bnapi->index;
|
|
req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
|
|
req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
|
|
|
|
req.lb_rule = cpu_to_le16(0xffff);
|
|
req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
|
|
VLAN_HLEN);
|
|
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
if (BNXT_VF(bp))
|
|
def_vlan = bp->vf.vlan;
|
|
#endif
|
|
if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
|
|
req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
|
|
if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
|
|
req.flags |=
|
|
cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
|
|
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
|
|
{
|
|
u32 rc = 0;
|
|
|
|
if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
|
|
struct hwrm_vnic_free_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
|
|
req.vnic_id =
|
|
cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
|
|
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
return rc;
|
|
bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_hwrm_vnic_free(struct bnxt *bp)
|
|
{
|
|
u16 i;
|
|
|
|
for (i = 0; i < bp->nr_vnics; i++)
|
|
bnxt_hwrm_vnic_free_one(bp, i);
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
|
|
unsigned int start_rx_ring_idx,
|
|
unsigned int nr_rings)
|
|
{
|
|
int rc = 0;
|
|
unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
|
|
struct hwrm_vnic_alloc_input req = {0};
|
|
struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
|
|
|
|
/* map ring groups to this vnic */
|
|
for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
|
|
grp_idx = bp->rx_ring[i].bnapi->index;
|
|
if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
|
|
netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
|
|
j, nr_rings);
|
|
break;
|
|
}
|
|
bp->vnic_info[vnic_id].fw_grp_ids[j] =
|
|
bp->grp_info[grp_idx].fw_grp_id;
|
|
}
|
|
|
|
bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
|
|
bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
|
|
if (vnic_id == 0)
|
|
req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc)
|
|
bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
|
|
{
|
|
struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct hwrm_vnic_qcaps_input req = {0};
|
|
int rc;
|
|
|
|
if (bp->hwrm_spec_code < 0x10600)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc) {
|
|
if (resp->flags &
|
|
cpu_to_le32(VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
|
|
bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
|
|
{
|
|
u16 i;
|
|
u32 rc = 0;
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct hwrm_ring_grp_alloc_input req = {0};
|
|
struct hwrm_ring_grp_alloc_output *resp =
|
|
bp->hwrm_cmd_resp_addr;
|
|
unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
|
|
|
|
req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
|
|
req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
|
|
req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
|
|
req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
|
|
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req),
|
|
HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
break;
|
|
|
|
bp->grp_info[grp_idx].fw_grp_id =
|
|
le32_to_cpu(resp->ring_group_id);
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
|
|
{
|
|
u16 i;
|
|
u32 rc = 0;
|
|
struct hwrm_ring_grp_free_input req = {0};
|
|
|
|
if (!bp->grp_info)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
|
|
continue;
|
|
req.ring_group_id =
|
|
cpu_to_le32(bp->grp_info[i].fw_grp_id);
|
|
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req),
|
|
HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
break;
|
|
bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
|
|
struct bnxt_ring_struct *ring,
|
|
u32 ring_type, u32 map_index,
|
|
u32 stats_ctx_id)
|
|
{
|
|
int rc = 0, err = 0;
|
|
struct hwrm_ring_alloc_input req = {0};
|
|
struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
|
|
u16 ring_id;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
|
|
|
|
req.enables = 0;
|
|
if (ring->nr_pages > 1) {
|
|
req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
|
|
/* Page size is in log2 units */
|
|
req.page_size = BNXT_PAGE_SHIFT;
|
|
req.page_tbl_depth = 1;
|
|
} else {
|
|
req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
|
|
}
|
|
req.fbo = 0;
|
|
/* Association of ring index with doorbell index and MSIX number */
|
|
req.logical_id = cpu_to_le16(map_index);
|
|
|
|
switch (ring_type) {
|
|
case HWRM_RING_ALLOC_TX:
|
|
req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
|
|
/* Association of transmit ring with completion ring */
|
|
req.cmpl_ring_id =
|
|
cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
|
|
req.length = cpu_to_le32(bp->tx_ring_mask + 1);
|
|
req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
|
|
req.queue_id = cpu_to_le16(ring->queue_id);
|
|
break;
|
|
case HWRM_RING_ALLOC_RX:
|
|
req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
|
|
req.length = cpu_to_le32(bp->rx_ring_mask + 1);
|
|
break;
|
|
case HWRM_RING_ALLOC_AGG:
|
|
req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
|
|
req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
|
|
break;
|
|
case HWRM_RING_ALLOC_CMPL:
|
|
req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
|
|
req.length = cpu_to_le32(bp->cp_ring_mask + 1);
|
|
if (bp->flags & BNXT_FLAG_USING_MSIX)
|
|
req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
|
|
break;
|
|
default:
|
|
netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
|
|
ring_type);
|
|
return -1;
|
|
}
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
err = le16_to_cpu(resp->error_code);
|
|
ring_id = le16_to_cpu(resp->ring_id);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
|
|
if (rc || err) {
|
|
switch (ring_type) {
|
|
case RING_FREE_REQ_RING_TYPE_L2_CMPL:
|
|
netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
|
|
rc, err);
|
|
return -1;
|
|
|
|
case RING_FREE_REQ_RING_TYPE_RX:
|
|
netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
|
|
rc, err);
|
|
return -1;
|
|
|
|
case RING_FREE_REQ_RING_TYPE_TX:
|
|
netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
|
|
rc, err);
|
|
return -1;
|
|
|
|
default:
|
|
netdev_err(bp->dev, "Invalid ring\n");
|
|
return -1;
|
|
}
|
|
}
|
|
ring->fw_ring_id = ring_id;
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
|
|
{
|
|
int rc;
|
|
|
|
if (BNXT_PF(bp)) {
|
|
struct hwrm_func_cfg_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
|
|
req.fid = cpu_to_le16(0xffff);
|
|
req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
|
|
req.async_event_cr = cpu_to_le16(idx);
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
} else {
|
|
struct hwrm_func_vf_cfg_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
|
|
req.enables =
|
|
cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
|
|
req.async_event_cr = cpu_to_le16(idx);
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
|
|
{
|
|
int i, rc = 0;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
|
|
|
|
cpr->cp_doorbell = bp->bar1 + i * 0x80;
|
|
rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
|
|
INVALID_STATS_CTX_ID);
|
|
if (rc)
|
|
goto err_out;
|
|
BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
|
|
bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
|
|
|
|
if (!i) {
|
|
rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < bp->tx_nr_rings; i++) {
|
|
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
|
|
struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
|
|
u32 map_idx = txr->bnapi->index;
|
|
u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
|
|
|
|
rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
|
|
map_idx, fw_stats_ctx);
|
|
if (rc)
|
|
goto err_out;
|
|
txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
|
|
}
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
|
|
u32 map_idx = rxr->bnapi->index;
|
|
|
|
rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
|
|
map_idx, INVALID_STATS_CTX_ID);
|
|
if (rc)
|
|
goto err_out;
|
|
rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
|
|
writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
|
|
bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
|
|
}
|
|
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS) {
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
struct bnxt_ring_struct *ring =
|
|
&rxr->rx_agg_ring_struct;
|
|
u32 grp_idx = rxr->bnapi->index;
|
|
u32 map_idx = grp_idx + bp->rx_nr_rings;
|
|
|
|
rc = hwrm_ring_alloc_send_msg(bp, ring,
|
|
HWRM_RING_ALLOC_AGG,
|
|
map_idx,
|
|
INVALID_STATS_CTX_ID);
|
|
if (rc)
|
|
goto err_out;
|
|
|
|
rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
|
|
writel(DB_KEY_RX | rxr->rx_agg_prod,
|
|
rxr->rx_agg_doorbell);
|
|
bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
|
|
}
|
|
}
|
|
err_out:
|
|
return rc;
|
|
}
|
|
|
|
static int hwrm_ring_free_send_msg(struct bnxt *bp,
|
|
struct bnxt_ring_struct *ring,
|
|
u32 ring_type, int cmpl_ring_id)
|
|
{
|
|
int rc;
|
|
struct hwrm_ring_free_input req = {0};
|
|
struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
|
|
u16 error_code;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
|
|
req.ring_type = ring_type;
|
|
req.ring_id = cpu_to_le16(ring->fw_ring_id);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
error_code = le16_to_cpu(resp->error_code);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
|
|
if (rc || error_code) {
|
|
switch (ring_type) {
|
|
case RING_FREE_REQ_RING_TYPE_L2_CMPL:
|
|
netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
|
|
rc);
|
|
return rc;
|
|
case RING_FREE_REQ_RING_TYPE_RX:
|
|
netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
|
|
rc);
|
|
return rc;
|
|
case RING_FREE_REQ_RING_TYPE_TX:
|
|
netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
|
|
rc);
|
|
return rc;
|
|
default:
|
|
netdev_err(bp->dev, "Invalid ring\n");
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
|
|
{
|
|
int i;
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
for (i = 0; i < bp->tx_nr_rings; i++) {
|
|
struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
|
|
struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
|
|
u32 grp_idx = txr->bnapi->index;
|
|
u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
|
|
|
|
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
|
|
hwrm_ring_free_send_msg(bp, ring,
|
|
RING_FREE_REQ_RING_TYPE_TX,
|
|
close_path ? cmpl_ring_id :
|
|
INVALID_HW_RING_ID);
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
|
|
u32 grp_idx = rxr->bnapi->index;
|
|
u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
|
|
|
|
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
|
|
hwrm_ring_free_send_msg(bp, ring,
|
|
RING_FREE_REQ_RING_TYPE_RX,
|
|
close_path ? cmpl_ring_id :
|
|
INVALID_HW_RING_ID);
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
bp->grp_info[grp_idx].rx_fw_ring_id =
|
|
INVALID_HW_RING_ID;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
|
|
struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
|
|
u32 grp_idx = rxr->bnapi->index;
|
|
u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
|
|
|
|
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
|
|
hwrm_ring_free_send_msg(bp, ring,
|
|
RING_FREE_REQ_RING_TYPE_RX,
|
|
close_path ? cmpl_ring_id :
|
|
INVALID_HW_RING_ID);
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
bp->grp_info[grp_idx].agg_fw_ring_id =
|
|
INVALID_HW_RING_ID;
|
|
}
|
|
}
|
|
|
|
/* The completion rings are about to be freed. After that the
|
|
* IRQ doorbell will not work anymore. So we need to disable
|
|
* IRQ here.
|
|
*/
|
|
bnxt_disable_int_sync(bp);
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
|
|
|
|
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
|
|
hwrm_ring_free_send_msg(bp, ring,
|
|
RING_FREE_REQ_RING_TYPE_L2_CMPL,
|
|
INVALID_HW_RING_ID);
|
|
ring->fw_ring_id = INVALID_HW_RING_ID;
|
|
bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Caller must hold bp->hwrm_cmd_lock */
|
|
int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
|
|
{
|
|
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct hwrm_func_qcfg_input req = {0};
|
|
int rc;
|
|
|
|
if (bp->hwrm_spec_code < 0x10601)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
|
|
req.fid = cpu_to_le16(fid);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc)
|
|
*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_reserve_tx_rings(struct bnxt *bp, int *tx_rings)
|
|
{
|
|
struct hwrm_func_cfg_input req = {0};
|
|
int rc;
|
|
|
|
if (bp->hwrm_spec_code < 0x10601)
|
|
return 0;
|
|
|
|
if (BNXT_VF(bp))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
|
|
req.fid = cpu_to_le16(0xffff);
|
|
req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS);
|
|
req.num_tx_rings = cpu_to_le16(*tx_rings);
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
return rc;
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = __bnxt_hwrm_get_tx_rings(bp, 0xffff, tx_rings);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
|
|
u32 buf_tmrs, u16 flags,
|
|
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
|
|
{
|
|
req->flags = cpu_to_le16(flags);
|
|
req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
|
|
req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
|
|
req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
|
|
req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
|
|
/* Minimum time between 2 interrupts set to buf_tmr x 2 */
|
|
req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
|
|
req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
|
|
req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
|
|
}
|
|
|
|
int bnxt_hwrm_set_coal(struct bnxt *bp)
|
|
{
|
|
int i, rc = 0;
|
|
struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
|
|
req_tx = {0}, *req;
|
|
u16 max_buf, max_buf_irq;
|
|
u16 buf_tmr, buf_tmr_irq;
|
|
u32 flags;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
|
|
HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
|
|
HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
|
|
|
|
/* Each rx completion (2 records) should be DMAed immediately.
|
|
* DMA 1/4 of the completion buffers at a time.
|
|
*/
|
|
max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
|
|
/* max_buf must not be zero */
|
|
max_buf = clamp_t(u16, max_buf, 1, 63);
|
|
max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
|
|
buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
|
|
/* buf timer set to 1/4 of interrupt timer */
|
|
buf_tmr = max_t(u16, buf_tmr / 4, 1);
|
|
buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
|
|
buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
|
|
|
|
flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
|
|
|
|
/* RING_IDLE generates more IRQs for lower latency. Enable it only
|
|
* if coal_ticks is less than 25 us.
