forked from Minki/linux
6b73eeafbc
This is an experimental patch to add a new tuning mechanism for dvb frontends. Rather than passing fixed structures across the user/kernel boundary, which need to be revised for each new modulation type (or feature the kernel developers want to add), this implements a simpler message based approach, allowing fe commands to be broken down into a series of small fixed size transactions, presented in an array. The goal is to avoid changing the user/kernel ABI in the future, by simply creating new frontend commands (and sequencies of commands) that help us add support for brand new demodulator, delivery system or statistics related commmands. known issues: checkpatch voilations feedback from various developers yet to be implemented, relating to namespace conventions, variable length array passing conventions, and generally some optimization. This patch should support all existing tuning mechanisms through the new API, as well as adding 8PSK, DVB-S2 NBC-QPSK and ISDB-T API support. For testing and exercise purposes, see the latest tune.c tool available from http://www.steventoth.net/linux/s2 Signed-off-by: Steven Toth <stoth@linuxtv.org> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
1788 lines
47 KiB
C
1788 lines
47 KiB
C
/*
|
|
* dvb_frontend.c: DVB frontend tuning interface/thread
|
|
*
|
|
*
|
|
* Copyright (C) 1999-2001 Ralph Metzler
|
|
* Marcus Metzler
|
|
* Holger Waechtler
|
|
* for convergence integrated media GmbH
|
|
*
|
|
* Copyright (C) 2004 Andrew de Quincey (tuning thread cleanup)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
|
|
*/
|
|
|
|
#include <linux/string.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/module.h>
|
|
#include <linux/list.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kthread.h>
|
|
#include <asm/processor.h>
|
|
|
|
#include "dvb_frontend.h"
|
|
#include "dvbdev.h"
|
|
|
|
static int dvb_frontend_debug;
|
|
static int dvb_shutdown_timeout;
|
|
static int dvb_force_auto_inversion;
|
|
static int dvb_override_tune_delay;
|
|
static int dvb_powerdown_on_sleep = 1;
|
|
|
|
module_param_named(frontend_debug, dvb_frontend_debug, int, 0644);
|
|
MODULE_PARM_DESC(frontend_debug, "Turn on/off frontend core debugging (default:off).");
|
|
module_param(dvb_shutdown_timeout, int, 0644);
|
|
MODULE_PARM_DESC(dvb_shutdown_timeout, "wait <shutdown_timeout> seconds after close() before suspending hardware");
|
|
module_param(dvb_force_auto_inversion, int, 0644);
|
|
MODULE_PARM_DESC(dvb_force_auto_inversion, "0: normal (default), 1: INVERSION_AUTO forced always");
|
|
module_param(dvb_override_tune_delay, int, 0644);
|
|
MODULE_PARM_DESC(dvb_override_tune_delay, "0: normal (default), >0 => delay in milliseconds to wait for lock after a tune attempt");
|
|
module_param(dvb_powerdown_on_sleep, int, 0644);
|
|
MODULE_PARM_DESC(dvb_powerdown_on_sleep, "0: do not power down, 1: turn LNB voltage off on sleep (default)");
|
|
|
|
#define dprintk if (dvb_frontend_debug) printk
|
|
|
|
#define FESTATE_IDLE 1
|
|
#define FESTATE_RETUNE 2
|
|
#define FESTATE_TUNING_FAST 4
|
|
#define FESTATE_TUNING_SLOW 8
|
|
#define FESTATE_TUNED 16
|
|
#define FESTATE_ZIGZAG_FAST 32
|
|
#define FESTATE_ZIGZAG_SLOW 64
|
|
#define FESTATE_DISEQC 128
|
|
#define FESTATE_WAITFORLOCK (FESTATE_TUNING_FAST | FESTATE_TUNING_SLOW | FESTATE_ZIGZAG_FAST | FESTATE_ZIGZAG_SLOW | FESTATE_DISEQC)
|
|
#define FESTATE_SEARCHING_FAST (FESTATE_TUNING_FAST | FESTATE_ZIGZAG_FAST)
|
|
#define FESTATE_SEARCHING_SLOW (FESTATE_TUNING_SLOW | FESTATE_ZIGZAG_SLOW)
|
|
#define FESTATE_LOSTLOCK (FESTATE_ZIGZAG_FAST | FESTATE_ZIGZAG_SLOW)
|
|
|
|
#define FE_ALGO_HW 1
|
|
/*
|
|
* FESTATE_IDLE. No tuning parameters have been supplied and the loop is idling.
|
|
* FESTATE_RETUNE. Parameters have been supplied, but we have not yet performed the first tune.
|
|
* FESTATE_TUNING_FAST. Tuning parameters have been supplied and fast zigzag scan is in progress.
|
|
* FESTATE_TUNING_SLOW. Tuning parameters have been supplied. Fast zigzag failed, so we're trying again, but slower.
|
|
* FESTATE_TUNED. The frontend has successfully locked on.
|
|
* FESTATE_ZIGZAG_FAST. The lock has been lost, and a fast zigzag has been initiated to try and regain it.
|
|
* FESTATE_ZIGZAG_SLOW. The lock has been lost. Fast zigzag has been failed, so we're trying again, but slower.
|
|
* FESTATE_DISEQC. A DISEQC command has just been issued.
|
|
* FESTATE_WAITFORLOCK. When we're waiting for a lock.
|
|
* FESTATE_SEARCHING_FAST. When we're searching for a signal using a fast zigzag scan.
|
|
* FESTATE_SEARCHING_SLOW. When we're searching for a signal using a slow zigzag scan.
|
|
* FESTATE_LOSTLOCK. When the lock has been lost, and we're searching it again.
|
|
*/
|
|
|
|
static DEFINE_MUTEX(frontend_mutex);
|
|
|
|
struct dvb_frontend_private {
|
|
|
|
/* thread/frontend values */
|
|
struct dvb_device *dvbdev;
|
|
struct dvb_frontend_parameters parameters;
|
|
struct dvb_fe_events events;
|
|
struct semaphore sem;
|
|
struct list_head list_head;
|
|
wait_queue_head_t wait_queue;
|
|
struct task_struct *thread;
|
|
unsigned long release_jiffies;
|
|
unsigned int exit;
|
|
unsigned int wakeup;
|
|
fe_status_t status;
|
|
unsigned long tune_mode_flags;
|
|
unsigned int delay;
|
|
unsigned int reinitialise;
|
|
int tone;
|
|
int voltage;
|
|
|
|
/* swzigzag values */
|
|
unsigned int state;
|
|
unsigned int bending;
|
|
int lnb_drift;
|
|
unsigned int inversion;
|
|
unsigned int auto_step;
|
|
unsigned int auto_sub_step;
|
|
unsigned int started_auto_step;
|
|
unsigned int min_delay;
|
|
unsigned int max_drift;
|
|
unsigned int step_size;
|
|
int quality;
|
|
unsigned int check_wrapped;
|
|
};
|
|
|
|
static void dvb_frontend_wakeup(struct dvb_frontend *fe);
|
|
|
|
static void dvb_frontend_add_event(struct dvb_frontend *fe, fe_status_t status)
|
|
{
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
struct dvb_fe_events *events = &fepriv->events;
|
|
struct dvb_frontend_event *e;
|
|
int wp;
|
|
|
|
dprintk ("%s\n", __func__);
|
|
|
|
if (mutex_lock_interruptible (&events->mtx))
|
|
return;
|
|
|
|
wp = (events->eventw + 1) % MAX_EVENT;
|
|
|
|
if (wp == events->eventr) {
|
|
events->overflow = 1;
|
|
events->eventr = (events->eventr + 1) % MAX_EVENT;
|
|
}
|
|
|
|
e = &events->events[events->eventw];
|
|
|
|
memcpy (&e->parameters, &fepriv->parameters,
|
|
sizeof (struct dvb_frontend_parameters));
|
|
|
|
if (status & FE_HAS_LOCK)
|
|
if (fe->ops.get_frontend)
|
|
fe->ops.get_frontend(fe, &e->parameters);
|
|
|
|
events->eventw = wp;
|
|
|
|
mutex_unlock(&events->mtx);
|
|
|
|
e->status = status;
|
|
|
|
wake_up_interruptible (&events->wait_queue);
|
|
}
|
|
|
|
static int dvb_frontend_get_event(struct dvb_frontend *fe,
|
|
struct dvb_frontend_event *event, int flags)
|
|
{
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
struct dvb_fe_events *events = &fepriv->events;
|
|
|
|
dprintk ("%s\n", __func__);
|
|
|
|
if (events->overflow) {
|
|
events->overflow = 0;
|
|
return -EOVERFLOW;
|
|
}
|
|
|
|
if (events->eventw == events->eventr) {
|
|
int ret;
|
|
|
|
if (flags & O_NONBLOCK)
|
|
return -EWOULDBLOCK;
|
|
|
|
up(&fepriv->sem);
|
|
|
|
ret = wait_event_interruptible (events->wait_queue,
|
|
events->eventw != events->eventr);
|
|
|
|
if (down_interruptible (&fepriv->sem))
|
|
return -ERESTARTSYS;
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
if (mutex_lock_interruptible (&events->mtx))
|
|
return -ERESTARTSYS;
|
|
|
|
memcpy (event, &events->events[events->eventr],
|
|
sizeof(struct dvb_frontend_event));
|
|
|
|
events->eventr = (events->eventr + 1) % MAX_EVENT;
|
|
|
|
mutex_unlock(&events->mtx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dvb_frontend_init(struct dvb_frontend *fe)
|
|
{
|
|
dprintk ("DVB: initialising frontend %i (%s)...\n",
|
|
fe->dvb->num,
|
|
fe->ops.info.name);
|
|
|
|
if (fe->ops.init)
|
|
fe->ops.init(fe);
|
|
if (fe->ops.tuner_ops.init) {
|
|
fe->ops.tuner_ops.init(fe);
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
}
|
|
}
|
|
|
|
void dvb_frontend_reinitialise(struct dvb_frontend *fe)
|
|
{
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
|
|
fepriv->reinitialise = 1;
|
|
dvb_frontend_wakeup(fe);
|
|
}
|
|
EXPORT_SYMBOL(dvb_frontend_reinitialise);
|
|
|
|
static void dvb_frontend_swzigzag_update_delay(struct dvb_frontend_private *fepriv, int locked)
|
|
{
|
|
int q2;
|
|
|
|
dprintk ("%s\n", __func__);
|
|
|
|
if (locked)
|
|
(fepriv->quality) = (fepriv->quality * 220 + 36*256) / 256;
|
|
else
|
|
(fepriv->quality) = (fepriv->quality * 220 + 0) / 256;
|
|
|
|
q2 = fepriv->quality - 128;
|
|
q2 *= q2;
|
|
|
|
fepriv->delay = fepriv->min_delay + q2 * HZ / (128*128);
|
|
}
|
|
|
|
/**
|
|
* Performs automatic twiddling of frontend parameters.
