linux/virt/kvm/arm/vgic/vgic-v3.c
Marc Zyngier a6ecfb11bf KVM: arm/arm64: vgic-its: Take the srcu lock when writing to guest memory
When halting a guest, QEMU flushes the virtual ITS caches, which
amounts to writing to the various tables that the guest has allocated.

When doing this, we fail to take the srcu lock, and the kernel
shouts loudly if running a lockdep kernel:

[   69.680416] =============================
[   69.680819] WARNING: suspicious RCU usage
[   69.681526] 5.1.0-rc1-00008-g600025238f51-dirty #18 Not tainted
[   69.682096] -----------------------------
[   69.682501] ./include/linux/kvm_host.h:605 suspicious rcu_dereference_check() usage!
[   69.683225]
[   69.683225] other info that might help us debug this:
[   69.683225]
[   69.683975]
[   69.683975] rcu_scheduler_active = 2, debug_locks = 1
[   69.684598] 6 locks held by qemu-system-aar/4097:
[   69.685059]  #0: 0000000034196013 (&kvm->lock){+.+.}, at: vgic_its_set_attr+0x244/0x3a0
[   69.686087]  #1: 00000000f2ed935e (&its->its_lock){+.+.}, at: vgic_its_set_attr+0x250/0x3a0
[   69.686919]  #2: 000000005e71ea54 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[   69.687698]  #3: 00000000c17e548d (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[   69.688475]  #4: 00000000ba386017 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[   69.689978]  #5: 00000000c2c3c335 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[   69.690729]
[   69.690729] stack backtrace:
[   69.691151] CPU: 2 PID: 4097 Comm: qemu-system-aar Not tainted 5.1.0-rc1-00008-g600025238f51-dirty #18
[   69.691984] Hardware name: rockchip evb_rk3399/evb_rk3399, BIOS 2019.04-rc3-00124-g2feec69fb1 03/15/2019
[   69.692831] Call trace:
[   69.694072]  lockdep_rcu_suspicious+0xcc/0x110
[   69.694490]  gfn_to_memslot+0x174/0x190
[   69.694853]  kvm_write_guest+0x50/0xb0
[   69.695209]  vgic_its_save_tables_v0+0x248/0x330
[   69.695639]  vgic_its_set_attr+0x298/0x3a0
[   69.696024]  kvm_device_ioctl_attr+0x9c/0xd8
[   69.696424]  kvm_device_ioctl+0x8c/0xf8
[   69.696788]  do_vfs_ioctl+0xc8/0x960
[   69.697128]  ksys_ioctl+0x8c/0xa0
[   69.697445]  __arm64_sys_ioctl+0x28/0x38
[   69.697817]  el0_svc_common+0xd8/0x138
[   69.698173]  el0_svc_handler+0x38/0x78
[   69.698528]  el0_svc+0x8/0xc

The fix is to obviously take the srcu lock, just like we do on the
read side of things since bf308242ab. One wonders why this wasn't
fixed at the same time, but hey...

Fixes: bf308242ab ("KVM: arm/arm64: VGIC/ITS: protect kvm_read_guest() calls with SRCU lock")
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-19 17:56:56 +00:00

689 lines
18 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_asm.h>
#include "vgic.h"
static bool group0_trap;
static bool group1_trap;
static bool common_trap;
static bool gicv4_enable;
void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
cpuif->vgic_hcr |= ICH_HCR_UIE;
}
static bool lr_signals_eoi_mi(u64 lr_val)
{
return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
!(lr_val & ICH_LR_HW);
}
void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
int lr;
DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
cpuif->vgic_hcr &= ~ICH_HCR_UIE;
for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
u64 val = cpuif->vgic_lr[lr];
u32 intid, cpuid;
struct vgic_irq *irq;
bool is_v2_sgi = false;
cpuid = val & GICH_LR_PHYSID_CPUID;
cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
intid = val & ICH_LR_VIRTUAL_ID_MASK;
} else {
intid = val & GICH_LR_VIRTUALID;
is_v2_sgi = vgic_irq_is_sgi(intid);
}
/* Notify fds when the guest EOI'ed a level-triggered IRQ */
if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
kvm_notify_acked_irq(vcpu->kvm, 0,
intid - VGIC_NR_PRIVATE_IRQS);
irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
if (!irq) /* An LPI could have been unmapped. */
continue;
raw_spin_lock(&irq->irq_lock);
/* Always preserve the active bit */
irq->active = !!(val & ICH_LR_ACTIVE_BIT);
if (irq->active && is_v2_sgi)
irq->active_source = cpuid;
/* Edge is the only case where we preserve the pending bit */
if (irq->config == VGIC_CONFIG_EDGE &&
(val & ICH_LR_PENDING_BIT)) {
irq->pending_latch = true;
if (is_v2_sgi)
irq->source |= (1 << cpuid);
}
/*
* Clear soft pending state when level irqs have been acked.