|
|
*/
|
|
if (bp->rx_coal_ticks < 25)
|
|
flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
|
|
|
|
bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
|
|
buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
|
|
|
|
/* max_buf must not be zero */
|
|
max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
|
|
max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
|
|
buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
|
|
/* buf timer set to 1/4 of interrupt timer */
|
|
buf_tmr = max_t(u16, buf_tmr / 4, 1);
|
|
buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
|
|
buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
|
|
|
|
flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
|
|
bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
|
|
buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
|
|
req = &req_rx;
|
|
if (!bnapi->rx_ring)
|
|
req = &req_tx;
|
|
req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
|
|
|
|
rc = _hwrm_send_message(bp, req, sizeof(*req),
|
|
HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
break;
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
|
|
{
|
|
int rc = 0, i;
|
|
struct hwrm_stat_ctx_free_input req = {0};
|
|
|
|
if (!bp->bnapi)
|
|
return 0;
|
|
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
|
|
if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
|
|
req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
|
|
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req),
|
|
HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
break;
|
|
|
|
cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
|
|
}
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
|
|
{
|
|
int rc = 0, i;
|
|
struct hwrm_stat_ctx_alloc_input req = {0};
|
|
struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
|
|
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
|
|
|
|
req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
|
|
req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
|
|
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req),
|
|
HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
break;
|
|
|
|
cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
|
|
|
|
bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
|
|
{
|
|
struct hwrm_func_qcfg_input req = {0};
|
|
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
|
|
req.fid = cpu_to_le16(0xffff);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
goto func_qcfg_exit;
|
|
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
if (BNXT_VF(bp)) {
|
|
struct bnxt_vf_info *vf = &bp->vf;
|
|
|
|
vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
|
|
}
|
|
#endif
|
|
if (BNXT_PF(bp)) {
|
|
u16 flags = le16_to_cpu(resp->flags);
|
|
|
|
if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
|
|
FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED))
|
|
bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
|
|
if (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)
|
|
bp->flags |= BNXT_FLAG_MULTI_HOST;
|
|
}
|
|
|
|
switch (resp->port_partition_type) {
|
|
case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
|
|
case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
|
|
case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
|
|
bp->port_partition_type = resp->port_partition_type;
|
|
break;
|
|
}
|
|
|
|
func_qcfg_exit:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
|
|
{
|
|
int rc = 0;
|
|
struct hwrm_func_qcaps_input req = {0};
|
|
struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
|
|
req.fid = cpu_to_le16(0xffff);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
goto hwrm_func_qcaps_exit;
|
|
|
|
if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
|
|
bp->flags |= BNXT_FLAG_ROCEV1_CAP;
|
|
if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
|
|
bp->flags |= BNXT_FLAG_ROCEV2_CAP;
|
|
|
|
bp->tx_push_thresh = 0;
|
|
if (resp->flags &
|
|
cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
|
|
bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
|
|
|
|
if (BNXT_PF(bp)) {
|
|
struct bnxt_pf_info *pf = &bp->pf;
|
|
|
|
pf->fw_fid = le16_to_cpu(resp->fid);
|
|
pf->port_id = le16_to_cpu(resp->port_id);
|
|
bp->dev->dev_port = pf->port_id;
|
|
memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
|
|
memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
|
|
pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
|
|
pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
|
|
pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
|
|
pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
|
|
pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
|
|
if (!pf->max_hw_ring_grps)
|
|
pf->max_hw_ring_grps = pf->max_tx_rings;
|
|
pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
|
|
pf->max_vnics = le16_to_cpu(resp->max_vnics);
|
|
pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
|
|
pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
|
|
pf->max_vfs = le16_to_cpu(resp->max_vfs);
|
|
pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
|
|
pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
|
|
pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
|
|
pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
|
|
pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
|
|
pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
|
|
if (resp->flags &
|
|
cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED))
|
|
bp->flags |= BNXT_FLAG_WOL_CAP;
|
|
} else {
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
struct bnxt_vf_info *vf = &bp->vf;
|
|
|
|
vf->fw_fid = le16_to_cpu(resp->fid);
|
|
|
|
vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
|
|
vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
|
|
vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
|
|
vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
|
|
vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
|
|
if (!vf->max_hw_ring_grps)
|
|
vf->max_hw_ring_grps = vf->max_tx_rings;
|
|
vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
|
|
vf->max_vnics = le16_to_cpu(resp->max_vnics);
|
|
vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
|
|
|
|
memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
|
|
if (is_valid_ether_addr(vf->mac_addr)) {
|
|
/* overwrite netdev dev_adr with admin VF MAC */
|
|
memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
|
|
} else {
|
|
eth_hw_addr_random(bp->dev);
|
|
rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
|
|
}
|
|
return rc;
|
|
#endif
|
|
}
|
|
|
|
hwrm_func_qcaps_exit:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_func_reset(struct bnxt *bp)
|
|
{
|
|
struct hwrm_func_reset_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
|
|
req.enables = 0;
|
|
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
|
|
{
|
|
int rc = 0;
|
|
struct hwrm_queue_qportcfg_input req = {0};
|
|
struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
|
|
u8 i, *qptr;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
goto qportcfg_exit;
|
|
|
|
if (!resp->max_configurable_queues) {
|
|
rc = -EINVAL;
|
|
goto qportcfg_exit;
|
|
}
|
|
bp->max_tc = resp->max_configurable_queues;
|
|
bp->max_lltc = resp->max_configurable_lossless_queues;
|
|
if (bp->max_tc > BNXT_MAX_QUEUE)
|
|
bp->max_tc = BNXT_MAX_QUEUE;
|
|
|
|
if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
|
|
bp->max_tc = 1;
|
|
|
|
if (bp->max_lltc > bp->max_tc)
|
|
bp->max_lltc = bp->max_tc;
|
|
|
|
qptr = &resp->queue_id0;
|
|
for (i = 0; i < bp->max_tc; i++) {
|
|
bp->q_info[i].queue_id = *qptr++;
|
|
bp->q_info[i].queue_profile = *qptr++;
|
|
}
|
|
|
|
qportcfg_exit:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_hwrm_ver_get(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
struct hwrm_ver_get_input req = {0};
|
|
struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
|
|
u32 dev_caps_cfg;
|
|
|
|
bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
|
|
req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
|
|
req.hwrm_intf_min = HWRM_VERSION_MINOR;
|
|
req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
goto hwrm_ver_get_exit;
|
|
|
|
memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
|
|
|
|
bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
|
|
resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
|
|
if (resp->hwrm_intf_maj < 1) {
|
|
netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
|
|
resp->hwrm_intf_maj, resp->hwrm_intf_min,
|
|
resp->hwrm_intf_upd);
|
|
netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
|
|
}
|
|
snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
|
|
resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
|
|
resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
|
|
|
|
bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
|
|
if (!bp->hwrm_cmd_timeout)
|
|
bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
|
|
|
|
if (resp->hwrm_intf_maj >= 1)
|
|
bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
|
|
|
|
bp->chip_num = le16_to_cpu(resp->chip_num);
|
|
if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
|
|
!resp->chip_metal)
|
|
bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
|
|
|
|
dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
|
|
if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
|
|
(dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
|
|
bp->flags |= BNXT_FLAG_SHORT_CMD;
|
|
|
|
hwrm_ver_get_exit:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
int bnxt_hwrm_fw_set_time(struct bnxt *bp)
|
|
{
|
|
#if IS_ENABLED(CONFIG_RTC_LIB)
|
|
struct hwrm_fw_set_time_input req = {0};
|
|
struct rtc_time tm;
|
|
struct timeval tv;
|
|
|
|
if (bp->hwrm_spec_code < 0x10400)
|
|
return -EOPNOTSUPP;
|
|
|
|
do_gettimeofday(&tv);
|
|
rtc_time_to_tm(tv.tv_sec, &tm);
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
|
|
req.year = cpu_to_le16(1900 + tm.tm_year);
|
|
req.month = 1 + tm.tm_mon;
|
|
req.day = tm.tm_mday;
|
|
req.hour = tm.tm_hour;
|
|
req.minute = tm.tm_min;
|
|
req.second = tm.tm_sec;
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
#else
|
|
return -EOPNOTSUPP;
|
|
#endif
|
|
}
|
|
|
|
static int bnxt_hwrm_port_qstats(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
struct bnxt_pf_info *pf = &bp->pf;
|
|
struct hwrm_port_qstats_input req = {0};
|
|
|
|
if (!(bp->flags & BNXT_FLAG_PORT_STATS))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
|
|
req.port_id = cpu_to_le16(pf->port_id);
|
|
req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
|
|
req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
|
|
{
|
|
if (bp->vxlan_port_cnt) {
|
|
bnxt_hwrm_tunnel_dst_port_free(
|
|
bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
|
|
}
|
|
bp->vxlan_port_cnt = 0;
|
|
if (bp->nge_port_cnt) {
|
|
bnxt_hwrm_tunnel_dst_port_free(
|
|
bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
|
|
}
|
|
bp->nge_port_cnt = 0;
|
|
}
|
|
|
|
static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
|
|
{
|
|
int rc, i;
|
|
u32 tpa_flags = 0;
|
|
|
|
if (set_tpa)
|
|
tpa_flags = bp->flags & BNXT_FLAG_TPA;
|
|
for (i = 0; i < bp->nr_vnics; i++) {
|
|
rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
|
|
i, rc);
|
|
return rc;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->nr_vnics; i++)
|
|
bnxt_hwrm_vnic_set_rss(bp, i, false);
|
|
}
|
|
|
|
static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
|
|
bool irq_re_init)
|
|
{
|
|
if (bp->vnic_info) {
|
|
bnxt_hwrm_clear_vnic_filter(bp);
|
|
/* clear all RSS setting before free vnic ctx */
|
|
bnxt_hwrm_clear_vnic_rss(bp);
|
|
bnxt_hwrm_vnic_ctx_free(bp);
|
|
/* before free the vnic, undo the vnic tpa settings */
|
|
if (bp->flags & BNXT_FLAG_TPA)
|
|
bnxt_set_tpa(bp, false);
|
|
bnxt_hwrm_vnic_free(bp);
|
|
}
|
|
bnxt_hwrm_ring_free(bp, close_path);
|
|
bnxt_hwrm_ring_grp_free(bp);
|
|
if (irq_re_init) {
|
|
bnxt_hwrm_stat_ctx_free(bp);
|
|
bnxt_hwrm_free_tunnel_ports(bp);
|
|
}
|
|
}
|
|
|
|
static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
|
|
{
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
|
|
int rc;
|
|
|
|
if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
|
|
goto skip_rss_ctx;
|
|
|
|
/* allocate context for vnic */
|
|
rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
|
|
vnic_id, rc);
|
|
goto vnic_setup_err;
|
|
}
|
|
bp->rsscos_nr_ctxs++;
|
|
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
|
