linux/drivers/infiniband/hw/hfi1/driver.c
Linus Torvalds 4d5b57e05a Updates for 4.10 kernel merge window
- Shared mlx5 updates with net stack (will drop out on merge if Dave's
   tree has already been merged)
 - Driver updates: cxgb4, hfi1, hns-roce, i40iw, mlx4, mlx5, qedr, rxe
 - Debug cleanups
 - New connection rejection helpers
 - SRP updates
 - Various misc fixes
 - New paravirt driver from vmware
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJYUbAPAAoJELgmozMOVy/dMXcP/iuG5MNzfN8Ny1JftyBQGWg3
 cqoQ2OLj9CsXjwVB+5EqbcZHRZY852lKONaLoDKkIOx4YAXO2YuIKOp944vN7EQx
 96wfqzT1F5jzAcy5mYZXgLaStGFDAwejKMqeHd0LfJj3OEtemGnVPWYzyqSQmSKo
 dzJraS1Z9GIRppzU5WaRpB9PtRBkqIqGJ5vZ0EKLGhed5hYY5r0iMJB0GfriMRDO
 lJ4UUVfpsAoLPnqDBFH6IMn2V2UeAw9IR5zNa1mrM1RBfvt/uYTxrw1w3p9WoaNs
 GRodhk4DCeAfeyqzVPNBLyXZ4Zq4FzGe3UWM4qysJ1RR4oFNw9Cuw0Fqk8mrfznr
 7hv5TpGIckRZiKf8l6e+qLirF0qGtXJg29j2vPVQI9i5nSj95g1agA81PnLQlLLb
 flWyxeMj81my7lfMHN1xcV6pqPEKMCOysZmfcvVfJd2XxpjuVD7ekl/YXWp8o8kU
 YPdQMqPD626XsD8VpPdMszb9FPmx0JD0HEv+Y1rIFX8JegEI+c3H2X0dqC27T/Ou
 FEPWOy025EgHm0Fh/7eIzkG6tjZ4JHoCugJAcxNZGj2XW4eB6r5vY8UwJ8iQRv+n
 PVYHiy0UoIRePh0mrdOSSphGZMi/GO/DsqKwCtAMEK43WqZQju6wR7QSIGkh66mp
 4uSHJqpf3YEYylxGMhk3
 =QeGy
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma

Pull rdma updates from Doug Ledford:
 "This is the complete update for the rdma stack for this release cycle.

  Most of it is typical driver and core updates, but there is the
  entirely new VMWare pvrdma driver. You may have noticed that there
  were changes in DaveM's pull request to the bnxt Ethernet driver to
  support a RoCE RDMA driver. The bnxt_re driver was tentatively set to
  be pulled in this release cycle, but it simply wasn't ready in time
  and was dropped (a few review comments still to address, and some
  multi-arch build issues like prefetch() not working across all
  arches).

  Summary:

   - shared mlx5 updates with net stack (will drop out on merge if
     Dave's tree has already been merged)

   - driver updates: cxgb4, hfi1, hns-roce, i40iw, mlx4, mlx5, qedr, rxe

   - debug cleanups

   - new connection rejection helpers

   - SRP updates

   - various misc fixes

   - new paravirt driver from vmware"

* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (210 commits)
  IB: Add vmw_pvrdma driver
  IB/mlx4: fix improper return value
  IB/ocrdma: fix bad initialization
  infiniband: nes: return value of skb_linearize should be handled
  MAINTAINERS: Update Intel RDMA RNIC driver maintainers
  MAINTAINERS: Remove Mitesh Ahuja from emulex maintainers
  IB/core: fix unmap_sg argument
  qede: fix general protection fault may occur on probe
  IB/mthca: Replace pci_pool_alloc by pci_pool_zalloc
  mlx5, calc_sq_size(): Make a debug message more informative
  mlx5: Remove a set-but-not-used variable
  mlx5: Use { } instead of { 0 } to init struct
  IB/srp: Make writing the add_target sysfs attr interruptible
  IB/srp: Make mapping failures easier to debug
  IB/srp: Make login failures easier to debug
  IB/srp: Introduce a local variable in srp_add_one()
  IB/srp: Fix CONFIG_DYNAMIC_DEBUG=n build
  IB/multicast: Check ib_find_pkey() return value
  IPoIB: Avoid reading an uninitialized member variable
  IB/mad: Fix an array index check
  ...
2016-12-15 12:03:32 -08:00

