b97ea289cf
Previously, pci_scan_root_bus() created a root PCI bus, enumerated the devices on it, and called pci_bus_add_devices(), which made the devices available for drivers to claim them. Most callers assigned resources to devices after pci_scan_root_bus() returns, which may be after drivers have claimed the devices. This is incorrect; the PCI core should not change device resources while a driver is managing the device. Remove pci_bus_add_devices() from pci_scan_root_bus() and do it after any resource assignment in the callers. Note that ARM's pci_common_init_dev() already called pci_bus_add_devices() after pci_scan_root_bus(), so we only need to remove the first call: pci_common_init_dev pcibios_init_hw pci_scan_root_bus pci_bus_add_devices # first call pci_bus_assign_resources pci_bus_add_devices # second call [bhelgaas: changelog, drop "root_bus" var in alpha common_init_pci(), return failure earlier in mn10300, add "return" in x86 pcibios_scan_root(), return early if xtensa platform_pcibios_fixup() fails] Signed-off-by: Yijing Wang <wangyijing@huawei.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> CC: Richard Henderson <rth@twiddle.net> CC: Ivan Kokshaysky <ink@jurassic.park.msu.ru> CC: Matt Turner <mattst88@gmail.com> CC: David Howells <dhowells@redhat.com> CC: Tony Luck <tony.luck@intel.com> CC: Michal Simek <monstr@monstr.eu> CC: Ralf Baechle <ralf@linux-mips.org> CC: Koichi Yasutake <yasutake.koichi@jp.panasonic.com> CC: Sebastian Ott <sebott@linux.vnet.ibm.com> CC: "David S. Miller" <davem@davemloft.net> CC: Chris Metcalf <cmetcalf@ezchip.com> CC: Chris Zankel <chris@zankel.net> CC: Max Filippov <jcmvbkbc@gmail.com> CC: Thomas Gleixner <tglx@linutronix.de>
1596 lines
42 KiB
C
1596 lines
42 KiB
C
/*
|
|
* Copyright 2012 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/msi.h>
|
|
#include <linux/io.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/ctype.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include <gxio/iorpc_globals.h>
|
|
#include <gxio/kiorpc.h>
|
|
#include <gxio/trio.h>
|
|
#include <gxio/iorpc_trio.h>
|
|
#include <hv/drv_trio_intf.h>
|
|
|
|
#include <arch/sim.h>
|
|
|
|
/*
|
|
* This file containes the routines to search for PCI buses,
|
|
* enumerate the buses, and configure any attached devices.
|
|
*/
|
|
|
|
#define DEBUG_PCI_CFG 0
|
|
|
|
#if DEBUG_PCI_CFG
|
|
#define TRACE_CFG_WR(size, val, bus, dev, func, offset) \
|
|
pr_info("CFG WR %d-byte VAL %#x to bus %d dev %d func %d addr %u\n", \
|
|
size, val, bus, dev, func, offset & 0xFFF);
|
|
#define TRACE_CFG_RD(size, val, bus, dev, func, offset) \
|
|
pr_info("CFG RD %d-byte VAL %#x from bus %d dev %d func %d addr %u\n", \
|
|
size, val, bus, dev, func, offset & 0xFFF);
|
|
#else
|
|
#define TRACE_CFG_WR(...)
|
|
#define TRACE_CFG_RD(...)
|
|
#endif
|
|
|
|
static int pci_probe = 1;
|
|
|
|
/* Information on the PCIe RC ports configuration. */
|
|
static int pcie_rc[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
|
|
|
|
/*
|
|
* On some platforms with one or more Gx endpoint ports, we need to
|
|
* delay the PCIe RC port probe for a few seconds to work around
|
|
* a HW PCIe link-training bug. The exact delay is specified with
|
|
* a kernel boot argument in the form of "pcie_rc_delay=T,P,S",
|
|
* where T is the TRIO instance number, P is the port number and S is
|
|
* the delay in seconds. If the argument is specified, but the delay is
|
|
* not provided, the value will be DEFAULT_RC_DELAY.
|
|
*/
|
|
static int rc_delay[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
|
|
|
|
/* Default number of seconds that the PCIe RC port probe can be delayed. */
|
|
#define DEFAULT_RC_DELAY 10
|
|
|
|
/* The PCI I/O space size in each PCI domain. */
|
|
#define IO_SPACE_SIZE 0x10000
|
|
|
|
/* Provide shorter versions of some very long constant names. */
|
|
#define AUTO_CONFIG_RC \
|
|
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC
|
|
#define AUTO_CONFIG_RC_G1 \
|
|
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC_G1
|
|
#define AUTO_CONFIG_EP \
|
|
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT
|
|
#define AUTO_CONFIG_EP_G1 \
|
|
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT_G1
|
|
|
|
/* Array of the PCIe ports configuration info obtained from the BIB. */
|
|
struct pcie_trio_ports_property pcie_ports[TILEGX_NUM_TRIO];
|
|
|
|
/* Number of configured TRIO instances. */
|
|
int num_trio_shims;
|
|
|
|
/* All drivers share the TRIO contexts defined here. */
|
|
gxio_trio_context_t trio_contexts[TILEGX_NUM_TRIO];
|
|
|
|
/* Pointer to an array of PCIe RC controllers. */
|
|
struct pci_controller pci_controllers[TILEGX_NUM_TRIO * TILEGX_TRIO_PCIES];
|
|
int num_rc_controllers;
|
|
|
|
static struct pci_ops tile_cfg_ops;
|
|
|
|
/* Mask of CPUs that should receive PCIe interrupts. */
|
|
static struct cpumask intr_cpus_map;
|
|
|
|
/* We don't need to worry about the alignment of resources. */
|
|
resource_size_t pcibios_align_resource(void *data, const struct resource *res,
|
|
resource_size_t size,
|
|
resource_size_t align)
|
|
{
|
|
return res->start;
|
|
}
|
|
EXPORT_SYMBOL(pcibios_align_resource);
|
|
|
|
/*
|
|
* Pick a CPU to receive and handle the PCIe interrupts, based on the IRQ #.
|
|
* For now, we simply send interrupts to non-dataplane CPUs.
|
|
* We may implement methods to allow user to specify the target CPUs,
|
|
* e.g. via boot arguments.
|
|
*/
|
|
static int tile_irq_cpu(int irq)
|
|
{
|
|
unsigned int count;
|
|
int i = 0;
|
|
int cpu;
|
|
|
|
count = cpumask_weight(&intr_cpus_map);
|
|
if (unlikely(count == 0)) {
|
|
pr_warn("intr_cpus_map empty, interrupts will be delievered to dataplane tiles\n");
|
|
return irq % (smp_height * smp_width);
|
|
}
|
|
|
|
count = irq % count;
|
|
for_each_cpu(cpu, &intr_cpus_map) {
|
|
if (i++ == count)
|
|
break;
|
|
}
|
|
return cpu;
|
|
}
|
|
|
|
/* Open a file descriptor to the TRIO shim. */
|
|
static int tile_pcie_open(int trio_index)
|
|
{
|
|
gxio_trio_context_t *context = &trio_contexts[trio_index];
|
|
int ret;
|
|
int mac;
|
|
|
|
/* This opens a file descriptor to the TRIO shim. */
|
|
ret = gxio_trio_init(context, trio_index);
|
|
if (ret < 0)
|
|
goto gxio_trio_init_failure;
|
|
|
|
/* Allocate an ASID for the kernel. */
|
|
ret = gxio_trio_alloc_asids(context, 1, 0, 0);
|
|
if (ret < 0) {
|
|
pr_err("PCI: ASID alloc failure on TRIO %d, give up\n",
|
|
trio_index);
|
|
goto asid_alloc_failure;
|
|
}
|
|
|
|
context->asid = ret;
|
|
|
|
#ifdef USE_SHARED_PCIE_CONFIG_REGION
|
|
/*
|
|
* Alloc a PIO region for config access, shared by all MACs per TRIO.