|
rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
|
|
vnic_id, rc);
|
|
goto vnic_setup_err;
|
|
}
|
|
bp->rsscos_nr_ctxs++;
|
|
}
|
|
|
|
skip_rss_ctx:
|
|
/* configure default vnic, ring grp */
|
|
rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
|
|
vnic_id, rc);
|
|
goto vnic_setup_err;
|
|
}
|
|
|
|
/* Enable RSS hashing on vnic */
|
|
rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
|
|
vnic_id, rc);
|
|
goto vnic_setup_err;
|
|
}
|
|
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS) {
|
|
rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
|
|
vnic_id, rc);
|
|
}
|
|
}
|
|
|
|
vnic_setup_err:
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
|
|
{
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
int i, rc = 0;
|
|
|
|
for (i = 0; i < bp->rx_nr_rings; i++) {
|
|
struct bnxt_vnic_info *vnic;
|
|
u16 vnic_id = i + 1;
|
|
u16 ring_id = i;
|
|
|
|
if (vnic_id >= bp->nr_vnics)
|
|
break;
|
|
|
|
vnic = &bp->vnic_info[vnic_id];
|
|
vnic->flags |= BNXT_VNIC_RFS_FLAG;
|
|
if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
|
|
vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
|
|
rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
|
|
vnic_id, rc);
|
|
break;
|
|
}
|
|
rc = bnxt_setup_vnic(bp, vnic_id);
|
|
if (rc)
|
|
break;
|
|
}
|
|
return rc;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* Allow PF and VF with default VLAN to be in promiscuous mode */
|
|
static bool bnxt_promisc_ok(struct bnxt *bp)
|
|
{
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
if (BNXT_VF(bp) && !bp->vf.vlan)
|
|
return false;
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
|
|
{
|
|
unsigned int rc = 0;
|
|
|
|
rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = bnxt_hwrm_vnic_cfg(bp, 1);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_cfg_rx_mode(struct bnxt *);
|
|
static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
|
|
|
|
static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
|
|
{
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
|
|
int rc = 0;
|
|
unsigned int rx_nr_rings = bp->rx_nr_rings;
|
|
|
|
if (irq_re_init) {
|
|
rc = bnxt_hwrm_stat_ctx_alloc(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
|
|
rc);
|
|
goto err_out;
|
|
}
|
|
}
|
|
|
|
rc = bnxt_hwrm_ring_alloc(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
|
|
goto err_out;
|
|
}
|
|
|
|
rc = bnxt_hwrm_ring_grp_alloc(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
|
|
goto err_out;
|
|
}
|
|
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
rx_nr_rings--;
|
|
|
|
/* default vnic 0 */
|
|
rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
|
|
goto err_out;
|
|
}
|
|
|
|
rc = bnxt_setup_vnic(bp, 0);
|
|
if (rc)
|
|
goto err_out;
|
|
|
|
if (bp->flags & BNXT_FLAG_RFS) {
|
|
rc = bnxt_alloc_rfs_vnics(bp);
|
|
if (rc)
|
|
goto err_out;
|
|
}
|
|
|
|
if (bp->flags & BNXT_FLAG_TPA) {
|
|
rc = bnxt_set_tpa(bp, true);
|
|
if (rc)
|
|
goto err_out;
|
|
}
|
|
|
|
if (BNXT_VF(bp))
|
|
bnxt_update_vf_mac(bp);
|
|
|
|
/* Filter for default vnic 0 */
|
|
rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
|
|
goto err_out;
|
|
}
|
|
vnic->uc_filter_count = 1;
|
|
|
|
vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
|
|
|
|
if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
|
|
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
|
|
|
|
if (bp->dev->flags & IFF_ALLMULTI) {
|
|
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
|
|
vnic->mc_list_count = 0;
|
|
} else {
|
|
u32 mask = 0;
|
|
|
|
bnxt_mc_list_updated(bp, &mask);
|
|
vnic->rx_mask |= mask;
|
|
}
|
|
|
|
rc = bnxt_cfg_rx_mode(bp);
|
|
if (rc)
|
|
goto err_out;
|
|
|
|
rc = bnxt_hwrm_set_coal(bp);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
|
|
rc);
|
|
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
|
|
rc = bnxt_setup_nitroa0_vnic(bp);
|
|
if (rc)
|
|
netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
|
|
rc);
|
|
}
|
|
|
|
if (BNXT_VF(bp)) {
|
|
bnxt_hwrm_func_qcfg(bp);
|
|
netdev_update_features(bp->dev);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
bnxt_hwrm_resource_free(bp, 0, true);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
|
|
{
|
|
bnxt_hwrm_resource_free(bp, 1, irq_re_init);
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
|
|
{
|
|
bnxt_init_cp_rings(bp);
|
|
bnxt_init_rx_rings(bp);
|
|
bnxt_init_tx_rings(bp);
|
|
bnxt_init_ring_grps(bp, irq_re_init);
|
|
bnxt_init_vnics(bp);
|
|
|
|
return bnxt_init_chip(bp, irq_re_init);
|
|
}
|
|
|
|
static int bnxt_set_real_num_queues(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
struct net_device *dev = bp->dev;
|
|
|
|
rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
|
|
bp->tx_nr_rings_xdp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
|
|
if (rc)
|
|
return rc;
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
if (bp->flags & BNXT_FLAG_RFS)
|
|
dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
|
|
#endif
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
|
|
bool shared)
|
|
{
|
|
int _rx = *rx, _tx = *tx;
|
|
|
|
if (shared) {
|
|
*rx = min_t(int, _rx, max);
|
|
*tx = min_t(int, _tx, max);
|
|
} else {
|
|
if (max < 2)
|
|
return -ENOMEM;
|
|
|
|
while (_rx + _tx > max) {
|
|
if (_rx > _tx && _rx > 1)
|
|
_rx--;
|
|
else if (_tx > 1)
|
|
_tx--;
|
|
}
|
|
*rx = _rx;
|
|
*tx = _tx;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_setup_msix(struct bnxt *bp)
|
|
{
|
|
const int len = sizeof(bp->irq_tbl[0].name);
|
|
struct net_device *dev = bp->dev;
|
|
int tcs, i;
|
|
|
|
tcs = netdev_get_num_tc(dev);
|
|
if (tcs > 1) {
|
|
int i, off, count;
|
|
|
|
for (i = 0; i < tcs; i++) {
|
|
count = bp->tx_nr_rings_per_tc;
|
|
off = i * count;
|
|
netdev_set_tc_queue(dev, i, count, off);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
char *attr;
|
|
|
|
if (bp->flags & BNXT_FLAG_SHARED_RINGS)
|
|
attr = "TxRx";
|
|
else if (i < bp->rx_nr_rings)
|
|
attr = "rx";
|
|
else
|
|
attr = "tx";
|
|
|
|
snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
|
|
i);
|
|
bp->irq_tbl[i].handler = bnxt_msix;
|
|
}
|
|
}
|
|
|
|
static void bnxt_setup_inta(struct bnxt *bp)
|
|
{
|
|
const int len = sizeof(bp->irq_tbl[0].name);
|
|
|
|
if (netdev_get_num_tc(bp->dev))
|
|
netdev_reset_tc(bp->dev);
|
|
|
|
snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
|
|
0);
|
|
bp->irq_tbl[0].handler = bnxt_inta;
|
|
}
|
|
|
|
static int bnxt_setup_int_mode(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
|
|
if (bp->flags & BNXT_FLAG_USING_MSIX)
|
|
bnxt_setup_msix(bp);
|
|
else
|
|
bnxt_setup_inta(bp);
|
|
|
|
rc = bnxt_set_real_num_queues(bp);
|
|
return rc;
|
|
}
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
|
|
{
|
|
#if defined(CONFIG_BNXT_SRIOV)
|
|
if (BNXT_VF(bp))
|
|
return bp->vf.max_rsscos_ctxs;
|
|
#endif
|
|
return bp->pf.max_rsscos_ctxs;
|
|
}
|
|
|
|
static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
|
|
{
|
|
#if defined(CONFIG_BNXT_SRIOV)
|
|
if (BNXT_VF(bp))
|
|
return bp->vf.max_vnics;
|
|
#endif
|
|
return bp->pf.max_vnics;
|
|
}
|
|
#endif
|
|
|
|
unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
|
|
{
|
|
#if defined(CONFIG_BNXT_SRIOV)
|
|
if (BNXT_VF(bp))
|
|
return bp->vf.max_stat_ctxs;
|
|
#endif
|
|
return bp->pf.max_stat_ctxs;
|
|
}
|
|
|
|
void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
|
|
{
|
|
#if defined(CONFIG_BNXT_SRIOV)
|
|
if (BNXT_VF(bp))
|
|
bp->vf.max_stat_ctxs = max;
|
|
else
|
|
#endif
|
|
bp->pf.max_stat_ctxs = max;
|
|
}
|
|
|
|
unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
|
|
{
|
|
#if defined(CONFIG_BNXT_SRIOV)
|
|
if (BNXT_VF(bp))
|
|
return bp->vf.max_cp_rings;
|
|
#endif
|
|
return bp->pf.max_cp_rings;
|
|
}
|
|
|
|
void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
|
|
{
|
|
#if defined(CONFIG_BNXT_SRIOV)
|
|
if (BNXT_VF(bp))
|
|
bp->vf.max_cp_rings = max;
|
|
else
|
|
#endif
|
|
bp->pf.max_cp_rings = max;
|
|
}
|
|
|
|
static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
|
|
{
|
|
#if defined(CONFIG_BNXT_SRIOV)
|
|
if (BNXT_VF(bp))
|
|
return min_t(unsigned int, bp->vf.max_irqs,
|
|
bp->vf.max_cp_rings);
|
|
#endif
|
|
return min_t(unsigned int, bp->pf.max_irqs, bp->pf.max_cp_rings);
|
|
}
|
|
|
|
void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
|
|
{
|
|
#if defined(CONFIG_BNXT_SRIOV)
|
|
if (BNXT_VF(bp))
|
|
bp->vf.max_irqs = max_irqs;
|
|
else
|
|
#endif
|
|
bp->pf.max_irqs = max_irqs;
|
|
}
|
|
|
|
static int bnxt_init_msix(struct bnxt *bp)
|
|
{
|
|
int i, total_vecs, rc = 0, min = 1;
|
|
struct msix_entry *msix_ent;
|
|
|
|
total_vecs = bnxt_get_max_func_irqs(bp);
|
|
msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
|
|
if (!msix_ent)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < total_vecs; i++) {
|
|
msix_ent[i].entry = i;
|
|
msix_ent[i].vector = 0;
|
|
}
|
|
|
|
if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
|
|
min = 2;
|
|
|
|
total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
|
|
if (total_vecs < 0) {
|
|
rc = -ENODEV;
|
|
goto msix_setup_exit;
|
|
}
|
|
|
|
bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
|
|
if (bp->irq_tbl) {
|
|
for (i = 0; i < total_vecs; i++)
|
|
bp->irq_tbl[i].vector = msix_ent[i].vector;
|
|
|
|
bp->total_irqs = total_vecs;
|
|
/* Trim rings based upon num of vectors allocated */
|
|
rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
|
|
total_vecs, min == 1);
|
|
if (rc)
|
|
goto msix_setup_exit;
|
|
|
|
bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
|
|
bp->cp_nr_rings = (min == 1) ?
|
|
max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
|
|
bp->tx_nr_rings + bp->rx_nr_rings;
|
|
|
|
} else {
|
|
rc = -ENOMEM;
|
|
goto msix_setup_exit;
|
|
}
|
|
bp->flags |= BNXT_FLAG_USING_MSIX;
|
|
kfree(msix_ent);
|
|
return 0;
|
|
|
|
msix_setup_exit:
|
|
netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
|
|
kfree(bp->irq_tbl);
|
|
bp->irq_tbl = NULL;
|
|
pci_disable_msix(bp->pdev);
|
|
kfree(msix_ent);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_init_inta(struct bnxt *bp)
|
|
{
|
|
bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
|
|
if (!bp->irq_tbl)
|
|
return -ENOMEM;
|
|
|
|
bp->total_irqs = 1;
|
|
bp->rx_nr_rings = 1;
|
|
bp->tx_nr_rings = 1;
|
|
bp->cp_nr_rings = 1;
|
|
bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
|
|
bp->flags |= BNXT_FLAG_SHARED_RINGS;
|
|
bp->irq_tbl[0].vector = bp->pdev->irq;
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_init_int_mode(struct bnxt *bp)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (bp->flags & BNXT_FLAG_MSIX_CAP)
|
|
rc = bnxt_init_msix(bp);
|
|
|
|
if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
|
|
/* fallback to INTA */
|
|
rc = bnxt_init_inta(bp);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_clear_int_mode(struct bnxt *bp)
|
|
{
|
|
if (bp->flags & BNXT_FLAG_USING_MSIX)
|
|
pci_disable_msix(bp->pdev);
|
|
|
|
kfree(bp->irq_tbl);
|
|
bp->irq_tbl = NULL;
|
|
bp->flags &= ~BNXT_FLAG_USING_MSIX;
|
|
}
|
|
|
|
static void bnxt_free_irq(struct bnxt *bp)
|
|
{
|
|
struct bnxt_irq *irq;
|
|
int i;
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
|
|
bp->dev->rx_cpu_rmap = NULL;
|
|
#endif
|
|
if (!bp->irq_tbl)
|
|
return;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
irq = &bp->irq_tbl[i];
|
|
if (irq->requested)
|
|
free_irq(irq->vector, bp->bnapi[i]);
|
|
irq->requested = 0;
|
|
}
|
|
}
|
|
|
|
static int bnxt_request_irq(struct bnxt *bp)
|
|
{
|
|
int i, j, rc = 0;
|
|
unsigned long flags = 0;
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
|
|
#endif
|
|
|
|
if (!(bp->flags & BNXT_FLAG_USING_MSIX))
|
|
flags = IRQF_SHARED;
|
|
|
|
for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_irq *irq = &bp->irq_tbl[i];
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
if (rmap && bp->bnapi[i]->rx_ring) {
|
|
rc = irq_cpu_rmap_add(rmap, irq->vector);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
|
|
j);
|
|
j++;
|
|
}
|
|
#endif
|
|
rc = request_irq(irq->vector, irq->handler, flags, irq->name,
|
|
bp->bnapi[i]);
|
|
if (rc)
|
|
break;
|
|
|
|
irq->requested = 1;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_del_napi(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
|
|
napi_hash_del(&bnapi->napi);
|
|
netif_napi_del(&bnapi->napi);
|
|
}
|
|
/* We called napi_hash_del() before netif_napi_del(), we need
|
|
* to respect an RCU grace period before freeing napi structures.