1423 lines
36 KiB
C

/*
* Copyright(c) 2015, 2016 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/prefetch.h>
#include <rdma/ib_verbs.h>
#include "hfi.h"
#include "trace.h"
#include "qp.h"
#include "sdma.h"
#undef pr_fmt
#define pr_fmt(fmt) DRIVER_NAME ": " fmt
/*
* The size has to be longer than this string, so we can append
* board/chip information to it in the initialization code.
*/
const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
DEFINE_SPINLOCK(hfi1_devs_lock);
LIST_HEAD(hfi1_dev_list);
DEFINE_MUTEX(hfi1_mutex); /* general driver use */
unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
HFI1_DEFAULT_MAX_MTU));
unsigned int hfi1_cu = 1;
module_param_named(cu, hfi1_cu, uint, S_IRUGO);
MODULE_PARM_DESC(cu, "Credit return units");
unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
static int hfi1_caps_set(const char *, const struct kernel_param *);
static int hfi1_caps_get(char *, const struct kernel_param *);
static const struct kernel_param_ops cap_ops = {
.set = hfi1_caps_set,
.get = hfi1_caps_get
};
module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
MODULE_VERSION(HFI1_DRIVER_VERSION);
/*
* MAX_PKT_RCV is the max # if packets processed per receive interrupt.
*/
#define MAX_PKT_RECV 64
#define EGR_HEAD_UPDATE_THRESHOLD 16
struct hfi1_ib_stats hfi1_stats;
static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
{
int ret = 0;
unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
cap_mask = *cap_mask_ptr, value, diff,
write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
HFI1_CAP_WRITABLE_MASK);
ret = kstrtoul(val, 0, &value);
if (ret) {
pr_warn("Invalid module parameter value for 'cap_mask'\n");
goto done;
}
/* Get the changed bits (except the locked bit) */
diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
/* Remove any bits that are not allowed to change after driver load */
if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
pr_warn("Ignoring non-writable capability bits %#lx\n",
diff & ~write_mask);
diff &= write_mask;
}
/* Mask off any reserved bits */
diff &= ~HFI1_CAP_RESERVED_MASK;
/* Clear any previously set and changing bits */
cap_mask &= ~diff;
/* Update the bits with the new capability */
cap_mask |= (value & diff);
/* Check for any kernel/user restrictions */
diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
cap_mask &= ~diff;
/* Set the bitmask to the final set */
*cap_mask_ptr = cap_mask;
done:
return ret;
}
static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
{
unsigned long cap_mask = *(unsigned long *)kp->arg;
cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
}
const char *get_unit_name(int unit)
{
static char iname[16];
snprintf(iname, sizeof(iname), DRIVER_NAME "_%u", unit);
return iname;
}
const char *get_card_name(struct rvt_dev_info *rdi)
{
struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
struct hfi1_devdata *dd = container_of(ibdev,
struct hfi1_devdata, verbs_dev);
return get_unit_name(dd->unit);
}
struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
{
struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
struct hfi1_devdata *dd = container_of(ibdev,
struct hfi1_devdata, verbs_dev);
return dd->pcidev;
}
/*
* Return count of units with at least one port ACTIVE.
*/
int hfi1_count_active_units(void)
{
struct hfi1_devdata *dd;
struct hfi1_pportdata *ppd;
unsigned long flags;
int pidx, nunits_active = 0;
spin_lock_irqsave(&hfi1_devs_lock, flags);
list_for_each_entry(dd, &hfi1_dev_list, list) {
if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase)
continue;
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
if (ppd->lid && ppd->linkup) {