|
|
*
|
|
* @param fe The frontend concerned.
|
|
* @param check_wrapped Checks if an iteration has completed. DO NOT SET ON THE FIRST ATTEMPT
|
|
* @returns Number of complete iterations that have been performed.
|
|
*/
|
|
static int dvb_frontend_swzigzag_autotune(struct dvb_frontend *fe, int check_wrapped)
|
|
{
|
|
int autoinversion;
|
|
int ready = 0;
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
int original_inversion = fepriv->parameters.inversion;
|
|
u32 original_frequency = fepriv->parameters.frequency;
|
|
|
|
/* are we using autoinversion? */
|
|
autoinversion = ((!(fe->ops.info.caps & FE_CAN_INVERSION_AUTO)) &&
|
|
(fepriv->parameters.inversion == INVERSION_AUTO));
|
|
|
|
/* setup parameters correctly */
|
|
while(!ready) {
|
|
/* calculate the lnb_drift */
|
|
fepriv->lnb_drift = fepriv->auto_step * fepriv->step_size;
|
|
|
|
/* wrap the auto_step if we've exceeded the maximum drift */
|
|
if (fepriv->lnb_drift > fepriv->max_drift) {
|
|
fepriv->auto_step = 0;
|
|
fepriv->auto_sub_step = 0;
|
|
fepriv->lnb_drift = 0;
|
|
}
|
|
|
|
/* perform inversion and +/- zigzag */
|
|
switch(fepriv->auto_sub_step) {
|
|
case 0:
|
|
/* try with the current inversion and current drift setting */
|
|
ready = 1;
|
|
break;
|
|
|
|
case 1:
|
|
if (!autoinversion) break;
|
|
|
|
fepriv->inversion = (fepriv->inversion == INVERSION_OFF) ? INVERSION_ON : INVERSION_OFF;
|
|
ready = 1;
|
|
break;
|
|
|
|
case 2:
|
|
if (fepriv->lnb_drift == 0) break;
|
|
|
|
fepriv->lnb_drift = -fepriv->lnb_drift;
|
|
ready = 1;
|
|
break;
|
|
|
|
case 3:
|
|
if (fepriv->lnb_drift == 0) break;
|
|
if (!autoinversion) break;
|
|
|
|
fepriv->inversion = (fepriv->inversion == INVERSION_OFF) ? INVERSION_ON : INVERSION_OFF;
|
|
fepriv->lnb_drift = -fepriv->lnb_drift;
|
|
ready = 1;
|
|
break;
|
|
|
|
default:
|
|
fepriv->auto_step++;
|
|
fepriv->auto_sub_step = -1; /* it'll be incremented to 0 in a moment */
|
|
break;
|
|
}
|
|
|
|
if (!ready) fepriv->auto_sub_step++;
|
|
}
|
|
|
|
/* if this attempt would hit where we started, indicate a complete
|
|
* iteration has occurred */
|
|
if ((fepriv->auto_step == fepriv->started_auto_step) &&
|
|
(fepriv->auto_sub_step == 0) && check_wrapped) {
|
|
return 1;
|
|
}
|
|
|
|
dprintk("%s: drift:%i inversion:%i auto_step:%i "
|
|
"auto_sub_step:%i started_auto_step:%i\n",
|
|
__func__, fepriv->lnb_drift, fepriv->inversion,
|
|
fepriv->auto_step, fepriv->auto_sub_step, fepriv->started_auto_step);
|
|
|
|
/* set the frontend itself */
|
|
fepriv->parameters.frequency += fepriv->lnb_drift;
|
|
if (autoinversion)
|
|
fepriv->parameters.inversion = fepriv->inversion;
|
|
if (fe->ops.set_frontend)
|
|
fe->ops.set_frontend(fe, &fepriv->parameters);
|
|
|
|
fepriv->parameters.frequency = original_frequency;
|
|
fepriv->parameters.inversion = original_inversion;
|
|
|
|
fepriv->auto_sub_step++;
|
|
return 0;
|
|
}
|
|
|
|
static void dvb_frontend_swzigzag(struct dvb_frontend *fe)
|
|
{
|
|
fe_status_t s = 0;
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
|
|
/* if we've got no parameters, just keep idling */
|
|
if (fepriv->state & FESTATE_IDLE) {
|
|
fepriv->delay = 3*HZ;
|
|
fepriv->quality = 0;
|
|
return;
|
|
}
|
|
|
|
/* in SCAN mode, we just set the frontend when asked and leave it alone */
|
|
if (fepriv->tune_mode_flags & FE_TUNE_MODE_ONESHOT) {
|
|
if (fepriv->state & FESTATE_RETUNE) {
|
|
if (fe->ops.set_frontend)
|
|
fe->ops.set_frontend(fe, &fepriv->parameters);
|
|
fepriv->state = FESTATE_TUNED;
|
|
}
|
|
fepriv->delay = 3*HZ;
|
|
fepriv->quality = 0;
|
|
return;
|
|
}
|
|
|
|
/* get the frontend status */
|
|
if (fepriv->state & FESTATE_RETUNE) {
|
|
s = 0;
|
|
} else {
|
|
if (fe->ops.read_status)
|
|
fe->ops.read_status(fe, &s);
|
|
if (s != fepriv->status) {
|
|
dvb_frontend_add_event(fe, s);
|
|
fepriv->status = s;
|
|
}
|
|
}
|
|
|
|
/* if we're not tuned, and we have a lock, move to the TUNED state */
|
|
if ((fepriv->state & FESTATE_WAITFORLOCK) && (s & FE_HAS_LOCK)) {
|
|
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
|
|
fepriv->state = FESTATE_TUNED;
|
|
|
|
/* if we're tuned, then we have determined the correct inversion */
|
|
if ((!(fe->ops.info.caps & FE_CAN_INVERSION_AUTO)) &&
|
|
(fepriv->parameters.inversion == INVERSION_AUTO)) {
|
|
fepriv->parameters.inversion = fepriv->inversion;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* if we are tuned already, check we're still locked */
|
|
if (fepriv->state & FESTATE_TUNED) {
|
|
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
|
|
|
|
/* we're tuned, and the lock is still good... */
|
|
if (s & FE_HAS_LOCK) {
|
|
return;
|
|
} else { /* if we _WERE_ tuned, but now don't have a lock */
|
|
fepriv->state = FESTATE_ZIGZAG_FAST;
|
|
fepriv->started_auto_step = fepriv->auto_step;
|
|
fepriv->check_wrapped = 0;
|
|
}
|
|
}
|
|
|
|
/* don't actually do anything if we're in the LOSTLOCK state,
|
|
* the frontend is set to FE_CAN_RECOVER, and the max_drift is 0 */
|
|
if ((fepriv->state & FESTATE_LOSTLOCK) &&
|
|
(fe->ops.info.caps & FE_CAN_RECOVER) && (fepriv->max_drift == 0)) {
|
|
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
|
|
return;
|
|
}
|
|
|
|
/* don't do anything if we're in the DISEQC state, since this
|
|
* might be someone with a motorized dish controlled by DISEQC.
|
|
* If its actually a re-tune, there will be a SET_FRONTEND soon enough. */
|
|
if (fepriv->state & FESTATE_DISEQC) {
|
|
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
|
|
return;
|
|
}
|
|
|
|
/* if we're in the RETUNE state, set everything up for a brand
|
|
* new scan, keeping the current inversion setting, as the next
|
|
* tune is _very_ likely to require the same */
|
|
if (fepriv->state & FESTATE_RETUNE) {
|
|
fepriv->lnb_drift = 0;
|
|
fepriv->auto_step = 0;
|
|
fepriv->auto_sub_step = 0;
|
|
fepriv->started_auto_step = 0;
|
|
fepriv->check_wrapped = 0;
|
|
}
|
|
|
|
/* fast zigzag. */
|
|
if ((fepriv->state & FESTATE_SEARCHING_FAST) || (fepriv->state & FESTATE_RETUNE)) {
|
|
fepriv->delay = fepriv->min_delay;
|
|
|
|
/* peform a tune */
|
|
if (dvb_frontend_swzigzag_autotune(fe, fepriv->check_wrapped)) {
|
|
/* OK, if we've run out of trials at the fast speed.