|
|
*/
|
|
synchronize_net();
|
|
}
|
|
|
|
static void bnxt_init_napi(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
unsigned int cp_nr_rings = bp->cp_nr_rings;
|
|
struct bnxt_napi *bnapi;
|
|
|
|
if (bp->flags & BNXT_FLAG_USING_MSIX) {
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
cp_nr_rings--;
|
|
for (i = 0; i < cp_nr_rings; i++) {
|
|
bnapi = bp->bnapi[i];
|
|
netif_napi_add(bp->dev, &bnapi->napi,
|
|
bnxt_poll, 64);
|
|
}
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
|
|
bnapi = bp->bnapi[cp_nr_rings];
|
|
netif_napi_add(bp->dev, &bnapi->napi,
|
|
bnxt_poll_nitroa0, 64);
|
|
}
|
|
} else {
|
|
bnapi = bp->bnapi[0];
|
|
netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
|
|
}
|
|
}
|
|
|
|
static void bnxt_disable_napi(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++)
|
|
napi_disable(&bp->bnapi[i]->napi);
|
|
}
|
|
|
|
static void bnxt_enable_napi(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
bp->bnapi[i]->in_reset = false;
|
|
napi_enable(&bp->bnapi[i]->napi);
|
|
}
|
|
}
|
|
|
|
void bnxt_tx_disable(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
struct bnxt_tx_ring_info *txr;
|
|
struct netdev_queue *txq;
|
|
|
|
if (bp->tx_ring) {
|
|
for (i = 0; i < bp->tx_nr_rings; i++) {
|
|
txr = &bp->tx_ring[i];
|
|
txq = netdev_get_tx_queue(bp->dev, i);
|
|
txr->dev_state = BNXT_DEV_STATE_CLOSING;
|
|
}
|
|
}
|
|
/* Stop all TX queues */
|
|
netif_tx_disable(bp->dev);
|
|
netif_carrier_off(bp->dev);
|
|
}
|
|
|
|
void bnxt_tx_enable(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
struct bnxt_tx_ring_info *txr;
|
|
struct netdev_queue *txq;
|
|
|
|
for (i = 0; i < bp->tx_nr_rings; i++) {
|
|
txr = &bp->tx_ring[i];
|
|
txq = netdev_get_tx_queue(bp->dev, i);
|
|
txr->dev_state = 0;
|
|
}
|
|
netif_tx_wake_all_queues(bp->dev);
|
|
if (bp->link_info.link_up)
|
|
netif_carrier_on(bp->dev);
|
|
}
|
|
|
|
static void bnxt_report_link(struct bnxt *bp)
|
|
{
|
|
if (bp->link_info.link_up) {
|
|
const char *duplex;
|
|
const char *flow_ctrl;
|
|
u32 speed;
|
|
u16 fec;
|
|
|
|
netif_carrier_on(bp->dev);
|
|
if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
|
|
duplex = "full";
|
|
else
|
|
duplex = "half";
|
|
if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
|
|
flow_ctrl = "ON - receive & transmit";
|
|
else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
|
|
flow_ctrl = "ON - transmit";
|
|
else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
|
|
flow_ctrl = "ON - receive";
|
|
else
|
|
flow_ctrl = "none";
|
|
speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
|
|
netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
|
|
speed, duplex, flow_ctrl);
|
|
if (bp->flags & BNXT_FLAG_EEE_CAP)
|
|
netdev_info(bp->dev, "EEE is %s\n",
|
|
bp->eee.eee_active ? "active" :
|
|
"not active");
|
|
fec = bp->link_info.fec_cfg;
|
|
if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
|
|
netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
|
|
(fec & BNXT_FEC_AUTONEG) ? "on" : "off",
|
|
(fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
|
|
(fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
|
|
} else {
|
|
netif_carrier_off(bp->dev);
|
|
netdev_err(bp->dev, "NIC Link is Down\n");
|
|
}
|
|
}
|
|
|
|
static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
|
|
{
|
|
int rc = 0;
|
|
struct hwrm_port_phy_qcaps_input req = {0};
|
|
struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct bnxt_link_info *link_info = &bp->link_info;
|
|
|
|
if (bp->hwrm_spec_code < 0x10201)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc)
|
|
goto hwrm_phy_qcaps_exit;
|
|
|
|
if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
|
|
struct ethtool_eee *eee = &bp->eee;
|
|
u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
|
|
|
|
bp->flags |= BNXT_FLAG_EEE_CAP;
|
|
eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
|
|
bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
|
|
PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
|
|
bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
|
|
PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
|
|
}
|
|
if (resp->supported_speeds_auto_mode)
|
|
link_info->support_auto_speeds =
|
|
le16_to_cpu(resp->supported_speeds_auto_mode);
|
|
|
|
hwrm_phy_qcaps_exit:
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
|
|
{
|
|
int rc = 0;
|
|
struct bnxt_link_info *link_info = &bp->link_info;
|
|
struct hwrm_port_phy_qcfg_input req = {0};
|
|
struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
|
|
u8 link_up = link_info->link_up;
|
|
u16 diff;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc) {
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
|
|
link_info->phy_link_status = resp->link;
|
|
link_info->duplex = resp->duplex;
|
|
link_info->pause = resp->pause;
|
|
link_info->auto_mode = resp->auto_mode;
|
|
link_info->auto_pause_setting = resp->auto_pause;
|
|
link_info->lp_pause = resp->link_partner_adv_pause;
|
|
link_info->force_pause_setting = resp->force_pause;
|
|
link_info->duplex_setting = resp->duplex;
|
|
if (link_info->phy_link_status == BNXT_LINK_LINK)
|
|
link_info->link_speed = le16_to_cpu(resp->link_speed);
|
|
else
|
|
link_info->link_speed = 0;
|
|
link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
|
|
link_info->support_speeds = le16_to_cpu(resp->support_speeds);
|
|
link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
|
|
link_info->lp_auto_link_speeds =
|
|
le16_to_cpu(resp->link_partner_adv_speeds);
|
|
link_info->preemphasis = le32_to_cpu(resp->preemphasis);
|
|
link_info->phy_ver[0] = resp->phy_maj;
|
|
link_info->phy_ver[1] = resp->phy_min;
|
|
link_info->phy_ver[2] = resp->phy_bld;
|
|
link_info->media_type = resp->media_type;
|
|
link_info->phy_type = resp->phy_type;
|
|
link_info->transceiver = resp->xcvr_pkg_type;
|
|
link_info->phy_addr = resp->eee_config_phy_addr &
|
|
PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
|
|
link_info->module_status = resp->module_status;
|
|
|
|
if (bp->flags & BNXT_FLAG_EEE_CAP) {
|
|
struct ethtool_eee *eee = &bp->eee;
|
|
u16 fw_speeds;
|
|
|
|
eee->eee_active = 0;
|
|
if (resp->eee_config_phy_addr &
|
|
PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
|
|
eee->eee_active = 1;
|
|
fw_speeds = le16_to_cpu(
|
|
resp->link_partner_adv_eee_link_speed_mask);
|
|
eee->lp_advertised =
|
|
_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
|
|
}
|
|
|
|
/* Pull initial EEE config */
|
|
if (!chng_link_state) {
|
|
if (resp->eee_config_phy_addr &
|
|
PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
|
|
eee->eee_enabled = 1;
|
|
|
|
fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
|
|
eee->advertised =
|
|
_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
|
|
|
|
if (resp->eee_config_phy_addr &
|
|
PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
|
|
__le32 tmr;
|
|
|
|
eee->tx_lpi_enabled = 1;
|
|
tmr = resp->xcvr_identifier_type_tx_lpi_timer;
|
|
eee->tx_lpi_timer = le32_to_cpu(tmr) &
|
|
PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
|
|
}
|
|
}
|
|
}
|
|
|
|
link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
|
|
if (bp->hwrm_spec_code >= 0x10504)
|
|
link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
|
|
|
|
/* TODO: need to add more logic to report VF link */
|
|
if (chng_link_state) {
|
|
if (link_info->phy_link_status == BNXT_LINK_LINK)
|
|
link_info->link_up = 1;
|
|
else
|
|
link_info->link_up = 0;
|
|
if (link_up != link_info->link_up)
|
|
bnxt_report_link(bp);
|
|
} else {
|
|
/* alwasy link down if not require to update link state */
|
|
link_info->link_up = 0;
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
|
|
diff = link_info->support_auto_speeds ^ link_info->advertising;
|
|
if ((link_info->support_auto_speeds | diff) !=
|
|
link_info->support_auto_speeds) {
|
|
/* An advertised speed is no longer supported, so we need to
|
|
* update the advertisement settings. Caller holds RTNL
|
|
* so we can modify link settings.
|
|
*/
|
|
link_info->advertising = link_info->support_auto_speeds;
|
|
if (link_info->autoneg & BNXT_AUTONEG_SPEED)
|
|
bnxt_hwrm_set_link_setting(bp, true, false);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_get_port_module_status(struct bnxt *bp)
|
|
{
|
|
struct bnxt_link_info *link_info = &bp->link_info;
|
|
struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
|
|
u8 module_status;
|
|
|
|
if (bnxt_update_link(bp, true))
|
|
return;
|
|
|
|
module_status = link_info->module_status;
|
|
switch (module_status) {
|
|
case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
|
|
case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
|
|
case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
|
|
netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
|
|
bp->pf.port_id);
|
|
if (bp->hwrm_spec_code >= 0x10201) {
|
|
netdev_warn(bp->dev, "Module part number %s\n",
|
|
resp->phy_vendor_partnumber);
|
|
}
|
|
if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
|
|
netdev_warn(bp->dev, "TX is disabled\n");
|
|
if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
|
|
netdev_warn(bp->dev, "SFP+ module is shutdown\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
|
|
{
|
|
if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
|
|
if (bp->hwrm_spec_code >= 0x10201)
|
|
req->auto_pause =
|
|
PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
|
|
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
|
|
req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
|
|
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
|
|
req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
|
|
req->enables |=
|
|
cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
|
|
} else {
|
|
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
|
|
req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
|
|
if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
|
|
req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
|
|
req->enables |=
|
|
cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
|
|
if (bp->hwrm_spec_code >= 0x10201) {
|
|
req->auto_pause = req->force_pause;
|
|
req->enables |= cpu_to_le32(
|
|
PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bnxt_hwrm_set_link_common(struct bnxt *bp,
|
|
struct hwrm_port_phy_cfg_input *req)
|
|
{
|
|
u8 autoneg = bp->link_info.autoneg;
|
|
u16 fw_link_speed = bp->link_info.req_link_speed;
|
|
u16 advertising = bp->link_info.advertising;
|
|
|
|
if (autoneg & BNXT_AUTONEG_SPEED) {
|
|
req->auto_mode |=
|
|
PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
|
|
|
|
req->enables |= cpu_to_le32(
|
|
PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
|
|
req->auto_link_speed_mask = cpu_to_le16(advertising);
|
|
|
|
req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
|
|
req->flags |=
|
|
cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
|
|
} else {
|
|
req->force_link_speed = cpu_to_le16(fw_link_speed);
|
|
req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
|
|
}
|
|
|
|
/* tell chimp that the setting takes effect immediately */
|
|
req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
|
|
}
|
|
|
|
int bnxt_hwrm_set_pause(struct bnxt *bp)
|
|
{
|
|
struct hwrm_port_phy_cfg_input req = {0};
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
|
|
bnxt_hwrm_set_pause_common(bp, &req);
|
|
|
|
if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
|
|
bp->link_info.force_link_chng)
|
|
bnxt_hwrm_set_link_common(bp, &req);
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
|
|
/* since changing of pause setting doesn't trigger any link
|
|
* change event, the driver needs to update the current pause
|
|
* result upon successfully return of the phy_cfg command
|
|
*/
|
|
bp->link_info.pause =
|
|
bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
|
|
bp->link_info.auto_pause_setting = 0;
|
|
if (!bp->link_info.force_link_chng)
|
|
bnxt_report_link(bp);
|
|
}
|
|
bp->link_info.force_link_chng = false;
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_hwrm_set_eee(struct bnxt *bp,
|
|
struct hwrm_port_phy_cfg_input *req)
|
|
{
|
|
struct ethtool_eee *eee = &bp->eee;
|
|
|
|
if (eee->eee_enabled) {
|
|
u16 eee_speeds;
|
|
u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
|
|
|
|
if (eee->tx_lpi_enabled)
|
|
flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
|
|
else
|
|
flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
|
|
|
|
req->flags |= cpu_to_le32(flags);
|
|
eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
|
|
req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
|
|
req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
|
|
} else {
|
|
req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
|
|
}
|
|
}
|
|
|
|
int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
|
|
{
|
|
struct hwrm_port_phy_cfg_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
|
|
if (set_pause)
|
|
bnxt_hwrm_set_pause_common(bp, &req);
|
|
|
|
bnxt_hwrm_set_link_common(bp, &req);
|
|
|
|
if (set_eee)
|
|
bnxt_hwrm_set_eee(bp, &req);
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
|
|
{
|
|
struct hwrm_port_phy_cfg_input req = {0};
|
|
|
|
if (!BNXT_SINGLE_PF(bp))
|
|
return 0;
|
|
|
|
if (pci_num_vf(bp->pdev))
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
|
|
req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
|
|
return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
}
|
|
|
|
static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
|
|
{
|
|
struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
|
|
struct hwrm_port_led_qcaps_input req = {0};
|
|
struct bnxt_pf_info *pf = &bp->pf;
|
|
int rc;
|
|
|
|
if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
|
|
return 0;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
|
|
req.port_id = cpu_to_le16(pf->port_id);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (rc) {
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
|
|
int i;
|
|
|
|
bp->num_leds = resp->num_leds;
|
|
memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
|
|
bp->num_leds);
|
|
for (i = 0; i < bp->num_leds; i++) {
|
|
struct bnxt_led_info *led = &bp->leds[i];
|
|
__le16 caps = led->led_state_caps;
|
|
|
|
if (!led->led_group_id ||
|
|
!BNXT_LED_ALT_BLINK_CAP(caps)) {
|
|
bp->num_leds = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return 0;
|
|
}
|
|
|
|
int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
|
|
{
|
|
struct hwrm_wol_filter_alloc_input req = {0};
|
|
struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
|
|
req.port_id = cpu_to_le16(bp->pf.port_id);
|
|
req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
|
|
req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
|
|
memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc)
|
|
bp->wol_filter_id = resp->wol_filter_id;
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return rc;
|
|
}
|
|
|
|
int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
|
|
{
|
|
struct hwrm_wol_filter_free_input req = {0};
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
|
|
req.port_id = cpu_to_le16(bp->pf.port_id);
|
|
req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
|
|
req.wol_filter_id = bp->wol_filter_id;
|
|
rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
return rc;
|
|
}
|
|
|
|
static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
|
|
{
|
|
struct hwrm_wol_filter_qcfg_input req = {0};
|
|
struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
|
|
u16 next_handle = 0;
|
|
int rc;
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
|
|
req.port_id = cpu_to_le16(bp->pf.port_id);
|
|
req.handle = cpu_to_le16(handle);
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
|
|
if (!rc) {
|
|
next_handle = le16_to_cpu(resp->next_handle);
|
|
if (next_handle != 0) {
|
|
if (resp->wol_type ==
|
|
WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
|
|
bp->wol = 1;
|
|
bp->wol_filter_id = resp->wol_filter_id;
|
|
}
|
|
}
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
return next_handle;
|
|
}
|
|
|
|
static void bnxt_get_wol_settings(struct bnxt *bp)
|
|
{
|
|
u16 handle = 0;
|
|
|
|
if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
|
|
return;
|
|
|
|
do {
|
|
handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
|
|
} while (handle && handle != 0xffff);
|
|
}
|
|
|
|
static bool bnxt_eee_config_ok(struct bnxt *bp)
|
|
{
|
|
struct ethtool_eee *eee = &bp->eee;
|
|
struct bnxt_link_info *link_info = &bp->link_info;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_EEE_CAP))
|
|
return true;
|
|
|
|
if (eee->eee_enabled) {
|
|
u32 advertising =
|
|
_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
|
|
|
|
if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
|
|
eee->eee_enabled = 0;
|
|
return false;
|
|
}
|
|
if (eee->advertised & ~advertising) {
|
|
eee->advertised = advertising & eee->supported;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int bnxt_update_phy_setting(struct bnxt *bp)
|
|
{
|
|
int rc;
|
|
bool update_link = false;
|
|
bool update_pause = false;
|
|
bool update_eee = false;
|
|
struct bnxt_link_info *link_info = &bp->link_info;
|
|
|
|
rc = bnxt_update_link(bp, true);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "failed to update link (rc: %x)\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
if (!BNXT_SINGLE_PF(bp))
|
|
return 0;
|
|
|
|
if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
|
|
(link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
|
|
link_info->req_flow_ctrl)
|
|
update_pause = true;
|
|
if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
|
|
link_info->force_pause_setting != link_info->req_flow_ctrl)
|
|
update_pause = true;
|
|
if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
|
|
if (BNXT_AUTO_MODE(link_info->auto_mode))
|
|
update_link = true;
|
|
if (link_info->req_link_speed != link_info->force_link_speed)
|
|
update_link = true;
|
|
if (link_info->req_duplex != link_info->duplex_setting)
|
|
update_link = true;
|
|
} else {
|
|
if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
|
|
update_link = true;
|
|
if (link_info->advertising != link_info->auto_link_speeds)
|
|
update_link = true;
|
|
}
|
|
|
|
/* The last close may have shutdown the link, so need to call
|
|
* PHY_CFG to bring it back up.
|
|
*/
|
|
if (!netif_carrier_ok(bp->dev))
|
|
update_link = true;
|
|
|
|
if (!bnxt_eee_config_ok(bp))
|
|
update_eee = true;
|
|
|
|
if (update_link)
|
|
rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
|
|
else if (update_pause)
|
|
rc = bnxt_hwrm_set_pause(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Common routine to pre-map certain register block to different GRC window.