nunits_active++;
break;
}
}
}
spin_unlock_irqrestore(&hfi1_devs_lock, flags);
return nunits_active;
}
/*
* Return count of all units, optionally return in arguments
* the number of usable (present) units, and the number of
* ports that are up.
*/
int hfi1_count_units(int *npresentp, int *nupp)
{
int nunits = 0, npresent = 0, nup = 0;
struct hfi1_devdata *dd;
unsigned long flags;
int pidx;
struct hfi1_pportdata *ppd;
spin_lock_irqsave(&hfi1_devs_lock, flags);
list_for_each_entry(dd, &hfi1_dev_list, list) {
nunits++;
if ((dd->flags & HFI1_PRESENT) && dd->kregbase)
npresent++;
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
if (ppd->lid && ppd->linkup)
nup++;
}
}
spin_unlock_irqrestore(&hfi1_devs_lock, flags);
if (npresentp)
*npresentp = npresent;
if (nupp)
*nupp = nup;
return nunits;
}
/*
* Get address of eager buffer from it's index (allocated in chunks, not
* contiguous).
*/
static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
u8 *update)
{
u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
(offset * RCV_BUF_BLOCK_SIZE));
}
/*
* Validate and encode the a given RcvArray Buffer size.
* The function will check whether the given size falls within
* allowed size ranges for the respective type and, optionally,
* return the proper encoding.
*/
inline int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
{
if (unlikely(!PAGE_ALIGNED(size)))
return 0;
if (unlikely(size < MIN_EAGER_BUFFER))
return 0;
if (size >
(type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
return 0;
if (encoded)
*encoded = ilog2(size / PAGE_SIZE) + 1;
return 1;
}
static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
struct hfi1_packet *packet)
{
struct ib_header *rhdr = packet->hdr;
u32 rte = rhf_rcv_type_err(packet->rhf);
int lnh = be16_to_cpu(rhdr->lrh[0]) & 3;
struct hfi1_ibport *ibp = &ppd->ibport_data;
struct hfi1_devdata *dd = ppd->dd;
struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
return;
if (packet->rhf & RHF_TID_ERR) {
/* For TIDERR and RC QPs preemptively schedule a NAK */
struct ib_other_headers *ohdr = NULL;
u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
u16 lid = be16_to_cpu(rhdr->lrh[1]);
u32 qp_num;
u32 rcv_flags = 0;
/* Sanity check packet */
if (tlen < 24)
goto drop;
/* Check for GRH */
if (lnh == HFI1_LRH_BTH) {
ohdr = &rhdr->u.oth;
} else if (lnh == HFI1_LRH_GRH) {
u32 vtf;
ohdr = &rhdr->u.l.oth;
if (rhdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
goto drop;
vtf = be32_to_cpu(rhdr->u.l.grh.version_tclass_flow);
if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
goto drop;
rcv_flags |= HFI1_HAS_GRH;
} else {
goto drop;
}
/* Get the destination QP number. */
qp_num = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
if (lid < be16_to_cpu(IB_MULTICAST_LID_BASE)) {
struct rvt_qp *qp;
unsigned long flags;
rcu_read_lock();
qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
if (!qp) {
rcu_read_unlock();
goto drop;
}
/*
* Handle only RC QPs - for other QP types drop error
* packet.
*/
spin_lock_irqsave(&qp->r_lock, flags);
/* Check for valid receive state. */
if (!(ib_rvt_state_ops[qp->state] &
RVT_PROCESS_RECV_OK)) {
ibp->rvp.n_pkt_drops++;
}
switch (qp->ibqp.qp_type) {
case IB_QPT_RC:
hfi1_rc_hdrerr(
rcd,
rhdr,
rcv_flags,
qp);
break;
default:
/* For now don't handle any other QP types */
break;
}
spin_unlock_irqrestore(&qp->r_lock, flags);
rcu_read_unlock();
} /* Unicast QP */
} /* Valid packet with TIDErr */
/* handle "RcvTypeErr" flags */
switch (rte) {
case RHF_RTE_ERROR_OP_CODE_ERR:
{
u32 opcode;
void *ebuf = NULL;
__be32 *bth = NULL;
if (rhf_use_egr_bfr(packet->rhf))
ebuf = packet->ebuf;
if (!ebuf)