|
|
* Drop back to slow for the _next_ attempt */
|
|
fepriv->state = FESTATE_SEARCHING_SLOW;
|
|
fepriv->started_auto_step = fepriv->auto_step;
|
|
return;
|
|
}
|
|
fepriv->check_wrapped = 1;
|
|
|
|
/* if we've just retuned, enter the ZIGZAG_FAST state.
|
|
* This ensures we cannot return from an
|
|
* FE_SET_FRONTEND ioctl before the first frontend tune
|
|
* occurs */
|
|
if (fepriv->state & FESTATE_RETUNE) {
|
|
fepriv->state = FESTATE_TUNING_FAST;
|
|
}
|
|
}
|
|
|
|
/* slow zigzag */
|
|
if (fepriv->state & FESTATE_SEARCHING_SLOW) {
|
|
dvb_frontend_swzigzag_update_delay(fepriv, s & FE_HAS_LOCK);
|
|
|
|
/* Note: don't bother checking for wrapping; we stay in this
|
|
* state until we get a lock */
|
|
dvb_frontend_swzigzag_autotune(fe, 0);
|
|
}
|
|
}
|
|
|
|
static int dvb_frontend_is_exiting(struct dvb_frontend *fe)
|
|
{
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
|
|
if (fepriv->exit)
|
|
return 1;
|
|
|
|
if (fepriv->dvbdev->writers == 1)
|
|
if (time_after(jiffies, fepriv->release_jiffies +
|
|
dvb_shutdown_timeout * HZ))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dvb_frontend_should_wakeup(struct dvb_frontend *fe)
|
|
{
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
|
|
if (fepriv->wakeup) {
|
|
fepriv->wakeup = 0;
|
|
return 1;
|
|
}
|
|
return dvb_frontend_is_exiting(fe);
|
|
}
|
|
|
|
static void dvb_frontend_wakeup(struct dvb_frontend *fe)
|
|
{
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
|
|
fepriv->wakeup = 1;
|
|
wake_up_interruptible(&fepriv->wait_queue);
|
|
}
|
|
|
|
static int dvb_frontend_thread(void *data)
|
|
{
|
|
struct dvb_frontend *fe = data;
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
unsigned long timeout;
|
|
fe_status_t s;
|
|
struct dvb_frontend_parameters *params;
|
|
|
|
dprintk("%s\n", __func__);
|
|
|
|
fepriv->check_wrapped = 0;
|
|
fepriv->quality = 0;
|
|
fepriv->delay = 3*HZ;
|
|
fepriv->status = 0;
|
|
fepriv->wakeup = 0;
|
|
fepriv->reinitialise = 0;
|
|
|
|
dvb_frontend_init(fe);
|
|
|
|
set_freezable();
|
|
while (1) {
|
|
up(&fepriv->sem); /* is locked when we enter the thread... */
|
|
restart:
|
|
timeout = wait_event_interruptible_timeout(fepriv->wait_queue,
|
|
dvb_frontend_should_wakeup(fe) || kthread_should_stop()
|
|
|| freezing(current),
|
|
fepriv->delay);
|
|
|
|
if (kthread_should_stop() || dvb_frontend_is_exiting(fe)) {
|
|
/* got signal or quitting */
|
|
break;
|
|
}
|
|
|
|
if (try_to_freeze())
|
|
goto restart;
|
|
|
|
if (down_interruptible(&fepriv->sem))
|
|
break;
|
|
|
|
if (fepriv->reinitialise) {
|
|
dvb_frontend_init(fe);
|
|
if (fepriv->tone != -1) {
|
|
fe->ops.set_tone(fe, fepriv->tone);
|
|
}
|
|
if (fepriv->voltage != -1) {
|
|
fe->ops.set_voltage(fe, fepriv->voltage);
|
|
}
|
|
fepriv->reinitialise = 0;
|
|
}
|
|
|
|
/* do an iteration of the tuning loop */
|
|
if (fe->ops.get_frontend_algo) {
|
|
if (fe->ops.get_frontend_algo(fe) == FE_ALGO_HW) {
|
|
/* have we been asked to retune? */
|
|
params = NULL;
|
|
if (fepriv->state & FESTATE_RETUNE) {
|
|
params = &fepriv->parameters;
|
|
fepriv->state = FESTATE_TUNED;
|
|
}
|
|
|
|
fe->ops.tune(fe, params, fepriv->tune_mode_flags, &fepriv->delay, &s);
|
|
if (s != fepriv->status) {
|
|
dvb_frontend_add_event(fe, s);
|
|
fepriv->status = s;
|
|
}
|
|
} else
|
|
dvb_frontend_swzigzag(fe);
|
|
} else
|
|
dvb_frontend_swzigzag(fe);
|
|
}
|
|
|
|
if (dvb_powerdown_on_sleep) {
|
|
if (fe->ops.set_voltage)
|
|
fe->ops.set_voltage(fe, SEC_VOLTAGE_OFF);
|
|
if (fe->ops.tuner_ops.sleep) {
|
|
fe->ops.tuner_ops.sleep(fe);
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
}
|
|
if (fe->ops.sleep)
|
|
fe->ops.sleep(fe);
|
|
}
|
|
|
|
fepriv->thread = NULL;
|
|
mb();
|
|
|
|
dvb_frontend_wakeup(fe);
|
|
return 0;
|
|
}
|
|
|
|
static void dvb_frontend_stop(struct dvb_frontend *fe)
|
|
{
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
|
|
dprintk ("%s\n", __func__);
|
|
|
|
fepriv->exit = 1;
|
|
mb();
|
|
|
|
if (!fepriv->thread)
|
|
return;
|
|
|
|
kthread_stop(fepriv->thread);
|
|
|
|
init_MUTEX (&fepriv->sem);
|
|
fepriv->state = FESTATE_IDLE;
|
|
|
|
/* paranoia check in case a signal arrived */
|
|
if (fepriv->thread)
|
|
printk("dvb_frontend_stop: warning: thread %p won't exit\n",
|
|
fepriv->thread);
|
|
}
|
|
|
|
s32 timeval_usec_diff(struct timeval lasttime, struct timeval curtime)
|
|
{
|
|
return ((curtime.tv_usec < lasttime.tv_usec) ?