|
|
* This shouldn't fail since the kernel is supposed to the first
|
|
* client of the TRIO's PIO regions.
|
|
*/
|
|
ret = gxio_trio_alloc_pio_regions(context, 1, 0, 0);
|
|
if (ret < 0) {
|
|
pr_err("PCI: CFG PIO alloc failure on TRIO %d, give up\n",
|
|
trio_index);
|
|
goto pio_alloc_failure;
|
|
}
|
|
|
|
context->pio_cfg_index = ret;
|
|
|
|
/*
|
|
* For PIO CFG, the bus_address_hi parameter is 0. The mac parameter
|
|
* is also 0 because it is specified in PIO_REGION_SETUP_CFG_ADDR.
|
|
*/
|
|
ret = gxio_trio_init_pio_region_aux(context, context->pio_cfg_index,
|
|
0, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
|
|
if (ret < 0) {
|
|
pr_err("PCI: CFG PIO init failure on TRIO %d, give up\n",
|
|
trio_index);
|
|
goto pio_alloc_failure;
|
|
}
|
|
#endif
|
|
|
|
/* Get the properties of the PCIe ports on this TRIO instance. */
|
|
ret = gxio_trio_get_port_property(context, &pcie_ports[trio_index]);
|
|
if (ret < 0) {
|
|
pr_err("PCI: PCIE_GET_PORT_PROPERTY failure, error %d, on TRIO %d\n",
|
|
ret, trio_index);
|
|
goto get_port_property_failure;
|
|
}
|
|
|
|
context->mmio_base_mac =
|
|
iorpc_ioremap(context->fd, 0, HV_TRIO_CONFIG_IOREMAP_SIZE);
|
|
if (context->mmio_base_mac == NULL) {
|
|
pr_err("PCI: TRIO config space mapping failure, error %d, on TRIO %d\n",
|
|
ret, trio_index);
|
|
ret = -ENOMEM;
|
|
|
|
goto trio_mmio_mapping_failure;
|
|
}
|
|
|
|
/* Check the port strap state which will override the BIB setting. */
|
|
for (mac = 0; mac < TILEGX_TRIO_PCIES; mac++) {
|
|
TRIO_PCIE_INTFC_PORT_CONFIG_t port_config;
|
|
unsigned int reg_offset;
|
|
|
|
/* Ignore ports that are not specified in the BIB. */
|
|
if (!pcie_ports[trio_index].ports[mac].allow_rc &&
|
|
!pcie_ports[trio_index].ports[mac].allow_ep)
|
|
continue;
|
|
|
|
reg_offset =
|
|
(TRIO_PCIE_INTFC_PORT_CONFIG <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
port_config.word =
|
|
__gxio_mmio_read(context->mmio_base_mac + reg_offset);
|
|
|
|
if (port_config.strap_state != AUTO_CONFIG_RC &&
|
|
port_config.strap_state != AUTO_CONFIG_RC_G1) {
|
|
/*
|
|
* If this is really intended to be an EP port, record
|
|
* it so that the endpoint driver will know about it.
|
|
*/
|
|
if (port_config.strap_state == AUTO_CONFIG_EP ||
|
|
port_config.strap_state == AUTO_CONFIG_EP_G1)
|
|
pcie_ports[trio_index].ports[mac].allow_ep = 1;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
|
|
trio_mmio_mapping_failure:
|
|
get_port_property_failure:
|
|
asid_alloc_failure:
|
|
#ifdef USE_SHARED_PCIE_CONFIG_REGION
|
|
pio_alloc_failure:
|
|
#endif
|
|
hv_dev_close(context->fd);
|
|
gxio_trio_init_failure:
|
|
context->fd = -1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init tile_trio_init(void)
|
|
{
|
|
int i;
|
|
|
|
/* We loop over all the TRIO shims. */
|
|
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
|
|
if (tile_pcie_open(i) < 0)
|
|
continue;
|
|
num_trio_shims++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
postcore_initcall(tile_trio_init);
|
|
|
|
static void tilegx_legacy_irq_ack(struct irq_data *d)
|
|
{
|
|
__insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
|
|
}
|
|
|
|
static void tilegx_legacy_irq_mask(struct irq_data *d)
|
|
{
|
|
__insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
|
|
}
|
|
|
|
static void tilegx_legacy_irq_unmask(struct irq_data *d)
|
|
{
|
|
__insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
|
|
}
|
|
|
|
static struct irq_chip tilegx_legacy_irq_chip = {
|
|
.name = "tilegx_legacy_irq",
|
|
.irq_ack = tilegx_legacy_irq_ack,
|
|
.irq_mask = tilegx_legacy_irq_mask,
|
|
.irq_unmask = tilegx_legacy_irq_unmask,
|
|
|
|
/* TBD: support set_affinity. */
|
|
};
|
|
|
|
/*
|
|
* This is a wrapper function of the kernel level-trigger interrupt
|
|
* handler handle_level_irq() for PCI legacy interrupts. The TRIO
|
|
* is configured such that only INTx Assert interrupts are proxied
|
|
* to Linux which just calls handle_level_irq() after clearing the
|
|
* MAC INTx Assert status bit associated with this interrupt.
|
|
*/
|
|
static void trio_handle_level_irq(unsigned int irq, struct irq_desc *desc)
|
|
{
|
|
struct pci_controller *controller = irq_desc_get_handler_data(desc);
|
|
gxio_trio_context_t *trio_context = controller->trio;
|
|
uint64_t intx = (uint64_t)irq_desc_get_chip_data(desc);
|
|
int mac = controller->mac;
|
|
unsigned int reg_offset;
|
|
uint64_t level_mask;
|
|
|
|
handle_level_irq(irq, desc);
|
|
|
|
/*
|
|
* Clear the INTx Level status, otherwise future interrupts are
|
|
* not sent.
|
|
*/
|
|
reg_offset = (TRIO_PCIE_INTFC_MAC_INT_STS <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
level_mask = TRIO_PCIE_INTFC_MAC_INT_STS__INT_LEVEL_MASK << intx;
|
|
|
|
__gxio_mmio_write(trio_context->mmio_base_mac + reg_offset, level_mask);
|
|
}
|
|
|
|
/*
|
|
* Create kernel irqs and set up the handlers for the legacy interrupts.
|
|
* Also some minimum initialization for the MSI support.