|
|
* A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
|
|
* in PF and 3 windows in VF that can be customized to map in different
|
|
* register blocks.
|
|
*/
|
|
static void bnxt_preset_reg_win(struct bnxt *bp)
|
|
{
|
|
if (BNXT_PF(bp)) {
|
|
/* CAG registers map to GRC window #4 */
|
|
writel(BNXT_CAG_REG_BASE,
|
|
bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
|
|
}
|
|
}
|
|
|
|
static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
|
|
{
|
|
int rc = 0;
|
|
|
|
bnxt_preset_reg_win(bp);
|
|
netif_carrier_off(bp->dev);
|
|
if (irq_re_init) {
|
|
rc = bnxt_setup_int_mode(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
}
|
|
if ((bp->flags & BNXT_FLAG_RFS) &&
|
|
!(bp->flags & BNXT_FLAG_USING_MSIX)) {
|
|
/* disable RFS if falling back to INTA */
|
|
bp->dev->hw_features &= ~NETIF_F_NTUPLE;
|
|
bp->flags &= ~BNXT_FLAG_RFS;
|
|
}
|
|
|
|
rc = bnxt_alloc_mem(bp, irq_re_init);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
|
|
goto open_err_free_mem;
|
|
}
|
|
|
|
if (irq_re_init) {
|
|
bnxt_init_napi(bp);
|
|
rc = bnxt_request_irq(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
|
|
goto open_err;
|
|
}
|
|
}
|
|
|
|
bnxt_enable_napi(bp);
|
|
|
|
rc = bnxt_init_nic(bp, irq_re_init);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
|
|
goto open_err;
|
|
}
|
|
|
|
if (link_re_init) {
|
|
rc = bnxt_update_phy_setting(bp);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "failed to update phy settings\n");
|
|
}
|
|
|
|
if (irq_re_init)
|
|
udp_tunnel_get_rx_info(bp->dev);
|
|
|
|
set_bit(BNXT_STATE_OPEN, &bp->state);
|
|
bnxt_enable_int(bp);
|
|
/* Enable TX queues */
|
|
bnxt_tx_enable(bp);
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
/* Poll link status and check for SFP+ module status */
|
|
bnxt_get_port_module_status(bp);
|
|
|
|
return 0;
|
|
|
|
open_err:
|
|
bnxt_disable_napi(bp);
|
|
bnxt_del_napi(bp);
|
|
|
|
open_err_free_mem:
|
|
bnxt_free_skbs(bp);
|
|
bnxt_free_irq(bp);
|
|
bnxt_free_mem(bp, true);
|
|
return rc;
|
|
}
|
|
|
|
/* rtnl_lock held */
|
|
int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
|
|
{
|
|
int rc = 0;
|
|
|
|
rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
|
|
dev_close(bp->dev);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* rtnl_lock held, open the NIC half way by allocating all resources, but
|
|
* NAPI, IRQ, and TX are not enabled. This is mainly used for offline
|
|
* self tests.
|
|
*/
|
|
int bnxt_half_open_nic(struct bnxt *bp)
|
|
{
|
|
int rc = 0;
|
|
|
|
rc = bnxt_alloc_mem(bp, false);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
|
|
goto half_open_err;
|
|
}
|
|
rc = bnxt_init_nic(bp, false);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
|
|
goto half_open_err;
|
|
}
|
|
return 0;
|
|
|
|
half_open_err:
|
|
bnxt_free_skbs(bp);
|
|
bnxt_free_mem(bp, false);
|
|
dev_close(bp->dev);
|
|
return rc;
|
|
}
|
|
|
|
/* rtnl_lock held, this call can only be made after a previous successful
|
|
* call to bnxt_half_open_nic().
|
|
*/
|
|
void bnxt_half_close_nic(struct bnxt *bp)
|
|
{
|
|
bnxt_hwrm_resource_free(bp, false, false);
|
|
bnxt_free_skbs(bp);
|
|
bnxt_free_mem(bp, false);
|
|
}
|
|
|
|
static int bnxt_open(struct net_device *dev)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
return __bnxt_open_nic(bp, true, true);
|
|
}
|
|
|
|
int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
|
|
{
|
|
int rc = 0;
|
|
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
if (bp->sriov_cfg) {
|
|
rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
|
|
!bp->sriov_cfg,
|
|
BNXT_SRIOV_CFG_WAIT_TMO);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
|
|
}
|
|
#endif
|
|
/* Change device state to avoid TX queue wake up's */
|
|
bnxt_tx_disable(bp);
|
|
|
|
clear_bit(BNXT_STATE_OPEN, &bp->state);
|
|
smp_mb__after_atomic();
|
|
while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
|
|
msleep(20);
|
|
|
|
/* Flush rings and and disable interrupts */
|
|
bnxt_shutdown_nic(bp, irq_re_init);
|
|
|
|
/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
|
|
|
|
bnxt_disable_napi(bp);
|
|
del_timer_sync(&bp->timer);
|
|
bnxt_free_skbs(bp);
|
|
|
|
if (irq_re_init) {
|
|
bnxt_free_irq(bp);
|
|
bnxt_del_napi(bp);
|
|
}
|
|
bnxt_free_mem(bp, irq_re_init);
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_close(struct net_device *dev)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
bnxt_close_nic(bp, true, true);
|
|
bnxt_hwrm_shutdown_link(bp);
|
|
return 0;
|
|
}
|
|
|
|
/* rtnl_lock held */
|
|
static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
|
|
{
|
|
switch (cmd) {
|
|
case SIOCGMIIPHY:
|
|
/* fallthru */
|
|
case SIOCGMIIREG: {
|
|
if (!netif_running(dev))
|
|
return -EAGAIN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
case SIOCSMIIREG:
|
|
if (!netif_running(dev))
|
|
return -EAGAIN;
|
|
|
|
return 0;
|
|
|
|
default:
|
|
/* do nothing */
|
|
break;
|
|
}
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static void
|
|
bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
|
|
{
|
|
u32 i;
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
if (!bp->bnapi)
|
|
return;
|
|
|
|
/* TODO check if we need to synchronize with bnxt_close path */
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_napi *bnapi = bp->bnapi[i];
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
struct ctx_hw_stats *hw_stats = cpr->hw_stats;
|
|
|
|
stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
|
|
stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
|
|
stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
|
|
|
|
stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
|
|
stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
|
|
stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
|
|
|
|
stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
|
|
stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
|
|
stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
|
|
|
|
stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
|
|
stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
|
|
stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
|
|
|
|
stats->rx_missed_errors +=
|
|
le64_to_cpu(hw_stats->rx_discard_pkts);
|
|
|
|
stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
|
|
|
|
stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
|
|
}
|
|
|
|
if (bp->flags & BNXT_FLAG_PORT_STATS) {
|
|
struct rx_port_stats *rx = bp->hw_rx_port_stats;
|
|
struct tx_port_stats *tx = bp->hw_tx_port_stats;
|
|
|
|
stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
|
|
stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
|
|
stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
|
|
le64_to_cpu(rx->rx_ovrsz_frames) +
|
|
le64_to_cpu(rx->rx_runt_frames);
|
|
stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
|
|
le64_to_cpu(rx->rx_jbr_frames);
|
|
stats->collisions = le64_to_cpu(tx->tx_total_collisions);
|
|
stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
|
|
stats->tx_errors = le64_to_cpu(tx->tx_err);
|
|
}
|
|
}
|
|
|
|
static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
|
|
{
|
|
struct net_device *dev = bp->dev;
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
|
|
struct netdev_hw_addr *ha;
|
|
u8 *haddr;
|
|
int mc_count = 0;
|
|
bool update = false;
|
|
int off = 0;
|
|
|
|
netdev_for_each_mc_addr(ha, dev) {
|
|
if (mc_count >= BNXT_MAX_MC_ADDRS) {
|
|
*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
|
|
vnic->mc_list_count = 0;
|
|
return false;
|
|
}
|
|
haddr = ha->addr;
|
|
if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
|
|
memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
|
|
update = true;
|
|
}
|
|
off += ETH_ALEN;
|
|
mc_count++;
|
|
}
|
|
if (mc_count)
|
|
*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
|
|
|
|
if (mc_count != vnic->mc_list_count) {
|
|
vnic->mc_list_count = mc_count;
|
|
update = true;
|
|
}
|
|
return update;
|
|
}
|
|
|
|
static bool bnxt_uc_list_updated(struct bnxt *bp)
|
|
{
|
|
struct net_device *dev = bp->dev;
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
|
|
struct netdev_hw_addr *ha;
|
|
int off = 0;
|
|
|
|
if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
|
|
return true;
|
|
|
|
netdev_for_each_uc_addr(ha, dev) {
|
|
if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
|
|
return true;
|
|
|
|
off += ETH_ALEN;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void bnxt_set_rx_mode(struct net_device *dev)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
|
|
u32 mask = vnic->rx_mask;
|
|
bool mc_update = false;
|
|
bool uc_update;
|
|
|
|
if (!netif_running(dev))
|
|
return;
|
|
|
|
mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
|
|
CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
|
|
CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
|
|
|
|
if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
|
|
mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
|
|
|
|
uc_update = bnxt_uc_list_updated(bp);
|
|
|
|
if (dev->flags & IFF_ALLMULTI) {
|
|
mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
|
|
vnic->mc_list_count = 0;
|
|
} else {
|
|
mc_update = bnxt_mc_list_updated(bp, &mask);
|
|
}
|
|
|
|
if (mask != vnic->rx_mask || uc_update || mc_update) {
|
|
vnic->rx_mask = mask;
|
|
|
|
set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
|
|
schedule_work(&bp->sp_task);
|
|
}
|
|
}
|
|
|
|
static int bnxt_cfg_rx_mode(struct bnxt *bp)
|
|
{
|
|
struct net_device *dev = bp->dev;
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
|
|
struct netdev_hw_addr *ha;
|
|
int i, off = 0, rc;
|
|
bool uc_update;
|
|
|
|
netif_addr_lock_bh(dev);
|
|
uc_update = bnxt_uc_list_updated(bp);
|
|
netif_addr_unlock_bh(dev);
|
|
|
|
if (!uc_update)
|
|
goto skip_uc;
|
|
|
|
mutex_lock(&bp->hwrm_cmd_lock);
|
|
for (i = 1; i < vnic->uc_filter_count; i++) {
|
|
struct hwrm_cfa_l2_filter_free_input req = {0};
|
|
|
|
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
|
|
-1);
|
|
|
|
req.l2_filter_id = vnic->fw_l2_filter_id[i];
|
|
|
|
rc = _hwrm_send_message(bp, &req, sizeof(req),
|
|
HWRM_CMD_TIMEOUT);
|
|
}
|
|
mutex_unlock(&bp->hwrm_cmd_lock);
|
|
|
|
vnic->uc_filter_count = 1;
|
|
|
|
netif_addr_lock_bh(dev);
|
|
if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
|
|
vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
|
|
} else {
|
|
netdev_for_each_uc_addr(ha, dev) {
|
|
memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
|
|
off += ETH_ALEN;
|
|
vnic->uc_filter_count++;
|
|
}
|
|
}
|
|
netif_addr_unlock_bh(dev);
|
|
|
|
for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
|
|
rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
|
|
rc);
|
|
vnic->uc_filter_count = i;
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
skip_uc:
|
|
rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
|
|
if (rc)
|
|
netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
|
|
rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* If the chip and firmware supports RFS */
|
|
static bool bnxt_rfs_supported(struct bnxt *bp)
|
|
{
|
|
if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
return true;
|
|
if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* If runtime conditions support RFS */
|
|
static bool bnxt_rfs_capable(struct bnxt *bp)
|
|
{
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
int vnics, max_vnics, max_rss_ctxs;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_MSIX_CAP))
|
|
return false;
|
|
|
|
vnics = 1 + bp->rx_nr_rings;
|
|
max_vnics = bnxt_get_max_func_vnics(bp);
|
|
max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
|
|
|
|
/* RSS contexts not a limiting factor */
|
|
if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
|
|
max_rss_ctxs = max_vnics;
|
|
if (vnics > max_vnics || vnics > max_rss_ctxs) {
|
|
netdev_warn(bp->dev,
|
|
"Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
|
|
min(max_rss_ctxs - 1, max_vnics - 1));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static netdev_features_t bnxt_fix_features(struct net_device *dev,
|
|
netdev_features_t features)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
|
|
features &= ~NETIF_F_NTUPLE;
|
|
|
|
/* Both CTAG and STAG VLAN accelaration on the RX side have to be
|
|
* turned on or off together.
|
|
*/
|
|
if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
|
|
(NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
|
|
if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
|
|
features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
|
|
NETIF_F_HW_VLAN_STAG_RX);
|
|
else
|
|
features |= NETIF_F_HW_VLAN_CTAG_RX |
|
|
NETIF_F_HW_VLAN_STAG_RX;
|
|
}
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
if (BNXT_VF(bp)) {
|
|
if (bp->vf.vlan) {
|
|
features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
|
|
NETIF_F_HW_VLAN_STAG_RX);
|
|
}
|
|
}
|
|
#endif
|
|
return features;
|
|
}
|
|
|
|
static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
u32 flags = bp->flags;
|
|
u32 changes;
|
|
int rc = 0;
|
|
bool re_init = false;
|
|
bool update_tpa = false;
|
|
|
|
flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
|
|
if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
flags |= BNXT_FLAG_GRO;
|
|
if (features & NETIF_F_LRO)
|
|
flags |= BNXT_FLAG_LRO;
|
|
|
|
if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
|
|
flags &= ~BNXT_FLAG_TPA;
|
|
|
|
if (features & NETIF_F_HW_VLAN_CTAG_RX)
|
|
flags |= BNXT_FLAG_STRIP_VLAN;
|
|
|
|
if (features & NETIF_F_NTUPLE)
|
|
flags |= BNXT_FLAG_RFS;
|
|
|
|
changes = flags ^ bp->flags;
|
|
if (changes & BNXT_FLAG_TPA) {
|
|
update_tpa = true;
|
|
if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
|
|
(flags & BNXT_FLAG_TPA) == 0)
|
|
re_init = true;
|
|
}
|
|
|
|
if (changes & ~BNXT_FLAG_TPA)
|
|
re_init = true;
|
|
|
|
if (flags != bp->flags) {
|
|
u32 old_flags = bp->flags;
|
|
|
|
bp->flags = flags;
|
|
|
|
if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
|
|
if (update_tpa)
|
|
bnxt_set_ring_params(bp);
|
|
return rc;
|
|
}
|
|
|
|
if (re_init) {
|
|
bnxt_close_nic(bp, false, false);
|
|
if (update_tpa)
|
|
bnxt_set_ring_params(bp);
|
|
|
|
return bnxt_open_nic(bp, false, false);
|
|
}
|
|
if (update_tpa) {
|
|
rc = bnxt_set_tpa(bp,
|
|
(flags & BNXT_FLAG_TPA) ?