|
|
1000000 - lasttime.tv_usec + curtime.tv_usec :
|
|
curtime.tv_usec - lasttime.tv_usec);
|
|
}
|
|
EXPORT_SYMBOL(timeval_usec_diff);
|
|
|
|
static inline void timeval_usec_add(struct timeval *curtime, u32 add_usec)
|
|
{
|
|
curtime->tv_usec += add_usec;
|
|
if (curtime->tv_usec >= 1000000) {
|
|
curtime->tv_usec -= 1000000;
|
|
curtime->tv_sec++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sleep until gettimeofday() > waketime + add_usec
|
|
* This needs to be as precise as possible, but as the delay is
|
|
* usually between 2ms and 32ms, it is done using a scheduled msleep
|
|
* followed by usleep (normally a busy-wait loop) for the remainder
|
|
*/
|
|
void dvb_frontend_sleep_until(struct timeval *waketime, u32 add_usec)
|
|
{
|
|
struct timeval lasttime;
|
|
s32 delta, newdelta;
|
|
|
|
timeval_usec_add(waketime, add_usec);
|
|
|
|
do_gettimeofday(&lasttime);
|
|
delta = timeval_usec_diff(lasttime, *waketime);
|
|
if (delta > 2500) {
|
|
msleep((delta - 1500) / 1000);
|
|
do_gettimeofday(&lasttime);
|
|
newdelta = timeval_usec_diff(lasttime, *waketime);
|
|
delta = (newdelta > delta) ? 0 : newdelta;
|
|
}
|
|
if (delta > 0)
|
|
udelay(delta);
|
|
}
|
|
EXPORT_SYMBOL(dvb_frontend_sleep_until);
|
|
|
|
static int dvb_frontend_start(struct dvb_frontend *fe)
|
|
{
|
|
int ret;
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
struct task_struct *fe_thread;
|
|
|
|
dprintk ("%s\n", __func__);
|
|
|
|
if (fepriv->thread) {
|
|
if (!fepriv->exit)
|
|
return 0;
|
|
else
|
|
dvb_frontend_stop (fe);
|
|
}
|
|
|
|
if (signal_pending(current))
|
|
return -EINTR;
|
|
if (down_interruptible (&fepriv->sem))
|
|
return -EINTR;
|
|
|
|
fepriv->state = FESTATE_IDLE;
|
|
fepriv->exit = 0;
|
|
fepriv->thread = NULL;
|
|
mb();
|
|
|
|
fe_thread = kthread_run(dvb_frontend_thread, fe,
|
|
"kdvb-fe-%i", fe->dvb->num);
|
|
if (IS_ERR(fe_thread)) {
|
|
ret = PTR_ERR(fe_thread);
|
|
printk("dvb_frontend_start: failed to start kthread (%d)\n", ret);
|
|
up(&fepriv->sem);
|
|
return ret;
|
|
}
|
|
fepriv->thread = fe_thread;
|
|
return 0;
|
|
}
|
|
|
|
static void dvb_frontend_get_frequeny_limits(struct dvb_frontend *fe,
|
|
u32 *freq_min, u32 *freq_max)
|
|
{
|
|
*freq_min = max(fe->ops.info.frequency_min, fe->ops.tuner_ops.info.frequency_min);
|
|
|
|
if (fe->ops.info.frequency_max == 0)
|
|
*freq_max = fe->ops.tuner_ops.info.frequency_max;
|
|
else if (fe->ops.tuner_ops.info.frequency_max == 0)
|
|
*freq_max = fe->ops.info.frequency_max;
|
|
else
|
|
*freq_max = min(fe->ops.info.frequency_max, fe->ops.tuner_ops.info.frequency_max);
|
|
|
|
if (*freq_min == 0 || *freq_max == 0)
|
|
printk(KERN_WARNING "DVB: frontend %u frequency limits undefined - fix the driver\n",
|
|
fe->dvb->num);
|
|
}
|
|
|
|
static int dvb_frontend_check_parameters(struct dvb_frontend *fe,
|
|
struct dvb_frontend_parameters *parms)
|
|
{
|
|
u32 freq_min;
|
|
u32 freq_max;
|
|
|
|
/* range check: frequency */
|
|
dvb_frontend_get_frequeny_limits(fe, &freq_min, &freq_max);
|
|
if ((freq_min && parms->frequency < freq_min) ||
|
|
(freq_max && parms->frequency > freq_max)) {
|
|
printk(KERN_WARNING "DVB: frontend %u frequency %u out of range (%u..%u)\n",
|
|
fe->dvb->num, parms->frequency, freq_min, freq_max);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* range check: symbol rate */
|
|
if (fe->ops.info.type == FE_QPSK) {
|
|
if ((fe->ops.info.symbol_rate_min &&
|
|
parms->u.qpsk.symbol_rate < fe->ops.info.symbol_rate_min) ||
|
|
(fe->ops.info.symbol_rate_max &&
|
|
parms->u.qpsk.symbol_rate > fe->ops.info.symbol_rate_max)) {
|
|
printk(KERN_WARNING "DVB: frontend %u symbol rate %u out of range (%u..%u)\n",
|
|
fe->dvb->num, parms->u.qpsk.symbol_rate,
|
|
fe->ops.info.symbol_rate_min, fe->ops.info.symbol_rate_max);
|
|
return -EINVAL;
|
|
}
|
|
|
|
} else if (fe->ops.info.type == FE_QAM) {
|
|
if ((fe->ops.info.symbol_rate_min &&
|
|
parms->u.qam.symbol_rate < fe->ops.info.symbol_rate_min) ||
|
|
(fe->ops.info.symbol_rate_max &&
|
|
parms->u.qam.symbol_rate > fe->ops.info.symbol_rate_max)) {
|
|
printk(KERN_WARNING "DVB: frontend %u symbol rate %u out of range (%u..%u)\n",
|
|
fe->dvb->num, parms->u.qam.symbol_rate,
|
|
fe->ops.info.symbol_rate_min, fe->ops.info.symbol_rate_max);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct tv_cmds_h tv_cmds[] = {
|
|
[TV_SEQ_UNDEFINED] = {
|
|
.name = "TV_SEQ_UNDEFINED",
|
|
.cmd = TV_SEQ_UNDEFINED,
|
|
.set = 1,
|
|
},
|
|
[TV_SEQ_START] = {
|
|
.name = "TV_SEQ_START",
|
|
.cmd = TV_SEQ_START,
|
|
.set = 1,
|
|
},
|
|
[TV_SEQ_CONTINUE] = {
|
|
.name = "TV_SEQ_CONTINUE",
|
|
.cmd = TV_SEQ_CONTINUE,
|
|
.set = 1,
|
|
},
|
|
[TV_SEQ_COMPLETE] = {
|
|
.name = "TV_SEQ_COMPLETE",
|
|
.cmd = TV_SEQ_COMPLETE,
|
|
.set = 1,
|
|
},
|
|
[TV_SEQ_TERMINATE] = {
|
|
.name = "TV_SEQ_TERMINATE",
|
|
.cmd = TV_SEQ_TERMINATE,
|
|
.set = 1,
|
|
},
|
|
|
|
/* Set */
|
|
[TV_SET_FREQUENCY] = {
|
|
.name = "TV_SET_FREQUENCY",
|
|
.cmd = TV_SET_FREQUENCY,
|
|
.set = 1,
|
|
},
|
|
[TV_SET_BANDWIDTH] = {
|
|
.name = "TV_SET_BANDWIDTH",
|
|
.cmd = TV_SET_BANDWIDTH,
|
|
.set = 1,
|
|
},
|
|
[TV_SET_MODULATION] = {
|
|
.name = "TV_SET_MODULATION",
|
|
.cmd = TV_SET_MODULATION,
|
|
.set = 1,
|
|
},
|
|
[TV_SET_INVERSION] = {
|
|
.name = "TV_SET_INVERSION",
|
|
.cmd = TV_SET_INVERSION,
|
|
.set = 1,
|
|
},
|
|
[TV_SET_DISEQC_MASTER] = {
|
|
.name = "TV_SET_DISEQC_MASTER",
|
|
.cmd = TV_SET_DISEQC_MASTER,
|
|
.set = 1,
|
|
.buffer = 1,
|
|
},
|
|
[TV_SET_SYMBOLRATE] = {
|
|
.name = "TV_SET_SYMBOLRATE",
|
|
.cmd = TV_SET_SYMBOLRATE,
|
|
.set = 1,
|
|
},
|
|
[TV_SET_INNERFEC] = {
|
|
.name = "TV_SET_INNERFEC",
|
|
.cmd = TV_SET_INNERFEC,
|
|
.set = 1,
|
|
},
|
|
[TV_SET_VOLTAGE] = {
|
|
.name = "TV_SET_VOLTAGE",
|
|
.cmd = TV_SET_VOLTAGE,
|
|
.set = 1,
|
|
},
|
|
[TV_SET_TONE] = {
|
|
.name = "TV_SET_TONE",
|
|
.cmd = TV_SET_TONE,
|
|
.set = 1,
|
|
},
|
|
[TV_SET_PILOT] = {
|
|
.name = "TV_SET_PILOT",
|
|
.cmd = TV_SET_PILOT,
|
|
.set = 1,
|
|
},
|
|
[TV_SET_ROLLOFF] = {
|
|
.name = "TV_SET_ROLLOFF",
|
|
.cmd = TV_SET_ROLLOFF,
|
|
.set = 1,
|
|
},
|
|
[TV_SET_DELIVERY_SYSTEM] = {
|
|
.name = "TV_SET_DELIVERY_SYSTEM",
|
|
.cmd = TV_SET_DELIVERY_SYSTEM,
|
|
.set = 1,
|
|
},
|
|
[TV_SET_ISDB_SEGMENT_NUM] = {
|
|
.name = "TV_SET_ISDB_SEGMENT_NUM",
|
|
.cmd = TV_SET_ISDB_SEGMENT_NUM,
|
|
.set = 1,
|
|
},
|
|
[TV_SET_ISDB_SEGMENT_WIDTH] = {
|
|
.name = "TV_SET_ISDB_SEGMENT_WIDTH",
|
|
.cmd = TV_SET_ISDB_SEGMENT_WIDTH,
|
|
.set = 1,
|
|
},
|
|
|
|
/* Get */
|
|
[TV_GET_FREQUENCY] = {
|
|
.name = "TV_GET_FREQUENCY",
|
|
.cmd = TV_GET_FREQUENCY,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_BANDWIDTH] = {
|
|
.name = "TV_GET_BANDWIDTH",
|
|
.cmd = TV_GET_BANDWIDTH,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_MODULATION] = {
|
|
.name = "TV_GET_MODULATION",
|
|
.cmd = TV_GET_MODULATION,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_INVERSION] = {
|
|
.name = "TV_GET_INVERSION",
|
|
.cmd = TV_GET_INVERSION,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_DISEQC_SLAVE_REPLY] = {
|
|
.name = "TV_GET_DISEQC_SLAVE_REPLY",
|
|
.cmd = TV_GET_DISEQC_SLAVE_REPLY,
|
|
.set = 0,
|
|
.buffer = 1,
|
|
},
|
|
[TV_GET_SYMBOLRATE] = {
|
|
.name = "TV_GET_SYMBOLRATE",