|
|
*/
|
|
static int tile_init_irqs(struct pci_controller *controller)
|
|
{
|
|
int i;
|
|
int j;
|
|
int irq;
|
|
int result;
|
|
|
|
cpumask_copy(&intr_cpus_map, cpu_online_mask);
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
gxio_trio_context_t *context = controller->trio;
|
|
int cpu;
|
|
|
|
/* Ask the kernel to allocate an IRQ. */
|
|
irq = irq_alloc_hwirq(-1);
|
|
if (!irq) {
|
|
pr_err("PCI: no free irq vectors, failed for %d\n", i);
|
|
goto free_irqs;
|
|
}
|
|
controller->irq_intx_table[i] = irq;
|
|
|
|
/* Distribute the 4 IRQs to different tiles. */
|
|
cpu = tile_irq_cpu(irq);
|
|
|
|
/* Configure the TRIO intr binding for this IRQ. */
|
|
result = gxio_trio_config_legacy_intr(context, cpu_x(cpu),
|
|
cpu_y(cpu), KERNEL_PL,
|
|
irq, controller->mac, i);
|
|
if (result < 0) {
|
|
pr_err("PCI: MAC intx config failed for %d\n", i);
|
|
|
|
goto free_irqs;
|
|
}
|
|
|
|
/* Register the IRQ handler with the kernel. */
|
|
irq_set_chip_and_handler(irq, &tilegx_legacy_irq_chip,
|
|
trio_handle_level_irq);
|
|
irq_set_chip_data(irq, (void *)(uint64_t)i);
|
|
irq_set_handler_data(irq, controller);
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_irqs:
|
|
for (j = 0; j < i; j++)
|
|
irq_free_hwirq(controller->irq_intx_table[j]);
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Return 1 if the port is strapped to operate in RC mode.
|
|
*/
|
|
static int
|
|
strapped_for_rc(gxio_trio_context_t *trio_context, int mac)
|
|
{
|
|
TRIO_PCIE_INTFC_PORT_CONFIG_t port_config;
|
|
unsigned int reg_offset;
|
|
|
|
/* Check the port configuration. */
|
|
reg_offset =
|
|
(TRIO_PCIE_INTFC_PORT_CONFIG <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
port_config.word =
|
|
__gxio_mmio_read(trio_context->mmio_base_mac + reg_offset);
|
|
|
|
if (port_config.strap_state == AUTO_CONFIG_RC ||
|
|
port_config.strap_state == AUTO_CONFIG_RC_G1)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find valid controllers and fill in pci_controller structs for each
|
|
* of them.
|
|
*
|
|
* Return the number of controllers discovered.
|
|
*/
|
|
int __init tile_pci_init(void)
|
|
{
|
|
int ctl_index = 0;
|
|
int i, j;
|
|
|
|
if (!pci_probe) {
|
|
pr_info("PCI: disabled by boot argument\n");
|
|
return 0;
|
|
}
|
|
|
|
pr_info("PCI: Searching for controllers...\n");
|
|
|
|
if (num_trio_shims == 0 || sim_is_simulator())
|
|
return 0;
|
|
|
|
/*
|
|
* Now determine which PCIe ports are configured to operate in RC
|
|
* mode. There is a differece in the port configuration capability
|
|
* between the Gx36 and Gx72 devices.
|
|
*
|
|
* The Gx36 has configuration capability for each of the 3 PCIe
|
|
* interfaces (disable, auto endpoint, auto RC, etc.).
|
|
* On the Gx72, you can only select one of the 3 PCIe interfaces per
|
|
* TRIO to train automatically. Further, the allowable training modes
|
|
* are reduced to four options (auto endpoint, auto RC, stream x1,
|
|
* stream x4).
|
|
*
|
|
* For Gx36 ports, it must be allowed to be in RC mode by the
|
|
* Board Information Block, and the hardware strapping pins must be
|
|
* set to RC mode.
|
|
*
|
|
* For Gx72 ports, the port will operate in RC mode if either of the
|
|
* following is true:
|
|
* 1. It is allowed to be in RC mode by the Board Information Block,
|
|
* and the BIB doesn't allow the EP mode.
|
|
* 2. It is allowed to be in either the RC or the EP mode by the BIB,
|
|
* and the hardware strapping pin is set to RC mode.
|
|
*/
|
|
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
|
|
gxio_trio_context_t *context = &trio_contexts[i];
|
|
|
|
if (context->fd < 0)
|
|
continue;
|
|
|
|
for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
|
|
int is_rc = 0;
|
|
|
|
if (pcie_ports[i].is_gx72 &&
|
|
pcie_ports[i].ports[j].allow_rc) {
|
|
if (!pcie_ports[i].ports[j].allow_ep ||
|
|
strapped_for_rc(context, j))
|
|
is_rc = 1;
|
|
} else if (pcie_ports[i].ports[j].allow_rc &&
|
|
strapped_for_rc(context, j)) {
|
|
is_rc = 1;
|
|
}
|
|
if (is_rc) {
|
|
pcie_rc[i][j] = 1;
|
|
num_rc_controllers++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return if no PCIe ports are configured to operate in RC mode. */
|
|
if (num_rc_controllers == 0)
|
|
return 0;
|
|
|
|
/* Set the TRIO pointer and MAC index for each PCIe RC port. */
|
|
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
|
|
for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
|
|
if (pcie_rc[i][j]) {
|
|
pci_controllers[ctl_index].trio =
|
|
&trio_contexts[i];
|
|
pci_controllers[ctl_index].mac = j;
|
|
pci_controllers[ctl_index].trio_index = i;
|
|
ctl_index++;
|
|
if (ctl_index == num_rc_controllers)
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
out:
|
|
/* Configure each PCIe RC port. */
|
|
for (i = 0; i < num_rc_controllers; i++) {
|
|
|
|
/* Configure the PCIe MAC to run in RC mode. */
|
|
struct pci_controller *controller = &pci_controllers[i];
|
|
|
|
controller->index = i;
|
|
controller->ops = &tile_cfg_ops;
|
|
|
|
controller->io_space.start = PCIBIOS_MIN_IO +
|
|
(i * IO_SPACE_SIZE);
|
|
controller->io_space.end = controller->io_space.start +
|
|
IO_SPACE_SIZE - 1;
|
|
BUG_ON(controller->io_space.end > IO_SPACE_LIMIT);
|
|
controller->io_space.flags = IORESOURCE_IO;
|
|
snprintf(controller->io_space_name,
|
|
sizeof(controller->io_space_name),
|
|
"PCI I/O domain %d", i);
|
|
controller->io_space.name = controller->io_space_name;
|
|
|
|
/*
|
|
* The PCI memory resource is located above the PA space.
|
|
* For every host bridge, the BAR window or the MMIO aperture
|
|
* is in range [3GB, 4GB - 1] of a 4GB space beyond the
|
|
* PA space.
|
|
*/
|
|
controller->mem_offset = TILE_PCI_MEM_START +
|
|
(i * TILE_PCI_BAR_WINDOW_TOP);
|
|
controller->mem_space.start = controller->mem_offset +
|
|
TILE_PCI_BAR_WINDOW_TOP - TILE_PCI_BAR_WINDOW_SIZE;
|
|
controller->mem_space.end = controller->mem_offset +
|
|
TILE_PCI_BAR_WINDOW_TOP - 1;
|
|
controller->mem_space.flags = IORESOURCE_MEM;
|
|
snprintf(controller->mem_space_name,
|
|
sizeof(controller->mem_space_name),
|
|
"PCI mem domain %d", i);
|
|
controller->mem_space.name = controller->mem_space_name;
|
|
}
|
|
|
|
return num_rc_controllers;
|
|
}
|
|
|
|
/*
|
|
* (pin - 1) converts from the PCI standard's [1:4] convention to
|
|
* a normal [0:3] range.