*/
if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
irq->pending_latch = false;
/*
* Level-triggered mapped IRQs are special because we only
* observe rising edges as input to the VGIC.
*
* If the guest never acked the interrupt we have to sample
* the physical line and set the line level, because the
* device state could have changed or we simply need to
* process the still pending interrupt later.
*
* If this causes us to lower the level, we have to also clear
* the physical active state, since we will otherwise never be
* told when the interrupt becomes asserted again.
*/
if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
irq->line_level = vgic_get_phys_line_level(irq);
if (!irq->line_level)
vgic_irq_set_phys_active(irq, false);
}
raw_spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
}
vgic_cpu->used_lrs = 0;
}
/* Requires the irq to be locked already */
void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
{
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u64 val = irq->intid;
bool allow_pending = true, is_v2_sgi;
is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
model == KVM_DEV_TYPE_ARM_VGIC_V2);
if (irq->active) {
val |= ICH_LR_ACTIVE_BIT;
if (is_v2_sgi)
val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
if (vgic_irq_is_multi_sgi(irq)) {
allow_pending = false;
val |= ICH_LR_EOI;
}
}
if (irq->hw) {
val |= ICH_LR_HW;
val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
/*
* Never set pending+active on a HW interrupt, as the
* pending state is kept at the physical distributor
* level.
*/
if (irq->active)
allow_pending = false;
} else {
if (irq->config == VGIC_CONFIG_LEVEL) {
val |= ICH_LR_EOI;
/*
* Software resampling doesn't work very well
* if we allow P+A, so let's not do that.
*/
if (irq->active)
allow_pending = false;
}
}
if (allow_pending && irq_is_pending(irq)) {
val |= ICH_LR_PENDING_BIT;
if (irq->config == VGIC_CONFIG_EDGE)
irq->pending_latch = false;
if (vgic_irq_is_sgi(irq->intid) &&
model == KVM_DEV_TYPE_ARM_VGIC_V2) {
u32 src = ffs(irq->source);
BUG_ON(!src);
val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
irq->source &= ~(1 << (src - 1));
if (irq->source) {
irq->pending_latch = true;
val |= ICH_LR_EOI;
}
}
}
/*
* Level-triggered mapped IRQs are special because we only observe
* rising edges as input to the VGIC. We therefore lower the line
* level here, so that we can take new virtual IRQs. See
* vgic_v3_fold_lr_state for more info.
*/
if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
irq->line_level = false;
if (irq->group)
val |= ICH_LR_GROUP;
val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
}
void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
}
void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u32 vmcr;
if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
ICH_VMCR_ACK_CTL_MASK;
vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
ICH_VMCR_FIQ_EN_MASK;
} else {
/*
* When emulating GICv3 on GICv3 with SRE=1 on the
* VFIQEn bit is RES1 and the VAckCtl bit is RES0.
*/
vmcr = ICH_VMCR_FIQ_EN_MASK;
}
vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
cpu_if->vgic_vmcr = vmcr;
}
void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u32 vmcr;
vmcr = cpu_if->vgic_vmcr;
if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
ICH_VMCR_ACK_CTL_SHIFT;
vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
ICH_VMCR_FIQ_EN_SHIFT;
} else {
/*
* When emulating GICv3 on GICv3 with SRE=1 on the
* VFIQEn bit is RES1 and the VAckCtl bit is RES0.
*/
vmcrp->fiqen = 1;
vmcrp->ackctl = 0;
}
vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
}
#define INITIAL_PENDBASER_VALUE \
(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \
GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \
GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
void vgic_v3_enable(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
/*
* By forcing VMCR to zero, the GIC will restore the binary
* points to their reset values. Anything else resets to zero
* anyway.