|
|
true : false);
|
|
if (rc)
|
|
bp->flags = old_flags;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
|
|
{
|
|
struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
|
|
int i = bnapi->index;
|
|
|
|
if (!txr)
|
|
return;
|
|
|
|
netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
|
|
i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
|
|
txr->tx_cons);
|
|
}
|
|
|
|
static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
|
|
{
|
|
struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
|
|
int i = bnapi->index;
|
|
|
|
if (!rxr)
|
|
return;
|
|
|
|
netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
|
|
i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
|
|
rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
|
|
rxr->rx_sw_agg_prod);
|
|
}
|
|
|
|
static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
|
|
{
|
|
struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
|
|
int i = bnapi->index;
|
|
|
|
netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
|
|
i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
|
|
}
|
|
|
|
static void bnxt_dbg_dump_states(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
struct bnxt_napi *bnapi;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
bnapi = bp->bnapi[i];
|
|
if (netif_msg_drv(bp)) {
|
|
bnxt_dump_tx_sw_state(bnapi);
|
|
bnxt_dump_rx_sw_state(bnapi);
|
|
bnxt_dump_cp_sw_state(bnapi);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bnxt_reset_task(struct bnxt *bp, bool silent)
|
|
{
|
|
if (!silent)
|
|
bnxt_dbg_dump_states(bp);
|
|
if (netif_running(bp->dev)) {
|
|
int rc;
|
|
|
|
if (!silent)
|
|
bnxt_ulp_stop(bp);
|
|
bnxt_close_nic(bp, false, false);
|
|
rc = bnxt_open_nic(bp, false, false);
|
|
if (!silent && !rc)
|
|
bnxt_ulp_start(bp);
|
|
}
|
|
}
|
|
|
|
static void bnxt_tx_timeout(struct net_device *dev)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
|
|
set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
|
|
schedule_work(&bp->sp_task);
|
|
}
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
static void bnxt_poll_controller(struct net_device *dev)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
int i;
|
|
|
|
for (i = 0; i < bp->cp_nr_rings; i++) {
|
|
struct bnxt_irq *irq = &bp->irq_tbl[i];
|
|
|
|
disable_irq(irq->vector);
|
|
irq->handler(irq->vector, bp->bnapi[i]);
|
|
enable_irq(irq->vector);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void bnxt_timer(unsigned long data)
|
|
{
|
|
struct bnxt *bp = (struct bnxt *)data;
|
|
struct net_device *dev = bp->dev;
|
|
|
|
if (!netif_running(dev))
|
|
return;
|
|
|
|
if (atomic_read(&bp->intr_sem) != 0)
|
|
goto bnxt_restart_timer;
|
|
|
|
if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
|
|
set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
|
|
schedule_work(&bp->sp_task);
|
|
}
|
|
bnxt_restart_timer:
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
}
|
|
|
|
static void bnxt_rtnl_lock_sp(struct bnxt *bp)
|
|
{
|
|
/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
|
|
* set. If the device is being closed, bnxt_close() may be holding
|
|
* rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we
|
|
* must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
|
|
*/
|
|
clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
|
|
rtnl_lock();
|
|
}
|
|
|
|
static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
|
|
{
|
|
set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
|
|
rtnl_unlock();
|
|
}
|
|
|
|
/* Only called from bnxt_sp_task() */
|
|
static void bnxt_reset(struct bnxt *bp, bool silent)
|
|
{
|
|
bnxt_rtnl_lock_sp(bp);
|
|
if (test_bit(BNXT_STATE_OPEN, &bp->state))
|
|
bnxt_reset_task(bp, silent);
|
|
bnxt_rtnl_unlock_sp(bp);
|
|
}
|
|
|
|
static void bnxt_cfg_ntp_filters(struct bnxt *);
|
|
|
|
static void bnxt_sp_task(struct work_struct *work)
|
|
{
|
|
struct bnxt *bp = container_of(work, struct bnxt, sp_task);
|
|
|
|
set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
|
|
smp_mb__after_atomic();
|
|
if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
|
|
clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
|
|
return;
|
|
}
|
|
|
|
if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
|
|
bnxt_cfg_rx_mode(bp);
|
|
|
|
if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
|
|
bnxt_cfg_ntp_filters(bp);
|
|
if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
|
|
bnxt_hwrm_exec_fwd_req(bp);
|
|
if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
|
|
bnxt_hwrm_tunnel_dst_port_alloc(
|
|
bp, bp->vxlan_port,
|
|
TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
|
|
}
|
|
if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
|
|
bnxt_hwrm_tunnel_dst_port_free(
|
|
bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
|
|
}
|
|
if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
|
|
bnxt_hwrm_tunnel_dst_port_alloc(
|
|
bp, bp->nge_port,
|
|
TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
|
|
}
|
|
if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
|
|
bnxt_hwrm_tunnel_dst_port_free(
|
|
bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
|
|
}
|
|
if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
|
|
bnxt_hwrm_port_qstats(bp);
|
|
|
|
/* These functions below will clear BNXT_STATE_IN_SP_TASK. They
|
|
* must be the last functions to be called before exiting.
|
|
*/
|
|
if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
|
|
int rc = 0;
|
|
|
|
if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
|
|
&bp->sp_event))
|
|
bnxt_hwrm_phy_qcaps(bp);
|
|
|
|
bnxt_rtnl_lock_sp(bp);
|
|
if (test_bit(BNXT_STATE_OPEN, &bp->state))
|
|
rc = bnxt_update_link(bp, true);
|
|
bnxt_rtnl_unlock_sp(bp);
|
|
if (rc)
|
|
netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
|
|
rc);
|
|
}
|
|
if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
|
|
bnxt_rtnl_lock_sp(bp);
|
|
if (test_bit(BNXT_STATE_OPEN, &bp->state))
|
|
bnxt_get_port_module_status(bp);
|
|
bnxt_rtnl_unlock_sp(bp);
|
|
}
|
|
if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
|
|
bnxt_reset(bp, false);
|
|
|
|
if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
|
|
bnxt_reset(bp, true);
|
|
|
|
smp_mb__before_atomic();
|
|
clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
|
|
}
|
|
|
|
/* Under rtnl_lock */
|
|
int bnxt_reserve_rings(struct bnxt *bp, int tx, int rx, int tcs, int tx_xdp)
|
|
{
|
|
int max_rx, max_tx, tx_sets = 1;
|
|
int tx_rings_needed;
|
|
bool sh = true;
|
|
int rc;
|
|
|
|
if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
|
|
sh = false;
|
|
|
|
if (tcs)
|
|
tx_sets = tcs;
|
|
|
|
rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (max_rx < rx)
|
|
return -ENOMEM;
|
|
|
|
tx_rings_needed = tx * tx_sets + tx_xdp;
|
|
if (max_tx < tx_rings_needed)
|
|
return -ENOMEM;
|
|
|
|
if (bnxt_hwrm_reserve_tx_rings(bp, &tx_rings_needed) ||
|
|
tx_rings_needed < (tx * tx_sets + tx_xdp))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
|
|
{
|
|
if (bp->bar2) {
|
|
pci_iounmap(pdev, bp->bar2);
|
|
bp->bar2 = NULL;
|
|
}
|
|
|
|
if (bp->bar1) {
|
|
pci_iounmap(pdev, bp->bar1);
|
|
bp->bar1 = NULL;
|
|
}
|
|
|
|
if (bp->bar0) {
|
|
pci_iounmap(pdev, bp->bar0);
|
|
bp->bar0 = NULL;
|
|
}
|
|
}
|
|
|
|
static void bnxt_cleanup_pci(struct bnxt *bp)
|
|
{
|
|
bnxt_unmap_bars(bp, bp->pdev);
|
|
pci_release_regions(bp->pdev);
|
|
pci_disable_device(bp->pdev);
|
|
}
|
|
|
|
static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
|
|
{
|
|
int rc;
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
|
|
/* enable device (incl. PCI PM wakeup), and bus-mastering */
|
|
rc = pci_enable_device(pdev);
|
|
if (rc) {
|
|
dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
|
|
goto init_err;
|
|
}
|
|
|
|
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot find PCI device base address, aborting\n");
|
|
rc = -ENODEV;
|
|
goto init_err_disable;
|
|
}
|
|
|
|
rc = pci_request_regions(pdev, DRV_MODULE_NAME);
|
|
if (rc) {
|
|
dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
|
|
goto init_err_disable;
|
|
}
|
|
|
|
if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
|
|
dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
|
|
dev_err(&pdev->dev, "System does not support DMA, aborting\n");
|
|
goto init_err_disable;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
|
|
bp->dev = dev;
|
|
bp->pdev = pdev;
|
|
|
|
bp->bar0 = pci_ioremap_bar(pdev, 0);
|
|
if (!bp->bar0) {
|
|
dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
|
|
rc = -ENOMEM;
|
|
goto init_err_release;
|
|
}
|
|
|
|
bp->bar1 = pci_ioremap_bar(pdev, 2);
|
|
if (!bp->bar1) {
|
|
dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
|
|
rc = -ENOMEM;
|
|
goto init_err_release;
|
|
}
|
|
|
|
bp->bar2 = pci_ioremap_bar(pdev, 4);
|
|
if (!bp->bar2) {
|
|
dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
|
|
rc = -ENOMEM;
|
|
goto init_err_release;
|
|
}
|
|
|
|
pci_enable_pcie_error_reporting(pdev);
|
|
|
|
INIT_WORK(&bp->sp_task, bnxt_sp_task);
|
|
|
|
spin_lock_init(&bp->ntp_fltr_lock);
|
|
|
|
bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
|
|
bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
|
|
|
|
/* tick values in micro seconds */
|
|
bp->rx_coal_ticks = 12;
|
|
bp->rx_coal_bufs = 30;
|
|
bp->rx_coal_ticks_irq = 1;
|
|
bp->rx_coal_bufs_irq = 2;
|
|
|
|
bp->tx_coal_ticks = 25;
|
|
bp->tx_coal_bufs = 30;
|
|
bp->tx_coal_ticks_irq = 2;
|
|
bp->tx_coal_bufs_irq = 2;
|
|
|
|
bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
|
|
|
|
init_timer(&bp->timer);
|
|
bp->timer.data = (unsigned long)bp;
|
|
bp->timer.function = bnxt_timer;
|
|
bp->current_interval = BNXT_TIMER_INTERVAL;
|
|
|
|
clear_bit(BNXT_STATE_OPEN, &bp->state);
|
|
return 0;
|
|
|
|
init_err_release:
|
|
bnxt_unmap_bars(bp, pdev);
|
|
pci_release_regions(pdev);
|
|
|
|
init_err_disable:
|
|
pci_disable_device(pdev);
|
|
|
|
init_err:
|
|
return rc;
|
|
}
|
|
|
|
/* rtnl_lock held */
|
|
static int bnxt_change_mac_addr(struct net_device *dev, void *p)
|
|
{
|
|
struct sockaddr *addr = p;
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
int rc = 0;
|
|
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EADDRNOTAVAIL;
|
|
|
|
rc = bnxt_approve_mac(bp, addr->sa_data);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (ether_addr_equal(addr->sa_data, dev->dev_addr))
|
|
return 0;
|
|
|
|
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