|
|
*/
|
|
static int tile_map_irq(const struct pci_dev *dev, u8 device, u8 pin)
|
|
{
|
|
struct pci_controller *controller =
|
|
(struct pci_controller *)dev->sysdata;
|
|
return controller->irq_intx_table[pin - 1];
|
|
}
|
|
|
|
static void fixup_read_and_payload_sizes(struct pci_controller *controller)
|
|
{
|
|
gxio_trio_context_t *trio_context = controller->trio;
|
|
struct pci_bus *root_bus = controller->root_bus;
|
|
TRIO_PCIE_RC_DEVICE_CONTROL_t dev_control;
|
|
TRIO_PCIE_RC_DEVICE_CAP_t rc_dev_cap;
|
|
unsigned int reg_offset;
|
|
struct pci_bus *child;
|
|
int mac;
|
|
int err;
|
|
|
|
mac = controller->mac;
|
|
|
|
/* Set our max read request size to be 4KB. */
|
|
reg_offset =
|
|
(TRIO_PCIE_RC_DEVICE_CONTROL <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
|
|
reg_offset);
|
|
dev_control.max_read_req_sz = 5;
|
|
__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
|
|
dev_control.word);
|
|
|
|
/*
|
|
* Set the max payload size supported by this Gx PCIe MAC.
|
|
* Though Gx PCIe supports Max Payload Size of up to 1024 bytes,
|
|
* experiments have shown that setting MPS to 256 yields the
|
|
* best performance.
|
|
*/
|
|
reg_offset =
|
|
(TRIO_PCIE_RC_DEVICE_CAP <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
rc_dev_cap.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
|
|
reg_offset);
|
|
rc_dev_cap.mps_sup = 1;
|
|
__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
|
|
rc_dev_cap.word);
|
|
|
|
/* Configure PCI Express MPS setting. */
|
|
list_for_each_entry(child, &root_bus->children, node)
|
|
pcie_bus_configure_settings(child);
|
|
|
|
/*
|
|
* Set the mac_config register in trio based on the MPS/MRS of the link.
|
|
*/
|
|
reg_offset =
|
|
(TRIO_PCIE_RC_DEVICE_CONTROL <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
|
|
reg_offset);
|
|
|
|
err = gxio_trio_set_mps_mrs(trio_context,
|
|
dev_control.max_payload_size,
|
|
dev_control.max_read_req_sz,
|
|
mac);
|
|
if (err < 0) {
|
|
pr_err("PCI: PCIE_CONFIGURE_MAC_MPS_MRS failure, MAC %d on TRIO %d\n",
|
|
mac, controller->trio_index);
|
|
}
|
|
}
|
|
|
|
static int setup_pcie_rc_delay(char *str)
|
|
{
|
|
unsigned long delay = 0;
|
|
unsigned long trio_index;
|
|
unsigned long mac;
|
|
|
|
if (str == NULL || !isdigit(*str))
|
|
return -EINVAL;
|
|
trio_index = simple_strtoul(str, (char **)&str, 10);
|
|
if (trio_index >= TILEGX_NUM_TRIO)
|
|
return -EINVAL;
|
|
|
|
if (*str != ',')
|
|
return -EINVAL;
|
|
|
|
str++;
|
|
if (!isdigit(*str))
|
|
return -EINVAL;
|
|
mac = simple_strtoul(str, (char **)&str, 10);
|
|
if (mac >= TILEGX_TRIO_PCIES)
|
|
return -EINVAL;
|
|
|
|
if (*str != '\0') {
|
|
if (*str != ',')
|
|
return -EINVAL;
|
|
|
|
str++;
|
|
if (!isdigit(*str))
|
|
return -EINVAL;
|
|
delay = simple_strtoul(str, (char **)&str, 10);
|
|
}
|
|
|
|
rc_delay[trio_index][mac] = delay ? : DEFAULT_RC_DELAY;
|
|
return 0;
|
|
}
|
|
early_param("pcie_rc_delay", setup_pcie_rc_delay);
|
|
|
|
/* PCI initialization entry point, called by subsys_initcall. */
|
|
int __init pcibios_init(void)
|
|
{
|
|
resource_size_t offset;
|
|
LIST_HEAD(resources);
|
|
int next_busno;
|
|
int i;
|
|
|
|
tile_pci_init();
|
|
|
|
if (num_rc_controllers == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Delay a bit in case devices aren't ready. Some devices are
|
|
* known to require at least 20ms here, but we use a more
|
|
* conservative value.
|
|
*/
|
|
msleep(250);
|
|
|
|
/* Scan all of the recorded PCI controllers. */
|
|
for (next_busno = 0, i = 0; i < num_rc_controllers; i++) {
|
|
struct pci_controller *controller = &pci_controllers[i];
|
|
gxio_trio_context_t *trio_context = controller->trio;
|
|
TRIO_PCIE_INTFC_PORT_STATUS_t port_status;
|
|
TRIO_PCIE_INTFC_TX_FIFO_CTL_t tx_fifo_ctl;
|
|
struct pci_bus *bus;
|
|
unsigned int reg_offset;
|
|
unsigned int class_code_revision;
|
|
int trio_index;
|
|
int mac;
|
|
int ret;
|
|
|
|
if (trio_context->fd < 0)
|
|
continue;
|
|
|
|
trio_index = controller->trio_index;
|
|
mac = controller->mac;
|
|
|
|
/*
|
|
* Check for PCIe link-up status to decide if we need
|
|
* to force the link to come up.
|
|
*/
|
|
reg_offset =
|
|
(TRIO_PCIE_INTFC_PORT_STATUS <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
port_status.word =
|
|
__gxio_mmio_read(trio_context->mmio_base_mac +
|
|
reg_offset);
|
|
if (!port_status.dl_up) {
|
|
if (rc_delay[trio_index][mac]) {
|
|
pr_info("Delaying PCIe RC TRIO init %d sec on MAC %d on TRIO %d\n",
|
|
rc_delay[trio_index][mac], mac,
|
|
trio_index);
|
|
msleep(rc_delay[trio_index][mac] * 1000);
|
|
}
|
|
ret = gxio_trio_force_rc_link_up(trio_context, mac);
|
|
if (ret < 0)
|
|
pr_err("PCI: PCIE_FORCE_LINK_UP failure, MAC %d on TRIO %d\n",
|
|
mac, trio_index);
|
|
}
|
|
|
|
pr_info("PCI: Found PCI controller #%d on TRIO %d MAC %d\n",
|
|
i, trio_index, controller->mac);
|
|
|
|
/* Delay the bus probe if needed. */
|
|
if (rc_delay[trio_index][mac]) {
|
|
pr_info("Delaying PCIe RC bus enumerating %d sec on MAC %d on TRIO %d\n",
|
|
rc_delay[trio_index][mac], mac, trio_index);
|
|
msleep(rc_delay[trio_index][mac] * 1000);
|
|
} else {
|
|
/*
|
|
* Wait a bit here because some EP devices
|
|
* take longer to come up.
|
|
*/
|
|
msleep(1000);
|
|
}
|
|
|
|
/* Check for PCIe link-up status again. */
|
|
port_status.word =
|
|
__gxio_mmio_read(trio_context->mmio_base_mac +
|
|
reg_offset);
|
|
if (!port_status.dl_up) {
|
|
if (pcie_ports[trio_index].ports[mac].removable) {
|
|
pr_info("PCI: link is down, MAC %d on TRIO %d\n",
|
|
mac, trio_index);
|
|
pr_info("This is expected if no PCIe card is connected to this link\n");
|
|
} else
|
|
pr_err("PCI: link is down, MAC %d on TRIO %d\n",
|
|
mac, trio_index);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Ensure that the link can come out of L1 power down state.