goto drop; /* this should never happen */
if (lnh == HFI1_LRH_BTH)
bth = (__be32 *)ebuf;
else if (lnh == HFI1_LRH_GRH)
bth = (__be32 *)((char *)ebuf + sizeof(struct ib_grh));
else
goto drop;
opcode = be32_to_cpu(bth[0]) >> 24;
opcode &= 0xff;
if (opcode == IB_OPCODE_CNP) {
/*
* Only in pre-B0 h/w is the CNP_OPCODE handled
* via this code path.
*/
struct rvt_qp *qp = NULL;
u32 lqpn, rqpn;
u16 rlid;
u8 svc_type, sl, sc5;
sc5 = hdr2sc(rhdr, packet->rhf);
sl = ibp->sc_to_sl[sc5];
lqpn = be32_to_cpu(bth[1]) & RVT_QPN_MASK;
rcu_read_lock();
qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
if (!qp) {
rcu_read_unlock();
goto drop;
}
switch (qp->ibqp.qp_type) {
case IB_QPT_UD:
rlid = 0;
rqpn = 0;
svc_type = IB_CC_SVCTYPE_UD;
break;
case IB_QPT_UC:
rlid = be16_to_cpu(rhdr->lrh[3]);
rqpn = qp->remote_qpn;
svc_type = IB_CC_SVCTYPE_UC;
break;
default:
goto drop;
}
process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
rcu_read_unlock();
}
packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
break;
}
default:
break;
}
drop:
return;
}
static inline void init_packet(struct hfi1_ctxtdata *rcd,
struct hfi1_packet *packet)
{
packet->rsize = rcd->rcvhdrqentsize; /* words */
packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
packet->rcd = rcd;
packet->updegr = 0;
packet->etail = -1;
packet->rhf_addr = get_rhf_addr(rcd);
packet->rhf = rhf_to_cpu(packet->rhf_addr);
packet->rhqoff = rcd->head;
packet->numpkt = 0;
packet->rcv_flags = 0;
}
void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
bool do_cnp)
{
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
struct ib_header *hdr = pkt->hdr;
struct ib_other_headers *ohdr = pkt->ohdr;
struct ib_grh *grh = NULL;
u32 rqpn = 0, bth1;
u16 rlid, dlid = be16_to_cpu(hdr->lrh[1]);
u8 sc, svc_type;
bool is_mcast = false;
if (pkt->rcv_flags & HFI1_HAS_GRH)
grh = &hdr->u.l.grh;
switch (qp->ibqp.qp_type) {
case IB_QPT_SMI:
case IB_QPT_GSI:
case IB_QPT_UD:
rlid = be16_to_cpu(hdr->lrh[3]);
rqpn = be32_to_cpu(ohdr->u.ud.deth[1]) & RVT_QPN_MASK;
svc_type = IB_CC_SVCTYPE_UD;
is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
(dlid != be16_to_cpu(IB_LID_PERMISSIVE));
break;
case IB_QPT_UC:
rlid = qp->remote_ah_attr.dlid;
rqpn = qp->remote_qpn;
svc_type = IB_CC_SVCTYPE_UC;
break;
case IB_QPT_RC:
rlid = qp->remote_ah_attr.dlid;
rqpn = qp->remote_qpn;
svc_type = IB_CC_SVCTYPE_RC;
break;
default:
return;
}
sc = hdr2sc(hdr, pkt->rhf);
bth1 = be32_to_cpu(ohdr->bth[1]);
if (do_cnp && (bth1 & HFI1_FECN_SMASK)) {
u16 pkey = (u16)be32_to_cpu(ohdr->bth[0]);
return_cnp(ibp, qp, rqpn, pkey, dlid, rlid, sc, grh);
}
if (!is_mcast && (bth1 & HFI1_BECN_SMASK)) {
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u32 lqpn = bth1 & RVT_QPN_MASK;
u8 sl = ibp->sc_to_sl[sc];
process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
}
}
struct ps_mdata {
struct hfi1_ctxtdata *rcd;
u32 rsize;
u32 maxcnt;
u32 ps_head;
u32 ps_tail;
u32 ps_seq;
};
static inline void init_ps_mdata(struct ps_mdata *mdata,
struct hfi1_packet *packet)
{
struct hfi1_ctxtdata *rcd = packet->rcd;
mdata->rcd = rcd;
mdata->rsize = packet->rsize;
mdata->maxcnt = packet->maxcnt;
mdata->ps_head = packet->rhqoff;
if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
mdata->ps_tail = get_rcvhdrtail(rcd);
if (rcd->ctxt == HFI1_CTRL_CTXT)
mdata->ps_seq = rcd->seq_cnt;
else
mdata->ps_seq = 0; /* not used with DMA_RTAIL */
} else {
mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
mdata->ps_seq = rcd->seq_cnt;
}
}
static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
struct hfi1_ctxtdata *rcd)
{
if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