|
|
.cmd = TV_GET_SYMBOLRATE,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_INNERFEC] = {
|
|
.name = "TV_GET_INNERFEC",
|
|
.cmd = TV_GET_INNERFEC,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_VOLTAGE] = {
|
|
.name = "TV_GET_VOLTAGE",
|
|
.cmd = TV_GET_VOLTAGE,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_TONE] = {
|
|
.name = "TV_GET_TONE",
|
|
.cmd = TV_GET_TONE,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_PILOT] = {
|
|
.name = "TV_GET_PILOT",
|
|
.cmd = TV_GET_PILOT,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_ROLLOFF] = {
|
|
.name = "TV_GET_ROLLOFF",
|
|
.cmd = TV_GET_ROLLOFF,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_DELIVERY_SYSTEM] = {
|
|
.name = "TV_GET_DELIVERY_SYSTEM",
|
|
.cmd = TV_GET_DELIVERY_SYSTEM,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_ISDB_SEGMENT_NUM] = {
|
|
.name = "TV_GET_ISDB_SEGMENT_NUM",
|
|
.cmd = TV_GET_ISDB_SEGMENT_NUM,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_ISDB_SEGMENT_WIDTH] = {
|
|
.name = "TV_GET_ISDB_SEGMENT_WIDTH",
|
|
.cmd = TV_GET_ISDB_SEGMENT_WIDTH,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_ISDB_LAYERA_FEC] = {
|
|
.name = "TV_GET_ISDB_LAYERA_FEC",
|
|
.cmd = TV_GET_ISDB_LAYERA_FEC,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_ISDB_LAYERA_MODULATION] = {
|
|
.name = "TV_GET_ISDB_LAYERA_MODULATION",
|
|
.cmd = TV_GET_ISDB_LAYERA_MODULATION,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_ISDB_LAYERA_SEGMENT_WIDTH] = {
|
|
.name = "TV_GET_ISDB_LAYERA_SEGMENT_WIDTH",
|
|
.cmd = TV_GET_ISDB_LAYERA_SEGMENT_WIDTH,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_ISDB_LAYERB_FEC] = {
|
|
.name = "TV_GET_ISDB_LAYERB_FEC",
|
|
.cmd = TV_GET_ISDB_LAYERB_FEC,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_ISDB_LAYERB_MODULATION] = {
|
|
.name = "TV_GET_ISDB_LAYERB_MODULATION",
|
|
.cmd = TV_GET_ISDB_LAYERB_MODULATION,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_ISDB_LAYERB_SEGMENT_WIDTH] = {
|
|
.name = "TV_GET_ISDB_LAYERB_SEGMENT_WIDTH",
|
|
.cmd = TV_GET_ISDB_LAYERB_SEGMENT_WIDTH,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_ISDB_LAYERC_FEC] = {
|
|
.name = "TV_GET_ISDB_LAYERC_FEC",
|
|
.cmd = TV_GET_ISDB_LAYERC_FEC,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_ISDB_LAYERC_MODULATION] = {
|
|
.name = "TV_GET_ISDB_LAYERC_MODULATION",
|
|
.cmd = TV_GET_ISDB_LAYERC_MODULATION,
|
|
.set = 0,
|
|
},
|
|
[TV_GET_ISDB_LAYERC_SEGMENT_WIDTH] = {
|
|
.name = "TV_GET_ISDB_LAYERC_SEGMENT_WIDTH",
|
|
.cmd = TV_GET_ISDB_LAYERC_SEGMENT_WIDTH,
|
|
.set = 0,
|
|
},
|
|
};
|
|
|
|
void tv_property_dump(tv_property_t *tvp)
|
|
{
|
|
int i;
|
|
|
|
printk("%s() tvp.cmd = 0x%08x (%s)\n"
|
|
,__FUNCTION__
|
|
,tvp->cmd
|
|
,tv_cmds[ tvp->cmd ].name);
|
|
|
|
if(tv_cmds[ tvp->cmd ].buffer) {
|
|
|
|
printk("%s() tvp.u.buffer.len = 0x%02x\n"
|
|
,__FUNCTION__
|
|
,tvp->u.buffer.len);
|
|
|
|
for(i = 0; i < tvp->u.buffer.len; i++)
|
|
printk("%s() tvp.u.buffer.data[0x%02x] = 0x%02x\n"
|
|
,__FUNCTION__
|
|
,i
|
|
,tvp->u.buffer.data[i]);
|
|
|
|
} else
|
|
printk("%s() tvp.u.data = 0x%08x\n", __FUNCTION__, tvp->u.data);
|
|
}
|
|
|
|
int is_legacy_delivery_system(fe_delivery_system_t s)
|
|
{
|
|
if((s == SYS_UNDEFINED) || (s == SYS_DVBC_ANNEX_AC) ||
|
|
(s == SYS_DVBC_ANNEX_B) || (s == SYS_DVBT) || (s == SYS_DVBS))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int tv_property_cache_submit(struct dvb_frontend *fe)
|
|
{
|
|
|
|
/* We have to do one of two things:
|
|
* To support legacy devices using the new API we take values from
|
|
* the tv_cache and generate a legacy truning structure.
|
|
*
|
|
* Or,
|
|
*
|
|
* To support advanced tuning devices with the new API we
|
|
* notify the new advance driver type that a tuning operation is required
|
|
* and let it pull values from the cache as is, we don't need to
|
|
* pass structures.
|
|
*
|
|
* We'll use the modulation type to assess how this is handled. as the API
|
|
* progresses we'll probably want to have a flag in dvb_frontend_ops
|
|
* to allow the frontend driver to dictate how it likes to be tuned.
|
|
*
|
|
* Because of how this is attached to the ioctl handler for legacy support,
|
|
* it's important to return an appropriate result code with atleast the following
|
|
* three meanings:
|
|
* < 0 = processing error
|
|
* 0 = lecagy ioctl handler to submit a traditional set_frontend() call.
|
|
* 1 = lecagy ioctl handler should NOT submit a traditional set_frontend() call.
|
|
*/
|
|
|
|
int r;
|
|
|
|
struct tv_frontend_properties *c = &fe->tv_property_cache;
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
struct dvb_frontend_parameters p;
|
|
|
|
printk("%s()\n", __FUNCTION__);
|
|
|
|
/* For legacy delivery systems we don't need the delivery_system to be specified */
|
|
if(is_legacy_delivery_system(c->delivery_system)) {
|
|
switch(c->modulation) {
|
|
case QPSK:
|
|
printk("%s() Preparing QPSK req\n", __FUNCTION__);
|
|
p.frequency = c->frequency;
|
|
p.inversion = c->inversion;
|
|
p.u.qpsk.symbol_rate = c->symbol_rate;
|
|
p.u.qpsk.fec_inner = c->fec_inner;
|
|
memcpy(&fepriv->parameters, &p,
|
|
sizeof (struct dvb_frontend_parameters));
|
|
|
|
/* Call the traditional tuning mechanisms. */
|
|
|
|
r = 0;
|
|
break;
|
|
case QAM_16:
|
|
case QAM_32:
|
|
case QAM_64:
|
|
case QAM_128:
|
|
case QAM_256:
|
|
case QAM_AUTO:
|
|
printk("%s() Preparing QAM req\n", __FUNCTION__);
|
|
p.frequency = c->frequency;
|
|
p.inversion = c->inversion;
|
|
p.u.qam.symbol_rate = c->symbol_rate;
|
|
p.u.vsb.modulation = c->modulation;
|
|
printk("%s() frequency = %d\n", __FUNCTION__, p.frequency);
|
|
printk("%s() QAM = %d\n", __FUNCTION__, p.u.vsb.modulation);
|
|
memcpy(&fepriv->parameters, &p,
|
|
sizeof (struct dvb_frontend_parameters));
|
|
|
|
/* At this point we're fully formed for backwards
|
|
* compatability and we need to return this
|
|
* via the ioctl handler as SET_FRONTEND (arg).
|
|
* We've already patched the new values into the
|
|
* frontends tuning structures so the ioctl code just
|
|
* continues as if a legacy tune structure was passed
|
|
* from userspace.
|
|
*/
|
|
|
|
r = 0;
|
|
break;
|
|
case VSB_8:
|
|
case VSB_16:
|
|
printk("%s() Preparing VSB req\n", __FUNCTION__);
|
|
p.frequency = c->frequency;
|
|
p.u.vsb.modulation = c->modulation;
|
|
memcpy(&fepriv->parameters, &p,
|
|
sizeof (struct dvb_frontend_parameters));
|
|
|
|
/* Call the traditional tuning mechanisms. */
|
|
|
|
r = 0;
|
|
break;
|
|
/* TODO: Add any missing modulation types */
|
|
default:
|
|
r = -1;
|
|
}
|
|
} else {
|
|
/* For advanced delivery systems / modulation types ...
|
|
* we seed the lecacy dvb_frontend_parameters structure
|
|
* so that the sanity checking code later in the IOCTL processing
|
|
* can validate our basic frequency ranges, symbolrates, modulation
|
|
* etc.
|
|
*/
|
|
r = -1;
|
|
|
|
switch(c->modulation) {
|
|
case _8PSK:
|
|
case _16APSK:
|
|
case NBC_QPSK:
|
|
/* Just post a notification to the demod driver and let it pull
|
|
* the specific values it wants from its tv_property_cache.
|
|
* It can decide how best to use those parameters.
|
|
* IOCTL will call set_frontend (by default) due to zigzag
|
|
* support etc.