|
|
* Strictly speaking, this is needed only in the case of
|
|
* heavy RC-initiated DMAs.
|
|
*/
|
|
reg_offset =
|
|
(TRIO_PCIE_INTFC_TX_FIFO_CTL <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
tx_fifo_ctl.word =
|
|
__gxio_mmio_read(trio_context->mmio_base_mac +
|
|
reg_offset);
|
|
tx_fifo_ctl.min_p_credits = 0;
|
|
__gxio_mmio_write(trio_context->mmio_base_mac + reg_offset,
|
|
tx_fifo_ctl.word);
|
|
|
|
/*
|
|
* Change the device ID so that Linux bus crawl doesn't confuse
|
|
* the internal bridge with any Tilera endpoints.
|
|
*/
|
|
reg_offset =
|
|
(TRIO_PCIE_RC_DEVICE_ID_VEN_ID <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
|
|
(TILERA_GX36_RC_DEV_ID <<
|
|
TRIO_PCIE_RC_DEVICE_ID_VEN_ID__DEV_ID_SHIFT) |
|
|
TILERA_VENDOR_ID);
|
|
|
|
/* Set the internal P2P bridge class code. */
|
|
reg_offset =
|
|
(TRIO_PCIE_RC_REVISION_ID <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
|
|
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
class_code_revision =
|
|
__gxio_mmio_read32(trio_context->mmio_base_mac +
|
|
reg_offset);
|
|
class_code_revision = (class_code_revision & 0xff) |
|
|
(PCI_CLASS_BRIDGE_PCI << 16);
|
|
|
|
__gxio_mmio_write32(trio_context->mmio_base_mac +
|
|
reg_offset, class_code_revision);
|
|
|
|
#ifdef USE_SHARED_PCIE_CONFIG_REGION
|
|
|
|
/* Map in the MMIO space for the PIO region. */
|
|
offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index) |
|
|
(((unsigned long long)mac) <<
|
|
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
|
|
|
|
#else
|
|
|
|
/* Alloc a PIO region for PCI config access per MAC. */
|
|
ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
|
|
if (ret < 0) {
|
|
pr_err("PCI: PCI CFG PIO alloc failure for mac %d on TRIO %d, give up\n",
|
|
mac, trio_index);
|
|
|
|
continue;
|
|
}
|
|
|
|
trio_context->pio_cfg_index[mac] = ret;
|
|
|
|
/* For PIO CFG, the bus_address_hi parameter is 0. */
|
|
ret = gxio_trio_init_pio_region_aux(trio_context,
|
|
trio_context->pio_cfg_index[mac],
|
|
mac, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
|
|
if (ret < 0) {
|
|
pr_err("PCI: PCI CFG PIO init failure for mac %d on TRIO %d, give up\n",
|
|
mac, trio_index);
|
|
|
|
continue;
|
|
}
|
|
|
|
offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index[mac]) |
|
|
(((unsigned long long)mac) <<
|
|
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
|
|
|
|
#endif
|
|
|
|
/*
|
|
* To save VMALLOC space, we take advantage of the fact that
|
|
* bit 29 in the PIO CFG address format is reserved 0. With
|
|
* TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT being 30,
|
|
* this cuts VMALLOC space usage from 1GB to 512MB per mac.
|
|
*/
|
|
trio_context->mmio_base_pio_cfg[mac] =
|
|
iorpc_ioremap(trio_context->fd, offset, (1UL <<
|
|
(TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT - 1)));
|
|
if (trio_context->mmio_base_pio_cfg[mac] == NULL) {
|
|
pr_err("PCI: PIO map failure for mac %d on TRIO %d\n",
|
|
mac, trio_index);
|
|
|
|
continue;
|
|
}
|
|
|
|
/* Initialize the PCIe interrupts. */
|
|
if (tile_init_irqs(controller)) {
|
|
pr_err("PCI: IRQs init failure for mac %d on TRIO %d\n",
|
|
mac, trio_index);
|
|
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The PCI memory resource is located above the PA space.
|
|
* The memory range for the PCI root bus should not overlap
|
|
* with the physical RAM.
|
|
*/
|
|
pci_add_resource_offset(&resources, &controller->mem_space,
|
|
controller->mem_offset);
|
|
pci_add_resource(&resources, &controller->io_space);
|
|
controller->first_busno = next_busno;
|
|
bus = pci_scan_root_bus(NULL, next_busno, controller->ops,
|
|
controller, &resources);
|
|
controller->root_bus = bus;
|
|
next_busno = bus->busn_res.end + 1;
|
|
}
|
|
|
|
/* Do machine dependent PCI interrupt routing */
|
|
pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
|
|
|
|
/*
|
|
* This comes from the generic Linux PCI driver.
|
|
*
|
|
* It allocates all of the resources (I/O memory, etc)
|
|
* associated with the devices read in above.
|
|
*/
|
|
pci_assign_unassigned_resources();
|
|
|
|
/* Record the I/O resources in the PCI controller structure. */
|
|
for (i = 0; i < num_rc_controllers; i++) {
|
|
struct pci_controller *controller = &pci_controllers[i];
|
|
gxio_trio_context_t *trio_context = controller->trio;
|
|
struct pci_bus *root_bus = pci_controllers[i].root_bus;
|
|
int ret;
|
|
int j;
|
|
|
|
/*
|
|
* Skip controllers that are not properly initialized or
|
|
* have down links.
|
|
*/
|
|
if (root_bus == NULL)
|
|
continue;
|
|
|
|
/* Configure the max_payload_size values for this domain. */
|
|
fixup_read_and_payload_sizes(controller);
|
|
|
|
/* Alloc a PIO region for PCI memory access for each RC port. */
|
|
ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
|
|
if (ret < 0) {
|
|
pr_err("PCI: MEM PIO alloc failure on TRIO %d mac %d, give up\n",
|
|
controller->trio_index, controller->mac);
|
|
|
|
continue;
|
|
}
|
|
|
|
controller->pio_mem_index = ret;
|
|
|
|
/*
|
|
* For PIO MEM, the bus_address_hi parameter is hard-coded 0
|
|
* because we always assign 32-bit PCI bus BAR ranges.
|
|
*/
|
|
ret = gxio_trio_init_pio_region_aux(trio_context,
|
|
controller->pio_mem_index,
|
|
controller->mac,
|
|
0,
|
|
0);
|
|
if (ret < 0) {
|
|
pr_err("PCI: MEM PIO init failure on TRIO %d mac %d, give up\n",
|
|
controller->trio_index, controller->mac);
|
|
|
|
continue;
|
|
}
|
|
|
|
#ifdef CONFIG_TILE_PCI_IO
|
|
/*
|
|
* Alloc a PIO region for PCI I/O space access for each RC port.
|
|
*/
|
|
ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
|
|
if (ret < 0) {
|
|
pr_err("PCI: I/O PIO alloc failure on TRIO %d mac %d, give up\n",
|
|
controller->trio_index, controller->mac);
|
|
|
|
continue;
|
|
}
|
|
|
|
controller->pio_io_index = ret;
|
|
|
|
/*
|
|
* For PIO IO, the bus_address_hi parameter is hard-coded 0
|
|
* because PCI I/O address space is 32-bit.