*/
vgic_v3->vgic_vmcr = 0;
/*
* If we are emulating a GICv3, we do it in an non-GICv2-compatible
* way, so we force SRE to 1 to demonstrate this to the guest.
* Also, we don't support any form of IRQ/FIQ bypass.
* This goes with the spec allowing the value to be RAO/WI.
*/
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
ICC_SRE_EL1_DFB |
ICC_SRE_EL1_SRE);
vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
} else {
vgic_v3->vgic_sre = 0;
}
vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
ICH_VTR_ID_BITS_MASK) >>
ICH_VTR_ID_BITS_SHIFT;
vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
ICH_VTR_PRI_BITS_MASK) >>
ICH_VTR_PRI_BITS_SHIFT) + 1;
/* Get the show on the road... */
vgic_v3->vgic_hcr = ICH_HCR_EN;
if (group0_trap)
vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
if (group1_trap)
vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
if (common_trap)
vgic_v3->vgic_hcr |= ICH_HCR_TC;
}
int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
{
struct kvm_vcpu *vcpu;
int byte_offset, bit_nr;
gpa_t pendbase, ptr;
bool status;
u8 val;
int ret;
unsigned long flags;
retry:
vcpu = irq->target_vcpu;
if (!vcpu)
return 0;
pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
byte_offset = irq->intid / BITS_PER_BYTE;
bit_nr = irq->intid % BITS_PER_BYTE;
ptr = pendbase + byte_offset;
ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
if (ret)
return ret;
status = val & (1 << bit_nr);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
if (irq->target_vcpu != vcpu) {
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
goto retry;
}
irq->pending_latch = status;
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
if (status) {
/* clear consumed data */
val &= ~(1 << bit_nr);
ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
if (ret)
return ret;
}
return 0;
}
/**
* vgic_its_save_pending_tables - Save the pending tables into guest RAM
* kvm lock and all vcpu lock must be held
*/
int vgic_v3_save_pending_tables(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
int last_byte_offset = -1;
struct vgic_irq *irq;
int ret;
u8 val;
list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
int byte_offset, bit_nr;
struct kvm_vcpu *vcpu;
gpa_t pendbase, ptr;
bool stored;
vcpu = irq->target_vcpu;
if (!vcpu)
continue;
pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
byte_offset = irq->intid / BITS_PER_BYTE;
bit_nr = irq->intid % BITS_PER_BYTE;
ptr = pendbase + byte_offset;
if (byte_offset != last_byte_offset) {
ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
if (ret)
return ret;
last_byte_offset = byte_offset;
}
stored = val & (1U << bit_nr);
if (stored == irq->pending_latch)
continue;
if (irq->pending_latch)
val |= 1 << bit_nr;
else
val &= ~(1 << bit_nr);
ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
if (ret)
return ret;
}
return 0;
}
/**
* vgic_v3_rdist_overlap - check if a region overlaps with any
* existing redistributor region
*
* @kvm: kvm handle
* @base: base of the region
* @size: size of region
*
* Return: true if there is an overlap
*/
bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
{
struct vgic_dist *d = &kvm->arch.vgic;
struct vgic_redist_region *rdreg;
list_for_each_entry(rdreg, &d->rd_regions, list) {
if ((base + size > rdreg->base) &&
(base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
return true;
}
return false;
}
/*
* Check for overlapping regions and for regions crossing the end of memory
* for base addresses which have already been set.
*/
bool vgic_v3_check_base(struct kvm *kvm)
{
struct vgic_dist *d = &kvm->arch.vgic;
struct vgic_redist_region *rdreg;
if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
return false;
list_for_each_entry(rdreg, &d->rd_regions, list) {
if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
rdreg->base)
return false;
}
if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
return true;
return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
KVM_VGIC_V3_DIST_SIZE);
}
/**
* vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
* which has free space to put a new rdist region.
*
* @rd_regions: redistributor region list head
*
* A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
* Stride between redistributors is 0 and regions are filled in the index order.
*
* Return: the redist region handle, if any, that has space to map a new rdist
* region.