|
|
*/
|
|
if (fe->ops.set_params)
|
|
r = fe->ops.set_params(fe);
|
|
|
|
p.frequency = c->frequency;
|
|
p.inversion = c->inversion;
|
|
p.u.qpsk.symbol_rate = c->symbol_rate;
|
|
p.u.qpsk.fec_inner = c->fec_inner;
|
|
memcpy(&fepriv->parameters, &p,
|
|
sizeof (struct dvb_frontend_parameters));
|
|
|
|
r = 0;
|
|
break;
|
|
default:
|
|
r = -1;
|
|
}
|
|
|
|
if(c->delivery_system == SYS_ISDBT) {
|
|
/* Fake out a generic DVB-T request so we pass validation in the ioctl */
|
|
p.frequency = c->frequency;
|
|
p.inversion = INVERSION_AUTO;
|
|
p.u.ofdm.constellation = QAM_AUTO;
|
|
p.u.ofdm.code_rate_HP = FEC_AUTO;
|
|
p.u.ofdm.code_rate_LP = FEC_AUTO;
|
|
p.u.ofdm.bandwidth = BANDWIDTH_AUTO;
|
|
p.u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
|
|
p.u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
|
|
p.u.ofdm.hierarchy_information = HIERARCHY_AUTO;
|
|
memcpy(&fepriv->parameters, &p,
|
|
sizeof (struct dvb_frontend_parameters));
|
|
|
|
r = 0;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
int tv_property_process(struct dvb_frontend *fe, tv_property_t *tvp)
|
|
{
|
|
int r = 0;
|
|
printk("%s()\n", __FUNCTION__);
|
|
tv_property_dump(tvp);
|
|
|
|
switch(tvp->cmd) {
|
|
case TV_SEQ_START:
|
|
case TV_SEQ_TERMINATE:
|
|
/* Reset a cache of data specific to the frontend here. This does
|
|
* not effect hardware.
|
|
*/
|
|
printk("%s() Flushing property cache\n", __FUNCTION__);
|
|
memset(&fe->tv_property_cache, 0, sizeof(struct tv_frontend_properties));
|
|
fe->tv_property_cache.state = TV_SEQ_START;
|
|
fe->tv_property_cache.delivery_system = SYS_UNDEFINED;
|
|
break;
|
|
case TV_SEQ_COMPLETE:
|
|
/* interpret the cache of data, build either a traditional frontend
|
|
* tunerequest and submit it to a subset of the ioctl handler,
|
|
* or, call a new undefined method on the frontend to deal with
|
|
* all new tune requests.
|
|
*/
|
|
fe->tv_property_cache.state = TV_SEQ_COMPLETE;
|
|
printk("%s() Finalised property cache\n", __FUNCTION__);
|
|
r = tv_property_cache_submit(fe);
|
|
break;
|
|
case TV_SET_FREQUENCY:
|
|
fe->tv_property_cache.frequency = tvp->u.data;
|
|
break;
|
|
case TV_GET_FREQUENCY:
|
|
tvp->u.data = fe->tv_property_cache.frequency;
|
|
break;
|
|
case TV_SET_MODULATION:
|
|
fe->tv_property_cache.modulation = tvp->u.data;
|
|
break;
|
|
case TV_GET_MODULATION:
|
|
tvp->u.data = fe->tv_property_cache.modulation;
|
|
break;
|
|
case TV_SET_BANDWIDTH:
|
|
fe->tv_property_cache.bandwidth = tvp->u.data;
|
|
break;
|
|
case TV_GET_BANDWIDTH:
|
|
tvp->u.data = fe->tv_property_cache.bandwidth;
|
|
break;
|
|
case TV_SET_INVERSION:
|
|
fe->tv_property_cache.inversion = tvp->u.data;
|
|
break;
|
|
case TV_GET_INVERSION:
|
|
tvp->u.data = fe->tv_property_cache.inversion;
|
|
break;
|
|
case TV_SET_SYMBOLRATE:
|
|
fe->tv_property_cache.symbol_rate = tvp->u.data;
|
|
break;
|
|
case TV_GET_SYMBOLRATE:
|
|
tvp->u.data = fe->tv_property_cache.symbol_rate;
|
|
break;
|
|
case TV_SET_INNERFEC:
|
|
fe->tv_property_cache.fec_inner = tvp->u.data;
|
|
break;
|
|
case TV_GET_INNERFEC:
|
|
tvp->u.data = fe->tv_property_cache.fec_inner;
|
|
break;
|
|
case TV_SET_PILOT:
|
|
fe->tv_property_cache.pilot = tvp->u.data;
|
|
break;
|
|
case TV_GET_PILOT:
|
|
tvp->u.data = fe->tv_property_cache.pilot;
|
|
break;
|
|
case TV_SET_ROLLOFF:
|
|
fe->tv_property_cache.rolloff = tvp->u.data;
|
|
break;
|
|
case TV_GET_ROLLOFF:
|
|
tvp->u.data = fe->tv_property_cache.rolloff;
|
|
break;
|
|
case TV_SET_DELIVERY_SYSTEM:
|
|
fe->tv_property_cache.delivery_system = tvp->u.data;
|
|
break;
|
|
case TV_GET_DELIVERY_SYSTEM:
|
|
tvp->u.data = fe->tv_property_cache.delivery_system;
|
|
break;
|
|
|
|
/* ISDB-T Support here */
|
|
case TV_SET_ISDB_SEGMENT_NUM:
|
|
fe->tv_property_cache.isdb_segment_num = tvp->u.data;
|
|
break;
|
|
case TV_GET_ISDB_SEGMENT_NUM:
|
|
tvp->u.data = fe->tv_property_cache.isdb_segment_num;
|
|
break;
|
|
case TV_SET_ISDB_SEGMENT_WIDTH:
|
|
fe->tv_property_cache.isdb_segment_width = tvp->u.data;
|
|
break;
|
|
case TV_GET_ISDB_SEGMENT_WIDTH:
|
|
tvp->u.data = fe->tv_property_cache.isdb_segment_width;
|
|
break;
|
|
case TV_GET_ISDB_LAYERA_FEC:
|
|
tvp->u.data = fe->tv_property_cache.isdb_layera_fec;
|
|
break;
|
|
case TV_GET_ISDB_LAYERA_MODULATION:
|
|
tvp->u.data = fe->tv_property_cache.isdb_layera_modulation;
|
|
break;
|
|
case TV_GET_ISDB_LAYERA_SEGMENT_WIDTH:
|
|
tvp->u.data = fe->tv_property_cache.isdb_layera_segment_width;
|
|
break;
|
|
case TV_GET_ISDB_LAYERB_FEC:
|
|
tvp->u.data = fe->tv_property_cache.isdb_layerb_fec;
|
|
break;
|
|
case TV_GET_ISDB_LAYERB_MODULATION:
|
|
tvp->u.data = fe->tv_property_cache.isdb_layerb_modulation;
|
|
break;
|
|
case TV_GET_ISDB_LAYERB_SEGMENT_WIDTH:
|
|
tvp->u.data = fe->tv_property_cache.isdb_layerb_segment_width;
|
|
break;
|
|
case TV_GET_ISDB_LAYERC_FEC:
|
|
tvp->u.data = fe->tv_property_cache.isdb_layerc_fec;
|
|
break;
|
|
case TV_GET_ISDB_LAYERC_MODULATION:
|
|
tvp->u.data = fe->tv_property_cache.isdb_layerc_modulation;
|
|
break;
|
|
case TV_GET_ISDB_LAYERC_SEGMENT_WIDTH:
|
|
tvp->u.data = fe->tv_property_cache.isdb_layerc_segment_width;
|
|
break;
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dvb_frontend_ioctl(struct inode *inode, struct file *file,
|
|
unsigned int cmd, void *parg)
|
|
{
|
|
struct dvb_device *dvbdev = file->private_data;
|
|
struct dvb_frontend *fe = dvbdev->priv;
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
int err = -EOPNOTSUPP;
|
|
tv_property_t* tvp;
|
|
|
|
dprintk ("%s\n", __func__);
|
|
|
|
if (fepriv->exit)
|
|
return -ENODEV;
|
|
|
|
if ((file->f_flags & O_ACCMODE) == O_RDONLY &&
|
|
(_IOC_DIR(cmd) != _IOC_READ || cmd == FE_GET_EVENT ||
|
|
cmd == FE_DISEQC_RECV_SLAVE_REPLY))
|
|
return -EPERM;
|
|
|
|
if (down_interruptible (&fepriv->sem))
|
|
return -ERESTARTSYS;
|
|
|
|
if(cmd == FE_SET_PROPERTY) {
|
|
printk("%s() FE_SET_PROPERTY\n", __FUNCTION__);
|
|
|
|
/* TODO: basic property validation here */
|
|
|
|
/* TODO: ioctl userdata out of range check here */
|
|
tvp = parg;
|
|
while(tvp->cmd != TV_SEQ_UNDEFINED) {
|
|
tv_property_process(fe, tvp);
|
|
if( (tvp->cmd == TV_SEQ_TERMINATE) || (tvp->cmd == TV_SEQ_COMPLETE) )
|
|
break;
|
|
tvp++;
|
|
}
|
|
|
|
if(fe->tv_property_cache.state == TV_SEQ_COMPLETE) {
|
|
printk("%s() Property cache is full, tuning\n", __FUNCTION__);
|
|
cmd = FE_SET_FRONTEND;
|
|
}
|
|
err = 0;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case FE_GET_INFO: {
|
|
struct dvb_frontend_info* info = parg;
|
|
memcpy(info, &fe->ops.info, sizeof(struct dvb_frontend_info));