|
|
*/
|
|
ret = gxio_trio_init_pio_region_aux(trio_context,
|
|
controller->pio_io_index,
|
|
controller->mac,
|
|
0,
|
|
HV_TRIO_PIO_FLAG_IO_SPACE);
|
|
if (ret < 0) {
|
|
pr_err("PCI: I/O PIO init failure on TRIO %d mac %d, give up\n",
|
|
controller->trio_index, controller->mac);
|
|
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Configure a Mem-Map region for each memory controller so
|
|
* that Linux can map all of its PA space to the PCI bus.
|
|
* Use the IOMMU to handle hash-for-home memory.
|
|
*/
|
|
for_each_online_node(j) {
|
|
unsigned long start_pfn = node_start_pfn[j];
|
|
unsigned long end_pfn = node_end_pfn[j];
|
|
unsigned long nr_pages = end_pfn - start_pfn;
|
|
|
|
ret = gxio_trio_alloc_memory_maps(trio_context, 1, 0,
|
|
0);
|
|
if (ret < 0) {
|
|
pr_err("PCI: Mem-Map alloc failure on TRIO %d mac %d for MC %d, give up\n",
|
|
controller->trio_index, controller->mac,
|
|
j);
|
|
|
|
goto alloc_mem_map_failed;
|
|
}
|
|
|
|
controller->mem_maps[j] = ret;
|
|
|
|
/*
|
|
* Initialize the Mem-Map and the I/O MMU so that all
|
|
* the physical memory can be accessed by the endpoint
|
|
* devices. The base bus address is set to the base CPA
|
|
* of this memory controller plus an offset (see pci.h).
|
|
* The region's base VA is set to the base CPA. The
|
|
* I/O MMU table essentially translates the CPA to
|
|
* the real PA. Implicitly, for node 0, we create
|
|
* a separate Mem-Map region that serves as the inbound
|
|
* window for legacy 32-bit devices. This is a direct
|
|
* map of the low 4GB CPA space.
|
|
*/
|
|
ret = gxio_trio_init_memory_map_mmu_aux(trio_context,
|
|
controller->mem_maps[j],
|
|
start_pfn << PAGE_SHIFT,
|
|
nr_pages << PAGE_SHIFT,
|
|
trio_context->asid,
|
|
controller->mac,
|
|
(start_pfn << PAGE_SHIFT) +
|
|
TILE_PCI_MEM_MAP_BASE_OFFSET,
|
|
j,
|
|
GXIO_TRIO_ORDER_MODE_UNORDERED);
|
|
if (ret < 0) {
|
|
pr_err("PCI: Mem-Map init failure on TRIO %d mac %d for MC %d, give up\n",
|
|
controller->trio_index, controller->mac,
|
|
j);
|
|
|
|
goto alloc_mem_map_failed;
|
|
}
|
|
continue;
|
|
|
|
alloc_mem_map_failed:
|
|
break;
|
|
}
|
|
|
|
pci_bus_add_devices(root_bus);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
subsys_initcall(pcibios_init);
|
|
|
|
/* No bus fixups needed. */
|
|
void pcibios_fixup_bus(struct pci_bus *bus)
|
|
{
|
|
}
|
|
|
|
/* Process any "pci=" kernel boot arguments. */
|
|
char *__init pcibios_setup(char *str)
|
|
{
|
|
if (!strcmp(str, "off")) {
|
|
pci_probe = 0;
|
|
return NULL;
|
|
}
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* Called for each device after PCI setup is done.
|
|
* We initialize the PCI device capabilities conservatively, assuming that
|
|
* all devices can only address the 32-bit DMA space. The exception here is
|
|
* that the device dma_offset is set to the value that matches the 64-bit
|
|
* capable devices. This is OK because dma_offset is not used by legacy
|
|
* dma_ops, nor by the hybrid dma_ops's streaming DMAs, which are 64-bit ops.
|
|
* This implementation matches the kernel design of setting PCI devices'
|
|
* coherent_dma_mask to 0xffffffffull by default, allowing the device drivers
|
|
* to skip calling pci_set_consistent_dma_mask(DMA_BIT_MASK(32)).
|
|
*/
|
|
static void pcibios_fixup_final(struct pci_dev *pdev)
|
|
{
|
|
set_dma_ops(&pdev->dev, gx_legacy_pci_dma_map_ops);
|
|
set_dma_offset(&pdev->dev, TILE_PCI_MEM_MAP_BASE_OFFSET);
|
|
pdev->dev.archdata.max_direct_dma_addr =
|
|
TILE_PCI_MAX_DIRECT_DMA_ADDRESS;
|
|
pdev->dev.coherent_dma_mask = TILE_PCI_MAX_DIRECT_DMA_ADDRESS;
|
|
}
|
|
DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_final);
|
|
|
|
/* Map a PCI MMIO bus address into VA space. */
|
|
void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
struct pci_controller *controller = NULL;
|
|
resource_size_t bar_start;
|
|
resource_size_t bar_end;
|
|
resource_size_t offset;
|
|
resource_size_t start;
|
|
resource_size_t end;
|
|
int trio_fd;
|
|
int i;
|
|
|
|
start = phys_addr;
|
|
end = phys_addr + size - 1;
|
|
|
|
/*
|
|
* By searching phys_addr in each controller's mem_space, we can
|
|
* determine the controller that should accept the PCI memory access.
|
|
*/
|
|
for (i = 0; i < num_rc_controllers; i++) {
|
|
/*
|
|
* Skip controllers that are not properly initialized or
|
|
* have down links.
|
|
*/
|
|
if (pci_controllers[i].root_bus == NULL)
|
|
continue;
|
|
|
|
bar_start = pci_controllers[i].mem_space.start;
|
|
bar_end = pci_controllers[i].mem_space.end;
|
|
|
|
if ((start >= bar_start) && (end <= bar_end)) {
|
|
controller = &pci_controllers[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (controller == NULL)
|
|
return NULL;
|
|
|
|
trio_fd = controller->trio->fd;
|
|
|
|
/* Convert the resource start to the bus address offset. */
|
|
start = phys_addr - controller->mem_offset;
|
|
|
|
offset = HV_TRIO_PIO_OFFSET(controller->pio_mem_index) + start;
|
|
|
|
/* We need to keep the PCI bus address's in-page offset in the VA. */
|
|
return iorpc_ioremap(trio_fd, offset, size) +
|
|
(start & (PAGE_SIZE - 1));
|
|
}
|
|
EXPORT_SYMBOL(ioremap);
|
|
|
|
#ifdef CONFIG_TILE_PCI_IO
|
|
/* Map a PCI I/O address into VA space. */
|
|
void __iomem *ioport_map(unsigned long port, unsigned int size)
|
|
{
|
|
struct pci_controller *controller = NULL;
|
|
resource_size_t bar_start;
|
|
resource_size_t bar_end;
|
|
resource_size_t offset;
|
|
resource_size_t start;
|
|
resource_size_t end;
|
|
int trio_fd;
|
|
int i;
|
|
|
|
start = port;
|
|
end = port + size - 1;
|
|
|
|
/*
|
|
* By searching the port in each controller's io_space, we can
|
|
* determine the controller that should accept the PCI I/O access.
|
|
*/
|
|
for (i = 0; i < num_rc_controllers; i++) {
|
|
/*
|
|
* Skip controllers that are not properly initialized or
|
|
* have down links.