|
|
if (netif_running(dev)) {
|
|
bnxt_close_nic(bp, false, false);
|
|
rc = bnxt_open_nic(bp, false, false);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* rtnl_lock held */
|
|
static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
if (netif_running(dev))
|
|
bnxt_close_nic(bp, false, false);
|
|
|
|
dev->mtu = new_mtu;
|
|
bnxt_set_ring_params(bp);
|
|
|
|
if (netif_running(dev))
|
|
return bnxt_open_nic(bp, false, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
bool sh = false;
|
|
int rc;
|
|
|
|
if (tc > bp->max_tc) {
|
|
netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
|
|
tc, bp->max_tc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (netdev_get_num_tc(dev) == tc)
|
|
return 0;
|
|
|
|
if (bp->flags & BNXT_FLAG_SHARED_RINGS)
|
|
sh = true;
|
|
|
|
rc = bnxt_reserve_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
|
|
tc, bp->tx_nr_rings_xdp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Needs to close the device and do hw resource re-allocations */
|
|
if (netif_running(bp->dev))
|
|
bnxt_close_nic(bp, true, false);
|
|
|
|
if (tc) {
|
|
bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
|
|
netdev_set_num_tc(dev, tc);
|
|
} else {
|
|
bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
|
|
netdev_reset_tc(dev);
|
|
}
|
|
bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
|
|
bp->tx_nr_rings + bp->rx_nr_rings;
|
|
bp->num_stat_ctxs = bp->cp_nr_rings;
|
|
|
|
if (netif_running(bp->dev))
|
|
return bnxt_open_nic(bp, true, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnxt_setup_tc(struct net_device *dev, u32 handle, u32 chain_index,
|
|
__be16 proto, struct tc_to_netdev *ntc)
|
|
{
|
|
if (ntc->type != TC_SETUP_MQPRIO)
|
|
return -EINVAL;
|
|
|
|
ntc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
|
|
|
|
return bnxt_setup_mq_tc(dev, ntc->mqprio->num_tc);
|
|
}
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
|
|
struct bnxt_ntuple_filter *f2)
|
|
{
|
|
struct flow_keys *keys1 = &f1->fkeys;
|
|
struct flow_keys *keys2 = &f2->fkeys;
|
|
|
|
if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
|
|
keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
|
|
keys1->ports.ports == keys2->ports.ports &&
|
|
keys1->basic.ip_proto == keys2->basic.ip_proto &&
|
|
keys1->basic.n_proto == keys2->basic.n_proto &&
|
|
keys1->control.flags == keys2->control.flags &&
|
|
ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
|
|
ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
|
|
u16 rxq_index, u32 flow_id)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
struct bnxt_ntuple_filter *fltr, *new_fltr;
|
|
struct flow_keys *fkeys;
|
|
struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
|
|
int rc = 0, idx, bit_id, l2_idx = 0;
|
|
struct hlist_head *head;
|
|
|
|
if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
|
|
struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
|
|
int off = 0, j;
|
|
|
|
netif_addr_lock_bh(dev);
|
|
for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
|
|
if (ether_addr_equal(eth->h_dest,
|
|
vnic->uc_list + off)) {
|
|
l2_idx = j + 1;
|
|
break;
|
|
}
|
|
}
|
|
netif_addr_unlock_bh(dev);
|
|
if (!l2_idx)
|
|
return -EINVAL;
|
|
}
|
|
new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
|
|
if (!new_fltr)
|
|
return -ENOMEM;
|
|
|
|
fkeys = &new_fltr->fkeys;
|
|
if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
|
|
rc = -EPROTONOSUPPORT;
|
|
goto err_free;
|
|
}
|
|
|
|
if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
|
|
fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
|
|
((fkeys->basic.ip_proto != IPPROTO_TCP) &&
|
|
(fkeys->basic.ip_proto != IPPROTO_UDP))) {
|
|
rc = -EPROTONOSUPPORT;
|
|
goto err_free;
|
|
}
|
|
if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
|
|
bp->hwrm_spec_code < 0x10601) {
|
|
rc = -EPROTONOSUPPORT;
|
|
goto err_free;
|
|
}
|
|
if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
|
|
bp->hwrm_spec_code < 0x10601) {
|
|
rc = -EPROTONOSUPPORT;
|
|
goto err_free;
|
|
}
|
|
|
|
memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
|
|
memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
|
|
|
|
idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
|
|
head = &bp->ntp_fltr_hash_tbl[idx];
|
|
rcu_read_lock();
|
|
hlist_for_each_entry_rcu(fltr, head, hash) {
|
|
if (bnxt_fltr_match(fltr, new_fltr)) {
|
|
rcu_read_unlock();
|
|
rc = 0;
|
|
goto err_free;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
spin_lock_bh(&bp->ntp_fltr_lock);
|
|
bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
|
|
BNXT_NTP_FLTR_MAX_FLTR, 0);
|
|
if (bit_id < 0) {
|
|
spin_unlock_bh(&bp->ntp_fltr_lock);
|
|
rc = -ENOMEM;
|
|
goto err_free;
|
|
}
|
|
|
|
new_fltr->sw_id = (u16)bit_id;
|
|
new_fltr->flow_id = flow_id;
|
|
new_fltr->l2_fltr_idx = l2_idx;
|
|
new_fltr->rxq = rxq_index;
|
|
hlist_add_head_rcu(&new_fltr->hash, head);
|
|
bp->ntp_fltr_count++;
|
|
spin_unlock_bh(&bp->ntp_fltr_lock);
|
|
|
|
set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
|
|
schedule_work(&bp->sp_task);
|
|
|
|
return new_fltr->sw_id;
|
|
|
|
err_free:
|
|
kfree(new_fltr);
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_cfg_ntp_filters(struct bnxt *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
|
|
struct hlist_head *head;
|
|
struct hlist_node *tmp;
|
|
struct bnxt_ntuple_filter *fltr;
|
|
int rc;
|
|
|
|
head = &bp->ntp_fltr_hash_tbl[i];
|
|
hlist_for_each_entry_safe(fltr, tmp, head, hash) {
|
|
bool del = false;
|
|
|
|
if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
|
|
if (rps_may_expire_flow(bp->dev, fltr->rxq,
|
|
fltr->flow_id,
|
|
fltr->sw_id)) {
|
|
bnxt_hwrm_cfa_ntuple_filter_free(bp,
|
|
fltr);
|
|
del = true;
|
|
}
|
|
} else {
|
|
rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
|
|
fltr);
|
|
if (rc)
|
|
del = true;
|
|
else
|
|
set_bit(BNXT_FLTR_VALID, &fltr->state);
|
|
}
|
|
|
|
if (del) {
|
|
spin_lock_bh(&bp->ntp_fltr_lock);
|
|
hlist_del_rcu(&fltr->hash);
|
|
bp->ntp_fltr_count--;
|
|
spin_unlock_bh(&bp->ntp_fltr_lock);
|
|
synchronize_rcu();
|
|
clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
|
|
kfree(fltr);
|
|
}
|
|
}
|
|
}
|
|
if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
|
|
netdev_info(bp->dev, "Receive PF driver unload event!");
|
|
}
|
|
|
|
#else
|
|
|
|
static void bnxt_cfg_ntp_filters(struct bnxt *bp)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_RFS_ACCEL */
|
|
|
|
static void bnxt_udp_tunnel_add(struct net_device *dev,
|
|
struct udp_tunnel_info *ti)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
|
|
return;
|
|
|
|
if (!netif_running(dev))
|
|
return;
|
|
|
|
switch (ti->type) {
|
|
case UDP_TUNNEL_TYPE_VXLAN:
|
|
if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
|
|
return;
|
|
|
|
bp->vxlan_port_cnt++;
|
|
if (bp->vxlan_port_cnt == 1) {
|
|
bp->vxlan_port = ti->port;
|
|
set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
|
|
schedule_work(&bp->sp_task);
|
|
}
|
|
break;
|
|
case UDP_TUNNEL_TYPE_GENEVE:
|
|
if (bp->nge_port_cnt && bp->nge_port != ti->port)
|
|
return;
|
|
|
|
bp->nge_port_cnt++;
|
|
if (bp->nge_port_cnt == 1) {
|
|
bp->nge_port = ti->port;
|
|
set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
|
|
}
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
schedule_work(&bp->sp_task);
|
|
}
|
|
|
|
static void bnxt_udp_tunnel_del(struct net_device *dev,
|
|
struct udp_tunnel_info *ti)
|
|
{
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
|
|
return;
|
|
|
|
if (!netif_running(dev))
|
|
return;
|
|
|
|
switch (ti->type) {
|
|
case UDP_TUNNEL_TYPE_VXLAN:
|
|
if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
|
|
return;
|
|
bp->vxlan_port_cnt--;
|
|
|
|
if (bp->vxlan_port_cnt != 0)
|
|
return;
|
|
|
|
set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
|
|
break;
|
|
case UDP_TUNNEL_TYPE_GENEVE:
|
|
if (!bp->nge_port_cnt || bp->nge_port != ti->port)
|
|
return;
|
|
bp->nge_port_cnt--;
|
|
|
|
if (bp->nge_port_cnt != 0)
|
|
return;
|
|
|
|
set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
schedule_work(&bp->sp_task);
|
|
}
|
|
|
|
static const struct net_device_ops bnxt_netdev_ops = {
|
|
.ndo_open = bnxt_open,
|
|
.ndo_start_xmit = bnxt_start_xmit,
|
|
.ndo_stop = bnxt_close,
|
|
.ndo_get_stats64 = bnxt_get_stats64,
|
|
.ndo_set_rx_mode = bnxt_set_rx_mode,
|
|
.ndo_do_ioctl = bnxt_ioctl,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_set_mac_address = bnxt_change_mac_addr,
|
|
.ndo_change_mtu = bnxt_change_mtu,
|
|
.ndo_fix_features = bnxt_fix_features,
|
|
.ndo_set_features = bnxt_set_features,
|
|
.ndo_tx_timeout = bnxt_tx_timeout,
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
.ndo_get_vf_config = bnxt_get_vf_config,
|
|
.ndo_set_vf_mac = bnxt_set_vf_mac,
|
|
.ndo_set_vf_vlan = bnxt_set_vf_vlan,
|
|
.ndo_set_vf_rate = bnxt_set_vf_bw,
|
|
.ndo_set_vf_link_state = bnxt_set_vf_link_state,
|
|
.ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
|
|
#endif
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
.ndo_poll_controller = bnxt_poll_controller,
|
|
#endif
|
|
.ndo_setup_tc = bnxt_setup_tc,
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
.ndo_rx_flow_steer = bnxt_rx_flow_steer,
|
|
#endif
|
|
.ndo_udp_tunnel_add = bnxt_udp_tunnel_add,
|
|
.ndo_udp_tunnel_del = bnxt_udp_tunnel_del,
|
|
.ndo_xdp = bnxt_xdp,
|
|
};
|
|
|
|
static void bnxt_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
|
|
if (BNXT_PF(bp))
|
|
bnxt_sriov_disable(bp);
|
|
|
|
pci_disable_pcie_error_reporting(pdev);
|
|
unregister_netdev(dev);
|
|
cancel_work_sync(&bp->sp_task);
|
|
bp->sp_event = 0;
|
|
|
|
bnxt_clear_int_mode(bp);
|
|
bnxt_hwrm_func_drv_unrgtr(bp);
|
|
bnxt_free_hwrm_resources(bp);
|
|
bnxt_free_hwrm_short_cmd_req(bp);
|
|
bnxt_ethtool_free(bp);
|
|
bnxt_dcb_free(bp);
|
|
kfree(bp->edev);
|
|
bp->edev = NULL;
|
|
if (bp->xdp_prog)
|
|
bpf_prog_put(bp->xdp_prog);
|
|
bnxt_cleanup_pci(bp);
|
|
free_netdev(dev);
|
|
}
|
|
|
|
static int bnxt_probe_phy(struct bnxt *bp)
|
|
{
|
|
int rc = 0;
|
|
struct bnxt_link_info *link_info = &bp->link_info;
|
|
|
|
rc = bnxt_hwrm_phy_qcaps(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
|
|
rc = bnxt_update_link(bp, false);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
|
|
/* Older firmware does not have supported_auto_speeds, so assume
|
|
* that all supported speeds can be autonegotiated.