|
|
dvb_frontend_get_frequeny_limits(fe, &info->frequency_min, &info->frequency_max);
|
|
|
|
/* Force the CAN_INVERSION_AUTO bit on. If the frontend doesn't
|
|
* do it, it is done for it. */
|
|
info->caps |= FE_CAN_INVERSION_AUTO;
|
|
err = 0;
|
|
break;
|
|
}
|
|
|
|
case FE_READ_STATUS: {
|
|
fe_status_t* status = parg;
|
|
|
|
/* if retune was requested but hasn't occured yet, prevent
|
|
* that user get signal state from previous tuning */
|
|
if(fepriv->state == FESTATE_RETUNE) {
|
|
err=0;
|
|
*status = 0;
|
|
break;
|
|
}
|
|
|
|
if (fe->ops.read_status)
|
|
err = fe->ops.read_status(fe, status);
|
|
break;
|
|
}
|
|
case FE_READ_BER:
|
|
if (fe->ops.read_ber)
|
|
err = fe->ops.read_ber(fe, (__u32*) parg);
|
|
break;
|
|
|
|
case FE_READ_SIGNAL_STRENGTH:
|
|
if (fe->ops.read_signal_strength)
|
|
err = fe->ops.read_signal_strength(fe, (__u16*) parg);
|
|
break;
|
|
|
|
case FE_READ_SNR:
|
|
if (fe->ops.read_snr)
|
|
err = fe->ops.read_snr(fe, (__u16*) parg);
|
|
break;
|
|
|
|
case FE_READ_UNCORRECTED_BLOCKS:
|
|
if (fe->ops.read_ucblocks)
|
|
err = fe->ops.read_ucblocks(fe, (__u32*) parg);
|
|
break;
|
|
|
|
|
|
case FE_DISEQC_RESET_OVERLOAD:
|
|
if (fe->ops.diseqc_reset_overload) {
|
|
err = fe->ops.diseqc_reset_overload(fe);
|
|
fepriv->state = FESTATE_DISEQC;
|
|
fepriv->status = 0;
|
|
}
|
|
break;
|
|
|
|
case FE_DISEQC_SEND_MASTER_CMD:
|
|
if (fe->ops.diseqc_send_master_cmd) {
|
|
err = fe->ops.diseqc_send_master_cmd(fe, (struct dvb_diseqc_master_cmd*) parg);
|
|
fepriv->state = FESTATE_DISEQC;
|
|
fepriv->status = 0;
|
|
}
|
|
break;
|
|
|
|
case FE_DISEQC_SEND_BURST:
|
|
if (fe->ops.diseqc_send_burst) {
|
|
err = fe->ops.diseqc_send_burst(fe, (fe_sec_mini_cmd_t) parg);
|
|
fepriv->state = FESTATE_DISEQC;
|
|
fepriv->status = 0;
|
|
}
|
|
break;
|
|
|
|
case FE_SET_TONE:
|
|
if (fe->ops.set_tone) {
|
|
err = fe->ops.set_tone(fe, (fe_sec_tone_mode_t) parg);
|
|
fepriv->tone = (fe_sec_tone_mode_t) parg;
|
|
fepriv->state = FESTATE_DISEQC;
|
|
fepriv->status = 0;
|
|
}
|
|
break;
|
|
|
|
case FE_SET_VOLTAGE:
|
|
if (fe->ops.set_voltage) {
|
|
err = fe->ops.set_voltage(fe, (fe_sec_voltage_t) parg);
|
|
fepriv->voltage = (fe_sec_voltage_t) parg;
|
|
fepriv->state = FESTATE_DISEQC;
|
|
fepriv->status = 0;
|
|
}
|
|
break;
|
|
|
|
case FE_DISHNETWORK_SEND_LEGACY_CMD:
|
|
if (fe->ops.dishnetwork_send_legacy_command) {
|
|
err = fe->ops.dishnetwork_send_legacy_command(fe, (unsigned long) parg);
|
|
fepriv->state = FESTATE_DISEQC;
|
|
fepriv->status = 0;
|
|
} else if (fe->ops.set_voltage) {
|
|
/*
|
|
* NOTE: This is a fallback condition. Some frontends
|
|
* (stv0299 for instance) take longer than 8msec to
|
|
* respond to a set_voltage command. Those switches
|
|
* need custom routines to switch properly. For all
|
|
* other frontends, the following shoule work ok.
|
|
* Dish network legacy switches (as used by Dish500)
|
|
* are controlled by sending 9-bit command words
|
|
* spaced 8msec apart.
|
|
* the actual command word is switch/port dependant
|
|
* so it is up to the userspace application to send
|
|
* the right command.
|
|
* The command must always start with a '0' after
|
|
* initialization, so parg is 8 bits and does not
|
|
* include the initialization or start bit
|
|
*/
|
|
unsigned long swcmd = ((unsigned long) parg) << 1;
|
|
struct timeval nexttime;
|
|
struct timeval tv[10];
|
|
int i;
|
|
u8 last = 1;
|
|
if (dvb_frontend_debug)
|
|
printk("%s switch command: 0x%04lx\n", __func__, swcmd);
|
|
do_gettimeofday(&nexttime);
|
|
if (dvb_frontend_debug)
|
|
memcpy(&tv[0], &nexttime, sizeof(struct timeval));
|
|
/* before sending a command, initialize by sending
|
|
* a 32ms 18V to the switch
|
|
*/
|
|
fe->ops.set_voltage(fe, SEC_VOLTAGE_18);
|
|
dvb_frontend_sleep_until(&nexttime, 32000);
|
|
|
|
for (i = 0; i < 9; i++) {
|
|
if (dvb_frontend_debug)
|
|
do_gettimeofday(&tv[i + 1]);
|
|
if ((swcmd & 0x01) != last) {
|
|
/* set voltage to (last ? 13V : 18V) */
|
|
fe->ops.set_voltage(fe, (last) ? SEC_VOLTAGE_13 : SEC_VOLTAGE_18);
|
|
last = (last) ? 0 : 1;
|
|
}
|
|
swcmd = swcmd >> 1;
|
|
if (i != 8)
|
|
dvb_frontend_sleep_until(&nexttime, 8000);
|
|
}
|
|
if (dvb_frontend_debug) {
|
|
printk("%s(%d): switch delay (should be 32k followed by all 8k\n",
|
|
__func__, fe->dvb->num);
|
|
for (i = 1; i < 10; i++)
|
|
printk("%d: %d\n", i, timeval_usec_diff(tv[i-1] , tv[i]));
|
|
}
|
|
err = 0;
|
|
fepriv->state = FESTATE_DISEQC;
|
|
fepriv->status = 0;
|
|
}
|
|
break;
|
|
|
|
case FE_DISEQC_RECV_SLAVE_REPLY:
|
|
if (fe->ops.diseqc_recv_slave_reply)
|
|
err = fe->ops.diseqc_recv_slave_reply(fe, (struct dvb_diseqc_slave_reply*) parg);
|
|
break;
|
|
|
|
case FE_ENABLE_HIGH_LNB_VOLTAGE:
|
|
if (fe->ops.enable_high_lnb_voltage)
|
|
err = fe->ops.enable_high_lnb_voltage(fe, (long) parg);
|
|
break;
|
|
|
|
case FE_SET_FRONTEND: {
|
|
struct dvb_frontend_tune_settings fetunesettings;
|
|
|
|
if(fe->tv_property_cache.state == TV_SEQ_COMPLETE) {
|
|
if (dvb_frontend_check_parameters(fe, &fepriv->parameters) < 0) {
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
} else {
|
|
if (dvb_frontend_check_parameters(fe, parg) < 0) {
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
memcpy (&fepriv->parameters, parg,
|
|
sizeof (struct dvb_frontend_parameters));
|
|
}
|
|
|
|
memset(&fetunesettings, 0, sizeof(struct dvb_frontend_tune_settings));
|
|
memcpy(&fetunesettings.parameters, parg,
|
|
sizeof (struct dvb_frontend_parameters));
|
|
|
|
/* force auto frequency inversion if requested */
|
|
if (dvb_force_auto_inversion) {
|
|
fepriv->parameters.inversion = INVERSION_AUTO;
|
|
fetunesettings.parameters.inversion = INVERSION_AUTO;
|
|
}
|
|
if (fe->ops.info.type == FE_OFDM) {
|
|
/* without hierarchical coding code_rate_LP is irrelevant,
|
|
* so we tolerate the otherwise invalid FEC_NONE setting */
|
|
if (fepriv->parameters.u.ofdm.hierarchy_information == HIERARCHY_NONE &&
|
|
fepriv->parameters.u.ofdm.code_rate_LP == FEC_NONE)
|
|
fepriv->parameters.u.ofdm.code_rate_LP = FEC_AUTO;
|
|
}
|
|
|
|
/* get frontend-specific tuning settings */
|
|
if (fe->ops.get_tune_settings && (fe->ops.get_tune_settings(fe, &fetunesettings) == 0)) {
|
|
fepriv->min_delay = (fetunesettings.min_delay_ms * HZ) / 1000;
|
|
fepriv->max_drift = fetunesettings.max_drift;
|
|
fepriv->step_size = fetunesettings.step_size;
|
|
} else {
|
|
/* default values */
|
|
switch(fe->ops.info.type) {
|
|
case FE_QPSK:
|
|
fepriv->min_delay = HZ/20;
|
|
fepriv->step_size = fepriv->parameters.u.qpsk.symbol_rate / 16000;