|
|
*/
|
|
if (pci_controllers[i].root_bus == NULL)
|
|
continue;
|
|
|
|
bar_start = pci_controllers[i].io_space.start;
|
|
bar_end = pci_controllers[i].io_space.end;
|
|
|
|
if ((start >= bar_start) && (end <= bar_end)) {
|
|
controller = &pci_controllers[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (controller == NULL)
|
|
return NULL;
|
|
|
|
trio_fd = controller->trio->fd;
|
|
|
|
/* Convert the resource start to the bus address offset. */
|
|
port -= controller->io_space.start;
|
|
|
|
offset = HV_TRIO_PIO_OFFSET(controller->pio_io_index) + port;
|
|
|
|
/* We need to keep the PCI bus address's in-page offset in the VA. */
|
|
return iorpc_ioremap(trio_fd, offset, size) + (port & (PAGE_SIZE - 1));
|
|
}
|
|
EXPORT_SYMBOL(ioport_map);
|
|
|
|
void ioport_unmap(void __iomem *addr)
|
|
{
|
|
iounmap(addr);
|
|
}
|
|
EXPORT_SYMBOL(ioport_unmap);
|
|
#endif
|
|
|
|
void pci_iounmap(struct pci_dev *dev, void __iomem *addr)
|
|
{
|
|
iounmap(addr);
|
|
}
|
|
EXPORT_SYMBOL(pci_iounmap);
|
|
|
|
/****************************************************************
|
|
*
|
|
* Tile PCI config space read/write routines
|
|
*
|
|
****************************************************************/
|
|
|
|
/*
|
|
* These are the normal read and write ops
|
|
* These are expanded with macros from pci_bus_read_config_byte() etc.
|
|
*
|
|
* devfn is the combined PCI device & function.
|
|
*
|
|
* offset is in bytes, from the start of config space for the
|
|
* specified bus & device.
|
|
*/
|
|
static int tile_cfg_read(struct pci_bus *bus, unsigned int devfn, int offset,
|
|
int size, u32 *val)
|
|
{
|
|
struct pci_controller *controller = bus->sysdata;
|
|
gxio_trio_context_t *trio_context = controller->trio;
|
|
int busnum = bus->number & 0xff;
|
|
int device = PCI_SLOT(devfn);
|
|
int function = PCI_FUNC(devfn);
|
|
int config_type = 1;
|
|
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
|
|
void *mmio_addr;
|
|
|
|
/*
|
|
* Map all accesses to the local device on root bus into the
|
|
* MMIO space of the MAC. Accesses to the downstream devices
|
|
* go to the PIO space.
|
|
*/
|
|
if (pci_is_root_bus(bus)) {
|
|
if (device == 0) {
|
|
/*
|
|
* This is the internal downstream P2P bridge,
|
|
* access directly.
|
|
*/
|
|
unsigned int reg_offset;
|
|
|
|
reg_offset = ((offset & 0xFFF) <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
|
|
<< TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(controller->mac <<
|
|
TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
mmio_addr = trio_context->mmio_base_mac + reg_offset;
|
|
|
|
goto valid_device;
|
|
|
|
} else {
|
|
/*
|
|
* We fake an empty device for (device > 0),
|
|
* since there is only one device on bus 0.
|
|
*/
|
|
goto invalid_device;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Accesses to the directly attached device have to be
|
|
* sent as type-0 configs.
|
|
*/
|
|
if (busnum == (controller->first_busno + 1)) {
|
|
/*
|
|
* There is only one device off of our built-in P2P bridge.
|
|
*/
|
|
if (device != 0)
|
|
goto invalid_device;
|
|
|
|
config_type = 0;
|
|
}
|
|
|
|
cfg_addr.word = 0;
|
|
cfg_addr.reg_addr = (offset & 0xFFF);
|
|
cfg_addr.fn = function;
|
|
cfg_addr.dev = device;
|
|
cfg_addr.bus = busnum;
|
|
cfg_addr.type = config_type;
|
|
|
|
/*
|
|
* Note that we don't set the mac field in cfg_addr because the
|
|
* mapping is per port.
|
|
*/
|
|
mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
|
|
cfg_addr.word;
|
|
|
|
valid_device:
|
|
|
|
switch (size) {
|
|
case 4:
|
|
*val = __gxio_mmio_read32(mmio_addr);
|
|
break;
|
|
|
|
case 2:
|
|
*val = __gxio_mmio_read16(mmio_addr);
|
|
break;
|
|
|
|
case 1:
|
|
*val = __gxio_mmio_read8(mmio_addr);
|
|
break;
|
|
|
|
default:
|
|
return PCIBIOS_FUNC_NOT_SUPPORTED;
|
|
}
|
|
|
|
TRACE_CFG_RD(size, *val, busnum, device, function, offset);
|
|
|
|
return 0;
|
|
|
|
invalid_device:
|
|
|
|
switch (size) {
|
|
case 4:
|
|
*val = 0xFFFFFFFF;
|
|
break;
|
|
|
|
case 2:
|
|
*val = 0xFFFF;
|
|
break;
|
|
|
|
case 1:
|
|
*val = 0xFF;
|
|
break;
|
|
|
|
default:
|
|
return PCIBIOS_FUNC_NOT_SUPPORTED;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* See tile_cfg_read() for relevent comments.
|
|
* Note that "val" is the value to write, not a pointer to that value.
|
|
*/
|
|
static int tile_cfg_write(struct pci_bus *bus, unsigned int devfn, int offset,
|
|
int size, u32 val)
|
|
{
|
|
struct pci_controller *controller = bus->sysdata;
|
|
gxio_trio_context_t *trio_context = controller->trio;
|
|
int busnum = bus->number & 0xff;
|
|
int device = PCI_SLOT(devfn);
|
|
int function = PCI_FUNC(devfn);
|
|
int config_type = 1;
|
|
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
|
|
void *mmio_addr;
|
|
u32 val_32 = (u32)val;
|
|
u16 val_16 = (u16)val;
|
|
u8 val_8 = (u8)val;
|
|
|
|
/*
|
|
* Map all accesses to the local device on root bus into the
|
|
* MMIO space of the MAC. Accesses to the downstream devices
|
|
* go to the PIO space.
|
|
*/
|
|
if (pci_is_root_bus(bus)) {
|
|
if (device == 0) {
|
|
/*
|
|
* This is the internal downstream P2P bridge,
|
|
* access directly.
|
|
*/
|
|
unsigned int reg_offset;
|
|
|
|
reg_offset = ((offset & 0xFFF) <<
|
|
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
|
|
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
|
|
<< TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
|
|
(controller->mac <<
|
|
TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
|
|
|
|
mmio_addr = trio_context->mmio_base_mac + reg_offset;
|
|
|
|
goto valid_device;
|
|
|
|
} else {
|
|
/*
|
|
* We fake an empty device for (device > 0),
|
|
* since there is only one device on bus 0.
|
|
*/
|
|
goto invalid_device;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Accesses to the directly attached device have to be
|
|
* sent as type-0 configs.
|
|
*/
|
|
if (busnum == (controller->first_busno + 1)) {
|
|
/*
|
|
* There is only one device off of our built-in P2P bridge.