|
|
*/
|
|
if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
|
|
link_info->support_auto_speeds = link_info->support_speeds;
|
|
|
|
/*initialize the ethool setting copy with NVM settings */
|
|
if (BNXT_AUTO_MODE(link_info->auto_mode)) {
|
|
link_info->autoneg = BNXT_AUTONEG_SPEED;
|
|
if (bp->hwrm_spec_code >= 0x10201) {
|
|
if (link_info->auto_pause_setting &
|
|
PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
|
|
link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
|
|
} else {
|
|
link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
|
|
}
|
|
link_info->advertising = link_info->auto_link_speeds;
|
|
} else {
|
|
link_info->req_link_speed = link_info->force_link_speed;
|
|
link_info->req_duplex = link_info->duplex_setting;
|
|
}
|
|
if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
|
|
link_info->req_flow_ctrl =
|
|
link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
|
|
else
|
|
link_info->req_flow_ctrl = link_info->force_pause_setting;
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_get_max_irq(struct pci_dev *pdev)
|
|
{
|
|
u16 ctrl;
|
|
|
|
if (!pdev->msix_cap)
|
|
return 1;
|
|
|
|
pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
|
|
return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
|
|
}
|
|
|
|
static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
|
|
int *max_cp)
|
|
{
|
|
int max_ring_grps = 0;
|
|
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
if (!BNXT_PF(bp)) {
|
|
*max_tx = bp->vf.max_tx_rings;
|
|
*max_rx = bp->vf.max_rx_rings;
|
|
*max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
|
|
*max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
|
|
max_ring_grps = bp->vf.max_hw_ring_grps;
|
|
} else
|
|
#endif
|
|
{
|
|
*max_tx = bp->pf.max_tx_rings;
|
|
*max_rx = bp->pf.max_rx_rings;
|
|
*max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
|
|
*max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
|
|
max_ring_grps = bp->pf.max_hw_ring_grps;
|
|
}
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
|
|
*max_cp -= 1;
|
|
*max_rx -= 2;
|
|
}
|
|
if (bp->flags & BNXT_FLAG_AGG_RINGS)
|
|
*max_rx >>= 1;
|
|
*max_rx = min_t(int, *max_rx, max_ring_grps);
|
|
}
|
|
|
|
int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
|
|
{
|
|
int rx, tx, cp;
|
|
|
|
_bnxt_get_max_rings(bp, &rx, &tx, &cp);
|
|
if (!rx || !tx || !cp)
|
|
return -ENOMEM;
|
|
|
|
*max_rx = rx;
|
|
*max_tx = tx;
|
|
return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
|
|
}
|
|
|
|
static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
|
|
bool shared)
|
|
{
|
|
int rc;
|
|
|
|
rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
|
|
if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
|
|
/* Not enough rings, try disabling agg rings. */
|
|
bp->flags &= ~BNXT_FLAG_AGG_RINGS;
|
|
rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
|
|
if (rc)
|
|
return rc;
|
|
bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
|
|
bp->dev->hw_features &= ~NETIF_F_LRO;
|
|
bp->dev->features &= ~NETIF_F_LRO;
|
|
bnxt_set_ring_params(bp);
|
|
}
|
|
|
|
if (bp->flags & BNXT_FLAG_ROCE_CAP) {
|
|
int max_cp, max_stat, max_irq;
|
|
|
|
/* Reserve minimum resources for RoCE */
|
|
max_cp = bnxt_get_max_func_cp_rings(bp);
|
|
max_stat = bnxt_get_max_func_stat_ctxs(bp);
|
|
max_irq = bnxt_get_max_func_irqs(bp);
|
|
if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
|
|
max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
|
|
max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
|
|
return 0;
|
|
|
|
max_cp -= BNXT_MIN_ROCE_CP_RINGS;
|
|
max_irq -= BNXT_MIN_ROCE_CP_RINGS;
|
|
max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
|
|
max_cp = min_t(int, max_cp, max_irq);
|
|
max_cp = min_t(int, max_cp, max_stat);
|
|
rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
|
|
if (rc)
|
|
rc = 0;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
|
|
{
|
|
int dflt_rings, max_rx_rings, max_tx_rings, rc;
|
|
|
|
if (sh)
|
|
bp->flags |= BNXT_FLAG_SHARED_RINGS;
|
|
dflt_rings = netif_get_num_default_rss_queues();
|
|
rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
|
|
if (rc)
|
|
return rc;
|
|
bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
|
|
bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
|
|
|
|
rc = bnxt_hwrm_reserve_tx_rings(bp, &bp->tx_nr_rings_per_tc);
|
|
if (rc)
|
|
netdev_warn(bp->dev, "Unable to reserve tx rings\n");
|
|
|
|
bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
|
|
bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
|
|
bp->tx_nr_rings + bp->rx_nr_rings;
|
|
bp->num_stat_ctxs = bp->cp_nr_rings;
|
|
if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
|
|
bp->rx_nr_rings++;
|
|
bp->cp_nr_rings++;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
void bnxt_restore_pf_fw_resources(struct bnxt *bp)
|
|
{
|
|
ASSERT_RTNL();
|
|
bnxt_hwrm_func_qcaps(bp);
|
|
bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
|
|
}
|
|
|
|
static void bnxt_parse_log_pcie_link(struct bnxt *bp)
|
|
{
|
|
enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
|
|
enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
|
|
|
|
if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
|
|
speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
|
|
netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
|
|
else
|
|
netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
|
|
speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
|
|
speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
|
|
speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
|
|
"Unknown", width);
|
|
}
|
|
|
|
static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
static int version_printed;
|
|
struct net_device *dev;
|
|
struct bnxt *bp;
|
|
int rc, max_irqs;
|
|
|
|
if (pci_is_bridge(pdev))
|
|
return -ENODEV;
|
|
|
|
if (version_printed++ == 0)
|
|
pr_info("%s", version);
|
|
|
|
max_irqs = bnxt_get_max_irq(pdev);
|
|
dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
bp = netdev_priv(dev);
|
|
|
|
if (bnxt_vf_pciid(ent->driver_data))
|
|
bp->flags |= BNXT_FLAG_VF;
|
|
|
|
if (pdev->msix_cap)
|
|
bp->flags |= BNXT_FLAG_MSIX_CAP;
|
|
|
|
rc = bnxt_init_board(pdev, dev);
|
|
if (rc < 0)
|
|
goto init_err_free;
|
|
|
|
dev->netdev_ops = &bnxt_netdev_ops;
|
|
dev->watchdog_timeo = BNXT_TX_TIMEOUT;
|
|
dev->ethtool_ops = &bnxt_ethtool_ops;
|
|
pci_set_drvdata(pdev, dev);
|
|
|
|
rc = bnxt_alloc_hwrm_resources(bp);
|
|
if (rc)
|
|
goto init_err_pci_clean;
|
|
|
|
mutex_init(&bp->hwrm_cmd_lock);
|
|
rc = bnxt_hwrm_ver_get(bp);
|
|
if (rc)
|
|
goto init_err_pci_clean;
|
|
|
|
if (bp->flags & BNXT_FLAG_SHORT_CMD) {
|
|
rc = bnxt_alloc_hwrm_short_cmd_req(bp);
|
|
if (rc)
|
|
goto init_err_pci_clean;
|
|
}
|
|
|
|
rc = bnxt_hwrm_func_reset(bp);
|
|
if (rc)
|
|
goto init_err_pci_clean;
|
|
|
|
bnxt_hwrm_fw_set_time(bp);
|
|
|
|
dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
|
|
NETIF_F_TSO | NETIF_F_TSO6 |
|
|
NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
|
|
NETIF_F_GSO_IPXIP4 |
|
|
NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
|
|
NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
|
|
NETIF_F_RXCSUM | NETIF_F_GRO;
|
|
|
|
if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
|
|
dev->hw_features |= NETIF_F_LRO;
|
|
|
|
dev->hw_enc_features =
|
|
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
|
|
NETIF_F_TSO | NETIF_F_TSO6 |
|
|
NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
|
|
NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
|
|
NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
|
|
dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
|
|
NETIF_F_GSO_GRE_CSUM;
|
|
dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
|
|
dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
|
|
NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
|
|
dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
|
|
dev->priv_flags |= IFF_UNICAST_FLT;
|
|
|
|
/* MTU range: 60 - 9500 */
|
|
dev->min_mtu = ETH_ZLEN;
|
|
dev->max_mtu = BNXT_MAX_MTU;
|
|
|
|
#ifdef CONFIG_BNXT_SRIOV
|
|
init_waitqueue_head(&bp->sriov_cfg_wait);
|
|
#endif
|
|
bp->gro_func = bnxt_gro_func_5730x;
|
|
if (BNXT_CHIP_P4_PLUS(bp))
|
|
bp->gro_func = bnxt_gro_func_5731x;
|
|
else
|
|
bp->flags |= BNXT_FLAG_DOUBLE_DB;
|
|
|
|
rc = bnxt_hwrm_func_drv_rgtr(bp);
|
|
if (rc)
|
|
goto init_err_pci_clean;
|
|
|
|
rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
|
|
if (rc)
|
|
goto init_err_pci_clean;
|
|
|
|
bp->ulp_probe = bnxt_ulp_probe;
|
|
|
|
/* Get the MAX capabilities for this function */
|
|
rc = bnxt_hwrm_func_qcaps(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
|
|
rc);
|
|
rc = -1;
|
|
goto init_err_pci_clean;
|
|
}
|
|
|
|
rc = bnxt_hwrm_queue_qportcfg(bp);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
|
|
rc);
|
|
rc = -1;
|
|
goto init_err_pci_clean;
|
|
}
|
|
|
|
bnxt_hwrm_func_qcfg(bp);
|
|
bnxt_hwrm_port_led_qcaps(bp);
|
|
bnxt_ethtool_init(bp);
|
|
bnxt_dcb_init(bp);
|
|
|
|
bnxt_set_rx_skb_mode(bp, false);
|
|
bnxt_set_tpa_flags(bp);
|
|
bnxt_set_ring_params(bp);
|
|
bnxt_set_max_func_irqs(bp, max_irqs);
|
|
rc = bnxt_set_dflt_rings(bp, true);
|
|
if (rc) {
|
|
netdev_err(bp->dev, "Not enough rings available.\n");
|
|
rc = -ENOMEM;
|
|
goto init_err_pci_clean;
|
|
}
|
|
|
|
/* Default RSS hash cfg. */
|
|
bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
|
|
VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
|
|
VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
|
|
VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
|
|
if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
|
|
bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
|
|
bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
|
|
VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
|
|
}
|
|
|
|
bnxt_hwrm_vnic_qcaps(bp);
|
|
if (bnxt_rfs_supported(bp)) {
|
|
dev->hw_features |= NETIF_F_NTUPLE;
|
|
if (bnxt_rfs_capable(bp)) {
|
|
bp->flags |= BNXT_FLAG_RFS;
|
|
dev->features |= NETIF_F_NTUPLE;
|
|
}
|
|
}
|
|
|
|
if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
|
|
bp->flags |= BNXT_FLAG_STRIP_VLAN;
|
|
|
|
rc = bnxt_probe_phy(bp);
|
|
if (rc)
|
|
goto init_err_pci_clean;
|
|
|
|
rc = bnxt_init_int_mode(bp);
|
|
if (rc)
|
|
goto init_err_pci_clean;
|
|
|
|
bnxt_get_wol_settings(bp);
|
|
if (bp->flags & BNXT_FLAG_WOL_CAP)
|
|
device_set_wakeup_enable(&pdev->dev, bp->wol);
|
|
else
|
|
device_set_wakeup_capable(&pdev->dev, false);
|
|
|
|
rc = register_netdev(dev);
|
|
if (rc)
|
|
goto init_err_clr_int;
|
|
|
|
netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
|
|
board_info[ent->driver_data].name,
|
|
(long)pci_resource_start(pdev, 0), dev->dev_addr);
|
|
|
|
bnxt_parse_log_pcie_link(bp);
|
|
|
|
return 0;
|
|
|
|
init_err_clr_int:
|
|
bnxt_clear_int_mode(bp);
|
|
|
|
init_err_pci_clean:
|
|
bnxt_cleanup_pci(bp);
|
|
|
|
init_err_free:
|
|
free_netdev(dev);
|
|
return rc;
|
|
}
|
|
|
|
static void bnxt_shutdown(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnxt *bp;
|
|
|
|
if (!dev)
|
|
return;
|
|
|
|
rtnl_lock();
|
|
bp = netdev_priv(dev);
|
|
if (!bp)
|
|
goto shutdown_exit;
|
|
|
|
if (netif_running(dev))
|
|
dev_close(dev);
|
|
|
|
if (system_state == SYSTEM_POWER_OFF) {
|
|
bnxt_ulp_shutdown(bp);
|
|
bnxt_clear_int_mode(bp);
|
|
pci_wake_from_d3(pdev, bp->wol);
|
|
pci_set_power_state(pdev, PCI_D3hot);
|
|
}
|
|
|
|
shutdown_exit:
|
|
rtnl_unlock();
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int bnxt_suspend(struct device *device)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(device);
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
int rc = 0;
|
|
|
|
rtnl_lock();
|
|
if (netif_running(dev)) {
|
|
netif_device_detach(dev);
|
|
rc = bnxt_close(dev);
|
|
}
|
|
bnxt_hwrm_func_drv_unrgtr(bp);
|
|
rtnl_unlock();
|
|
return rc;
|
|
}
|
|
|
|
static int bnxt_resume(struct device *device)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(device);
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnxt *bp = netdev_priv(dev);
|
|
int rc = 0;
|
|
|
|
rtnl_lock();
|
|
if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
|
|
rc = -ENODEV;
|
|
goto resume_exit;
|
|
}
|
|
rc = bnxt_hwrm_func_reset(bp);
|
|
if (rc) {
|
|
rc = -EBUSY;
|
|
goto resume_exit;
|
|
}
|
|
bnxt_get_wol_settings(bp);
|
|
if (netif_running(dev)) {
|
|
rc = bnxt_open(dev);
|
|
if (!rc)
|
|
netif_device_attach(dev);
|
|
}
|
|
|
|
resume_exit:
|
|
rtnl_unlock();
|
|
return rc;
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
|
|
#define BNXT_PM_OPS (&bnxt_pm_ops)
|
|
|
|
#else
|
|
|
|
#define BNXT_PM_OPS NULL
|
|
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
/**
|
|
* bnxt_io_error_detected - called when PCI error is detected
|
|
* @pdev: Pointer to PCI device
|
|
* @state: The current pci connection state
|
|
*
|
|
* This function is called after a PCI bus error affecting
|
|
* this device has been detected.
|
|
*/
|
|
static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
|
|
pci_channel_state_t state)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct bnxt *bp = netdev_priv(netdev);
|
|
|
|
netdev_info(netdev, "PCI I/O error detected\n");
|
|
|
|
rtnl_lock();
|
|
netif_device_detach(netdev);
|
|
|
|
bnxt_ulp_stop(bp);
|
|
|
|
if (state == pci_channel_io_perm_failure) {
|
|
rtnl_unlock();
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
}
|
|
|
|
if (netif_running(netdev))
|
|
bnxt_close(netdev);
|
|
|
|
pci_disable_device(pdev);
|
|
rtnl_unlock();
|
|
|
|
/* Request a slot slot reset. */
|
|
return PCI_ERS_RESULT_NEED_RESET;
|
|
}
|
|
|
|
/**
|
|
* bnxt_io_slot_reset - called after the pci bus has been reset.
|
|
* @pdev: Pointer to PCI device
|
|
*
|
|
* Restart the card from scratch, as if from a cold-boot.
|
|
* At this point, the card has exprienced a hard reset,
|
|
* followed by fixups by BIOS, and has its config space
|
|
* set up identically to what it was at cold boot.
|
|
*/
|
|
static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
struct bnxt *bp = netdev_priv(netdev);
|
|
int err = 0;
|
|
pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
|
|
|
|
netdev_info(bp->dev, "PCI Slot Reset\n");
|
|
|
|
rtnl_lock();
|
|
|
|
if (pci_enable_device(pdev)) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot re-enable PCI device after reset.\n");
|
|
} else {
|
|
pci_set_master(pdev);
|
|
|
|
err = bnxt_hwrm_func_reset(bp);
|
|
if (!err && netif_running(netdev))
|
|
err = bnxt_open(netdev);
|
|
|
|
if (!err) {
|
|
result = PCI_ERS_RESULT_RECOVERED;
|
|
bnxt_ulp_start(bp);
|
|
}
|
|
}
|
|
|
|
if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
|
|
dev_close(netdev);
|
|
|
|
rtnl_unlock();
|
|
|
|
err = pci_cleanup_aer_uncorrect_error_status(pdev);
|
|
if (err) {
|
|
dev_err(&pdev->dev,
|
|
"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
|
|
err); /* non-fatal, continue */
|
|
}
|
|
|
|
return PCI_ERS_RESULT_RECOVERED;
|
|
}
|
|
|
|
/**
|
|
* bnxt_io_resume - called when traffic can start flowing again.
|
|
* @pdev: Pointer to PCI device
|
|
*
|
|
* This callback is called when the error recovery driver tells
|
|
* us that its OK to resume normal operation.
|
|
*/
|
|
static void bnxt_io_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
|
|
rtnl_lock();
|
|
|
|
netif_device_attach(netdev);
|
|
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static const struct pci_error_handlers bnxt_err_handler = {
|
|
.error_detected = bnxt_io_error_detected,
|
|
.slot_reset = bnxt_io_slot_reset,
|
|
.resume = bnxt_io_resume
|
|
};
|
|
|
|
static struct pci_driver bnxt_pci_driver = {
|
|
.name = DRV_MODULE_NAME,
|
|
.id_table = bnxt_pci_tbl,
|
|
.probe = bnxt_init_one,
|
|
.remove = bnxt_remove_one,
|
|
.shutdown = bnxt_shutdown,
|
|
.driver.pm = BNXT_PM_OPS,
|
|
.err_handler = &bnxt_err_handler,
|
|
#if defined(CONFIG_BNXT_SRIOV)
|
|
.sriov_configure = bnxt_sriov_configure,
|
|
#endif
|
|
};
|
|
|
|
module_pci_driver(bnxt_pci_driver);
|