|
|
fepriv->max_drift = fepriv->parameters.u.qpsk.symbol_rate / 2000;
|
|
break;
|
|
|
|
case FE_QAM:
|
|
fepriv->min_delay = HZ/20;
|
|
fepriv->step_size = 0; /* no zigzag */
|
|
fepriv->max_drift = 0;
|
|
break;
|
|
|
|
case FE_OFDM:
|
|
fepriv->min_delay = HZ/20;
|
|
fepriv->step_size = fe->ops.info.frequency_stepsize * 2;
|
|
fepriv->max_drift = (fe->ops.info.frequency_stepsize * 2) + 1;
|
|
break;
|
|
case FE_ATSC:
|
|
fepriv->min_delay = HZ/20;
|
|
fepriv->step_size = 0;
|
|
fepriv->max_drift = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (dvb_override_tune_delay > 0)
|
|
fepriv->min_delay = (dvb_override_tune_delay * HZ) / 1000;
|
|
|
|
fepriv->state = FESTATE_RETUNE;
|
|
dvb_frontend_wakeup(fe);
|
|
dvb_frontend_add_event(fe, 0);
|
|
fepriv->status = 0;
|
|
err = 0;
|
|
break;
|
|
}
|
|
|
|
case FE_GET_EVENT:
|
|
err = dvb_frontend_get_event (fe, parg, file->f_flags);
|
|
break;
|
|
|
|
case FE_GET_FRONTEND:
|
|
if (fe->ops.get_frontend) {
|
|
memcpy (parg, &fepriv->parameters, sizeof (struct dvb_frontend_parameters));
|
|
err = fe->ops.get_frontend(fe, (struct dvb_frontend_parameters*) parg);
|
|
}
|
|
break;
|
|
|
|
case FE_SET_FRONTEND_TUNE_MODE:
|
|
fepriv->tune_mode_flags = (unsigned long) parg;
|
|
err = 0;
|
|
break;
|
|
};
|
|
|
|
up (&fepriv->sem);
|
|
return err;
|
|
}
|
|
|
|
|
|
static unsigned int dvb_frontend_poll(struct file *file, struct poll_table_struct *wait)
|
|
{
|
|
struct dvb_device *dvbdev = file->private_data;
|
|
struct dvb_frontend *fe = dvbdev->priv;
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
|
|
dprintk ("%s\n", __func__);
|
|
|
|
poll_wait (file, &fepriv->events.wait_queue, wait);
|
|
|
|
if (fepriv->events.eventw != fepriv->events.eventr)
|
|
return (POLLIN | POLLRDNORM | POLLPRI);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dvb_frontend_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct dvb_device *dvbdev = file->private_data;
|
|
struct dvb_frontend *fe = dvbdev->priv;
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
int ret;
|
|
|
|
dprintk ("%s\n", __func__);
|
|
|
|
if (dvbdev->users == -1 && fe->ops.ts_bus_ctrl) {
|
|
if ((ret = fe->ops.ts_bus_ctrl(fe, 1)) < 0)
|
|
return ret;
|
|
}
|
|
|
|
if ((ret = dvb_generic_open (inode, file)) < 0)
|
|
goto err1;
|
|
|
|
if ((file->f_flags & O_ACCMODE) != O_RDONLY) {
|
|
/* normal tune mode when opened R/W */
|
|
fepriv->tune_mode_flags &= ~FE_TUNE_MODE_ONESHOT;
|
|
fepriv->tone = -1;
|
|
fepriv->voltage = -1;
|
|
|
|
ret = dvb_frontend_start (fe);
|
|
if (ret)
|
|
goto err2;
|
|
|
|
/* empty event queue */
|
|
fepriv->events.eventr = fepriv->events.eventw = 0;
|
|
}
|
|
|
|
return ret;
|
|
|
|
err2:
|
|
dvb_generic_release(inode, file);
|
|
err1:
|
|
if (dvbdev->users == -1 && fe->ops.ts_bus_ctrl)
|
|
fe->ops.ts_bus_ctrl(fe, 0);
|
|
return ret;
|
|
}
|
|
|
|
static int dvb_frontend_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct dvb_device *dvbdev = file->private_data;
|
|
struct dvb_frontend *fe = dvbdev->priv;
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
int ret;
|
|
|
|
dprintk ("%s\n", __func__);
|
|
|
|
if ((file->f_flags & O_ACCMODE) != O_RDONLY)
|
|
fepriv->release_jiffies = jiffies;
|
|
|
|
ret = dvb_generic_release (inode, file);
|
|
|
|
if (dvbdev->users == -1) {
|
|
if (fepriv->exit == 1) {
|
|
fops_put(file->f_op);
|
|
file->f_op = NULL;
|
|
wake_up(&dvbdev->wait_queue);
|
|
}
|
|
if (fe->ops.ts_bus_ctrl)
|
|
fe->ops.ts_bus_ctrl(fe, 0);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct file_operations dvb_frontend_fops = {
|
|
.owner = THIS_MODULE,
|
|
.ioctl = dvb_generic_ioctl,
|
|
.poll = dvb_frontend_poll,
|
|
.open = dvb_frontend_open,
|
|
.release = dvb_frontend_release
|
|
};
|
|
|
|
int dvb_register_frontend(struct dvb_adapter* dvb,
|
|
struct dvb_frontend* fe)
|
|
{
|
|
struct dvb_frontend_private *fepriv;
|
|
static const struct dvb_device dvbdev_template = {
|
|
.users = ~0,
|
|
.writers = 1,
|
|
.readers = (~0)-1,
|
|
.fops = &dvb_frontend_fops,
|
|
.kernel_ioctl = dvb_frontend_ioctl
|
|
};
|
|
|
|
dprintk ("%s\n", __func__);
|
|
|
|
if (mutex_lock_interruptible(&frontend_mutex))
|
|
return -ERESTARTSYS;
|
|
|
|
fe->frontend_priv = kzalloc(sizeof(struct dvb_frontend_private), GFP_KERNEL);
|
|
if (fe->frontend_priv == NULL) {
|
|
mutex_unlock(&frontend_mutex);
|
|
return -ENOMEM;
|
|
}
|
|
fepriv = fe->frontend_priv;
|
|
|
|
init_MUTEX (&fepriv->sem);
|
|
init_waitqueue_head (&fepriv->wait_queue);
|
|
init_waitqueue_head (&fepriv->events.wait_queue);
|
|
mutex_init(&fepriv->events.mtx);
|
|
fe->dvb = dvb;
|
|
fepriv->inversion = INVERSION_OFF;
|
|
|
|
printk ("DVB: registering frontend %i (%s)...\n",
|
|
fe->dvb->num,
|
|
fe->ops.info.name);
|
|
|
|
dvb_register_device (fe->dvb, &fepriv->dvbdev, &dvbdev_template,
|
|
fe, DVB_DEVICE_FRONTEND);
|
|
|
|
mutex_unlock(&frontend_mutex);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dvb_register_frontend);
|
|
|
|
int dvb_unregister_frontend(struct dvb_frontend* fe)
|
|
{
|
|
struct dvb_frontend_private *fepriv = fe->frontend_priv;
|
|
dprintk ("%s\n", __func__);
|
|
|
|
mutex_lock(&frontend_mutex);
|
|
dvb_frontend_stop (fe);
|
|
mutex_unlock(&frontend_mutex);
|
|
|
|
if (fepriv->dvbdev->users < -1)
|
|
wait_event(fepriv->dvbdev->wait_queue,
|
|
fepriv->dvbdev->users==-1);
|
|
|
|
mutex_lock(&frontend_mutex);
|
|
dvb_unregister_device (fepriv->dvbdev);
|
|
|
|
/* fe is invalid now */
|
|
kfree(fepriv);
|
|
mutex_unlock(&frontend_mutex);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dvb_unregister_frontend);
|
|
|
|
#ifdef CONFIG_MEDIA_ATTACH
|
|
void dvb_frontend_detach(struct dvb_frontend* fe)
|
|
{
|
|
void *ptr;
|
|
|
|
if (fe->ops.release_sec) {
|
|
fe->ops.release_sec(fe);
|
|
symbol_put_addr(fe->ops.release_sec);
|
|
}
|
|
if (fe->ops.tuner_ops.release) {
|
|
fe->ops.tuner_ops.release(fe);
|
|
symbol_put_addr(fe->ops.tuner_ops.release);
|
|
}
|
|
if (fe->ops.analog_ops.release) {
|
|
fe->ops.analog_ops.release(fe);
|
|
symbol_put_addr(fe->ops.analog_ops.release);
|
|
}
|
|
ptr = (void*)fe->ops.release;
|
|
if (ptr) {
|
|
fe->ops.release(fe);
|
|
symbol_put_addr(ptr);
|
|
}
|
|
}
|
|
#else
|
|
void dvb_frontend_detach(struct dvb_frontend* fe)
|
|
{
|
|
if (fe->ops.release_sec)
|
|
fe->ops.release_sec(fe);
|
|
if (fe->ops.tuner_ops.release)
|
|
fe->ops.tuner_ops.release(fe);
|
|
if (fe->ops.analog_ops.release)
|
|
fe->ops.analog_ops.release(fe);
|
|
if (fe->ops.release)
|
|
fe->ops.release(fe);
|
|
}
|
|
#endif
|
|
EXPORT_SYMBOL(dvb_frontend_detach);
|