|
|
*/
|
|
if (device != 0)
|
|
goto invalid_device;
|
|
|
|
config_type = 0;
|
|
}
|
|
|
|
cfg_addr.word = 0;
|
|
cfg_addr.reg_addr = (offset & 0xFFF);
|
|
cfg_addr.fn = function;
|
|
cfg_addr.dev = device;
|
|
cfg_addr.bus = busnum;
|
|
cfg_addr.type = config_type;
|
|
|
|
/*
|
|
* Note that we don't set the mac field in cfg_addr because the
|
|
* mapping is per port.
|
|
*/
|
|
mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
|
|
cfg_addr.word;
|
|
|
|
valid_device:
|
|
|
|
switch (size) {
|
|
case 4:
|
|
__gxio_mmio_write32(mmio_addr, val_32);
|
|
TRACE_CFG_WR(size, val_32, busnum, device, function, offset);
|
|
break;
|
|
|
|
case 2:
|
|
__gxio_mmio_write16(mmio_addr, val_16);
|
|
TRACE_CFG_WR(size, val_16, busnum, device, function, offset);
|
|
break;
|
|
|
|
case 1:
|
|
__gxio_mmio_write8(mmio_addr, val_8);
|
|
TRACE_CFG_WR(size, val_8, busnum, device, function, offset);
|
|
break;
|
|
|
|
default:
|
|
return PCIBIOS_FUNC_NOT_SUPPORTED;
|
|
}
|
|
|
|
invalid_device:
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct pci_ops tile_cfg_ops = {
|
|
.read = tile_cfg_read,
|
|
.write = tile_cfg_write,
|
|
};
|
|
|
|
|
|
/* MSI support starts here. */
|
|
static unsigned int tilegx_msi_startup(struct irq_data *d)
|
|
{
|
|
if (d->msi_desc)
|
|
pci_msi_unmask_irq(d);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tilegx_msi_ack(struct irq_data *d)
|
|
{
|
|
__insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
|
|
}
|
|
|
|
static void tilegx_msi_mask(struct irq_data *d)
|
|
{
|
|
pci_msi_mask_irq(d);
|
|
__insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
|
|
}
|
|
|
|
static void tilegx_msi_unmask(struct irq_data *d)
|
|
{
|
|
__insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
|
|
pci_msi_unmask_irq(d);
|
|
}
|
|
|
|
static struct irq_chip tilegx_msi_chip = {
|
|
.name = "tilegx_msi",
|
|
.irq_startup = tilegx_msi_startup,
|
|
.irq_ack = tilegx_msi_ack,
|
|
.irq_mask = tilegx_msi_mask,
|
|
.irq_unmask = tilegx_msi_unmask,
|
|
|
|
/* TBD: support set_affinity. */
|
|
};
|
|
|
|
int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
|
|
{
|
|
struct pci_controller *controller;
|
|
gxio_trio_context_t *trio_context;
|
|
struct msi_msg msg;
|
|
int default_irq;
|
|
uint64_t mem_map_base;
|
|
uint64_t mem_map_limit;
|
|
u64 msi_addr;
|
|
int mem_map;
|
|
int cpu;
|
|
int irq;
|
|
int ret;
|
|
|
|
irq = irq_alloc_hwirq(-1);
|
|
if (!irq)
|
|
return -ENOSPC;
|
|
|
|
/*
|
|
* Since we use a 64-bit Mem-Map to accept the MSI write, we fail
|
|
* devices that are not capable of generating a 64-bit message address.
|
|
* These devices will fall back to using the legacy interrupts.
|
|
* Most PCIe endpoint devices do support 64-bit message addressing.
|
|
*/
|
|
if (desc->msi_attrib.is_64 == 0) {
|
|
dev_info(&pdev->dev, "64-bit MSI message address not supported, falling back to legacy interrupts\n");
|
|
|
|
ret = -ENOMEM;
|
|
goto is_64_failure;
|
|
}
|
|
|
|
default_irq = desc->msi_attrib.default_irq;
|
|
controller = irq_get_handler_data(default_irq);
|
|
|
|
BUG_ON(!controller);
|
|
|
|
trio_context = controller->trio;
|
|
|
|
/*
|
|
* Allocate a scatter-queue that will accept the MSI write and
|
|
* trigger the TILE-side interrupts. We use the scatter-queue regions
|
|
* before the mem map regions, because the latter are needed by more
|
|
* applications.
|
|
*/
|
|
mem_map = gxio_trio_alloc_scatter_queues(trio_context, 1, 0, 0);
|
|
if (mem_map >= 0) {
|
|
TRIO_MAP_SQ_DOORBELL_FMT_t doorbell_template = {{
|
|
.pop = 0,
|
|
.doorbell = 1,
|
|
}};
|
|
|
|
mem_map += TRIO_NUM_MAP_MEM_REGIONS;
|
|
mem_map_base = MEM_MAP_INTR_REGIONS_BASE +
|
|
mem_map * MEM_MAP_INTR_REGION_SIZE;
|
|
mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1;
|
|
|
|
msi_addr = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 8;
|
|
msg.data = (unsigned int)doorbell_template.word;
|
|
} else {
|
|
/* SQ regions are out, allocate from map mem regions. */
|
|
mem_map = gxio_trio_alloc_memory_maps(trio_context, 1, 0, 0);
|
|
if (mem_map < 0) {
|
|
dev_info(&pdev->dev, "%s Mem-Map alloc failure - failed to initialize MSI interrupts - falling back to legacy interrupts\n",
|
|
desc->msi_attrib.is_msix ? "MSI-X" : "MSI");
|
|
ret = -ENOMEM;
|
|
goto msi_mem_map_alloc_failure;
|
|
}
|
|
|
|
mem_map_base = MEM_MAP_INTR_REGIONS_BASE +
|
|
mem_map * MEM_MAP_INTR_REGION_SIZE;
|
|
mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1;
|
|
|
|
msi_addr = mem_map_base + TRIO_MAP_MEM_REG_INT3 -
|
|
TRIO_MAP_MEM_REG_INT0;
|
|
|
|
msg.data = mem_map;
|
|
}
|
|
|
|
/* We try to distribute different IRQs to different tiles. */
|
|
cpu = tile_irq_cpu(irq);
|
|
|
|
/*
|
|
* Now call up to the HV to configure the MSI interrupt and
|
|
* set up the IPI binding.
|
|
*/
|
|
ret = gxio_trio_config_msi_intr(trio_context, cpu_x(cpu), cpu_y(cpu),
|
|
KERNEL_PL, irq, controller->mac,
|
|
mem_map, mem_map_base, mem_map_limit,
|
|
trio_context->asid);
|
|
if (ret < 0) {
|
|
dev_info(&pdev->dev, "HV MSI config failed\n");
|
|
|
|
goto hv_msi_config_failure;
|
|
}
|
|
|
|
irq_set_msi_desc(irq, desc);
|
|
|
|
msg.address_hi = msi_addr >> 32;
|
|
msg.address_lo = msi_addr & 0xffffffff;
|
|
|
|
pci_write_msi_msg(irq, &msg);
|
|
irq_set_chip_and_handler(irq, &tilegx_msi_chip, handle_level_irq);
|
|
irq_set_handler_data(irq, controller);
|
|
|
|
return 0;
|
|
|
|
hv_msi_config_failure:
|
|
/* Free mem-map */
|
|
msi_mem_map_alloc_failure:
|
|
is_64_failure:
|
|
irq_free_hwirq(irq);
|
|
return ret;
|
|
}
|
|
|
|
void arch_teardown_msi_irq(unsigned int irq)
|
|
{
|
|
irq_free_hwirq(irq);
|
|
}
|