*/
struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
{
struct vgic_redist_region *rdreg;
list_for_each_entry(rdreg, rd_regions, list) {
if (!vgic_v3_redist_region_full(rdreg))
return rdreg;
}
return NULL;
}
struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
u32 index)
{
struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
struct vgic_redist_region *rdreg;
list_for_each_entry(rdreg, rd_regions, list) {
if (rdreg->index == index)
return rdreg;
}
return NULL;
}
int vgic_v3_map_resources(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int ret = 0;
int c;
if (vgic_ready(kvm))
goto out;
kvm_for_each_vcpu(c, vcpu, kvm) {
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
kvm_debug("vcpu %d redistributor base not set\n", c);
ret = -ENXIO;
goto out;
}
}
if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
kvm_err("Need to set vgic distributor addresses first\n");
ret = -ENXIO;
goto out;
}
if (!vgic_v3_check_base(kvm)) {
kvm_err("VGIC redist and dist frames overlap\n");
ret = -EINVAL;
goto out;
}
/*
* For a VGICv3 we require the userland to explicitly initialize
* the VGIC before we need to use it.
*/
if (!vgic_initialized(kvm)) {
ret = -EBUSY;
goto out;
}
ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
if (ret) {
kvm_err("Unable to register VGICv3 dist MMIO regions\n");
goto out;
}
dist->ready = true;
out:
return ret;
}
DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
static int __init early_group0_trap_cfg(char *buf)
{
return strtobool(buf, &group0_trap);
}
early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
static int __init early_group1_trap_cfg(char *buf)
{
return strtobool(buf, &group1_trap);
}
early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
static int __init early_common_trap_cfg(char *buf)
{
return strtobool(buf, &common_trap);
}
early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
static int __init early_gicv4_enable(char *buf)
{
return strtobool(buf, &gicv4_enable);
}
early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
/**
* vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT
* @node: pointer to the DT node
*
* Returns 0 if a GICv3 has been found, returns an error code otherwise
*/
int vgic_v3_probe(const struct gic_kvm_info *info)
{
u32 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_ich_vtr_el2);
int ret;
/*
* The ListRegs field is 5 bits, but there is a architectural
* maximum of 16 list registers. Just ignore bit 4...
*/
kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
kvm_vgic_global_state.can_emulate_gicv2 = false;
kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
/* GICv4 support? */
if (info->has_v4) {
kvm_vgic_global_state.has_gicv4 = gicv4_enable;
kvm_info("GICv4 support %sabled\n",
gicv4_enable ? "en" : "dis");
}
if (!info->vcpu.start) {
kvm_info("GICv3: no GICV resource entry\n");
kvm_vgic_global_state.vcpu_base = 0;
} else if (!PAGE_ALIGNED(info->vcpu.start)) {
pr_warn("GICV physical address 0x%llx not page aligned\n",
(unsigned long long)info->vcpu.start);
kvm_vgic_global_state.vcpu_base = 0;
} else {
kvm_vgic_global_state.vcpu_base = info->vcpu.start;
kvm_vgic_global_state.can_emulate_gicv2 = true;
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
if (ret) {
kvm_err("Cannot register GICv2 KVM device.\n");
return ret;
}
kvm_info("vgic-v2@%llx\n", info->vcpu.start);
}
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
if (ret) {
kvm_err("Cannot register GICv3 KVM device.\n");
kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
return ret;
}
if (kvm_vgic_global_state.vcpu_base == 0)
kvm_info("disabling GICv2 emulation\n");
#ifdef CONFIG_ARM64
if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
group0_trap = true;
group1_trap = true;
}
#endif
if (group0_trap || group1_trap || common_trap) {
kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
group0_trap ? "G0" : "",
group1_trap ? "G1" : "",
common_trap ? "C" : "");
static_branch_enable(&vgic_v3_cpuif_trap);
}
kvm_vgic_global_state.vctrl_base = NULL;
kvm_vgic_global_state.type = VGIC_V3;
kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
return 0;
}
void vgic_v3_load(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
/*
* If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
* is dependent on ICC_SRE_EL1.SRE, and we have to perform the
* VMCR_EL2 save/restore in the world switch.
*/
if (likely(cpu_if->vgic_sre))
kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
kvm_call_hyp(__vgic_v3_restore_aprs, vcpu);
if (has_vhe())
__vgic_v3_activate_traps(vcpu);
}
void vgic_v3_put(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
if (likely(cpu_if->vgic_sre))
cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
kvm_call_hyp(__vgic_v3_save_aprs, vcpu);
if (has_vhe())
__vgic_v3_deactivate_traps(vcpu);
}