return mdata->ps_head == mdata->ps_tail;
return mdata->ps_seq != rhf_rcv_seq(rhf);
}
static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
struct hfi1_ctxtdata *rcd)
{
/*
* Control context can potentially receive an invalid rhf.
* Drop such packets.
*/
if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
return mdata->ps_seq != rhf_rcv_seq(rhf);
return 0;
}
static inline void update_ps_mdata(struct ps_mdata *mdata,
struct hfi1_ctxtdata *rcd)
{
mdata->ps_head += mdata->rsize;
if (mdata->ps_head >= mdata->maxcnt)
mdata->ps_head = 0;
/* Control context must do seq counting */
if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
(rcd->ctxt == HFI1_CTRL_CTXT)) {
if (++mdata->ps_seq > 13)
mdata->ps_seq = 1;
}
}
/*
* prescan_rxq - search through the receive queue looking for packets
* containing Excplicit Congestion Notifications (FECNs, or BECNs).
* When an ECN is found, process the Congestion Notification, and toggle
* it off.
* This is declared as a macro to allow quick checking of the port to avoid
* the overhead of a function call if not enabled.
*/
#define prescan_rxq(rcd, packet) \
do { \
if (rcd->ppd->cc_prescan) \
__prescan_rxq(packet); \
} while (0)
static void __prescan_rxq(struct hfi1_packet *packet)
{
struct hfi1_ctxtdata *rcd = packet->rcd;
struct ps_mdata mdata;
init_ps_mdata(&mdata, packet);
while (1) {
struct hfi1_devdata *dd = rcd->dd;
struct hfi1_ibport *ibp = &rcd->ppd->ibport_data;
__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
dd->rhf_offset;
struct rvt_qp *qp;
struct ib_header *hdr;
struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
u64 rhf = rhf_to_cpu(rhf_addr);
u32 etype = rhf_rcv_type(rhf), qpn, bth1;
int is_ecn = 0;
u8 lnh;
if (ps_done(&mdata, rhf, rcd))
break;
if (ps_skip(&mdata, rhf, rcd))
goto next;
if (etype != RHF_RCV_TYPE_IB)
goto next;
packet->hdr = hfi1_get_msgheader(dd, rhf_addr);
hdr = packet->hdr;
lnh = be16_to_cpu(hdr->lrh[0]) & 3;
if (lnh == HFI1_LRH_BTH) {
packet->ohdr = &hdr->u.oth;
} else if (lnh == HFI1_LRH_GRH) {
packet->ohdr = &hdr->u.l.oth;
packet->rcv_flags |= HFI1_HAS_GRH;
} else {
goto next; /* just in case */
}
bth1 = be32_to_cpu(packet->ohdr->bth[1]);
is_ecn = !!(bth1 & (HFI1_FECN_SMASK | HFI1_BECN_SMASK));
if (!is_ecn)
goto next;
qpn = bth1 & RVT_QPN_MASK;
rcu_read_lock();
qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
if (!qp) {
rcu_read_unlock();
goto next;
}
process_ecn(qp, packet, true);
rcu_read_unlock();
/* turn off BECN, FECN */
bth1 &= ~(HFI1_FECN_SMASK | HFI1_BECN_SMASK);
packet->ohdr->bth[1] = cpu_to_be32(bth1);
next:
update_ps_mdata(&mdata, rcd);
}
}
static inline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
{
int ret = RCV_PKT_OK;
/* Set up for the next packet */
packet->rhqoff += packet->rsize;
if (packet->rhqoff >= packet->maxcnt)
packet->rhqoff = 0;
packet->numpkt++;
if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) {
if (thread) {
cond_resched();
} else {
ret = RCV_PKT_LIMIT;
this_cpu_inc(*packet->rcd->dd->rcv_limit);
}
}
packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
packet->rcd->dd->rhf_offset;
packet->rhf = rhf_to_cpu(packet->rhf_addr);
return ret;
}
static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
{
int ret = RCV_PKT_OK;
packet->hdr = hfi1_get_msgheader(packet->rcd->dd,
packet->rhf_addr);
packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
packet->etype = rhf_rcv_type(packet->rhf);
/* total length */
packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
/* retrieve eager buffer details */
packet->ebuf = NULL;
if (rhf_use_egr_bfr(packet->rhf)) {
packet->etail = rhf_egr_index(packet->rhf);
packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
&packet->updegr);
/*
* Prefetch the contents of the eager buffer. It is
* OK to send a negative length to prefetch_range().
* The +2 is the size of the RHF.
*/
prefetch_range(packet->ebuf,
packet->tlen - ((packet->rcd->rcvhdrqentsize -
(rhf_hdrq_offset(packet->rhf)
+ 2)) * 4));
}
/*
* Call a type specific handler for the packet. We
* should be able to trust that etype won't be beyond
* the range of valid indexes. If so something is really
* wrong and we can probably just let things come
* crashing down. There is no need to eat another
* comparison in this performance critical code.
*/
packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
packet->numpkt++;
/* Set up for the next packet */
packet->rhqoff += packet->rsize;
if (packet->rhqoff >= packet->maxcnt)
packet->rhqoff = 0;
if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) {
if (thread) {
cond_resched();
} else {
ret = RCV_PKT_LIMIT;
this_cpu_inc(*packet->rcd->dd->rcv_limit);
}
}
packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
packet->rcd->dd->rhf_offset;
packet->rhf = rhf_to_cpu(packet->rhf_addr);
return ret;
}
static inline void process_rcv_update(int last, struct hfi1_packet *packet)
{
/*
* Update head regs etc., every 16 packets, if not last pkt,
* to help prevent rcvhdrq overflows, when many packets
* are processed and queue is nearly full.
* Don't request an interrupt for intermediate updates.
*/
if (!last && !(packet->numpkt & 0xf)) {
update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
packet->etail, 0, 0);
packet->updegr = 0;
}
packet->rcv_flags = 0;
}
static inline void finish_packet(struct hfi1_packet *packet)
{
/*
* Nothing we need to free for the packet.
*
* The only thing we need to do is a final update and call for an
* interrupt
*/
update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
packet->etail, rcv_intr_dynamic, packet->numpkt);
}
static inline void process_rcv_qp_work(struct hfi1_packet *packet)
{
struct hfi1_ctxtdata *rcd;
struct rvt_qp *qp, *nqp;
rcd = packet->rcd;
rcd->head = packet->rhqoff;
/*
* Iterate over all QPs waiting to respond.
* The list won't change since the IRQ is only run on one CPU.
*/
list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
list_del_init(&qp->rspwait);
if (qp->r_flags & RVT_R_RSP_NAK) {
qp->r_flags &= ~RVT_R_RSP_NAK;
hfi1_send_rc_ack(rcd, qp, 0);
}
if (qp->r_flags & RVT_R_RSP_SEND) {
unsigned long flags;
qp->r_flags &= ~RVT_R_RSP_SEND;
spin_lock_irqsave(&qp->s_lock, flags);
if (ib_rvt_state_ops[qp->state] &
RVT_PROCESS_OR_FLUSH_SEND)
hfi1_schedule_send(qp);
spin_unlock_irqrestore(&qp->s_lock, flags);
}
rvt_put_qp(qp);
}
}
/*
* Handle receive interrupts when using the no dma rtail option.
*/
int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
{
u32 seq;
int last = RCV_PKT_OK;
struct hfi1_packet packet;
init_packet(rcd, &packet);
seq = rhf_rcv_seq(packet.rhf);
if (seq != rcd->seq_cnt) {
last = RCV_PKT_DONE;
goto bail;
}
prescan_rxq(rcd, &packet);
while (last == RCV_PKT_OK) {
last = process_rcv_packet(&packet, thread);
seq = rhf_rcv_seq(packet.rhf);
if (++rcd->seq_cnt > 13)
rcd->seq_cnt = 1;
if (seq != rcd->seq_cnt)
last = RCV_PKT_DONE;
process_rcv_update(last, &packet);
}
process_rcv_qp_work(&packet);
bail:
finish_packet(&packet);
return last;
}
int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
{
u32 hdrqtail;
int last = RCV_PKT_OK;
struct hfi1_packet packet;
init_packet(rcd, &packet);
hdrqtail = get_rcvhdrtail(rcd);
if (packet.rhqoff == hdrqtail) {
last = RCV_PKT_DONE;
goto bail;
}
smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
prescan_rxq(rcd, &packet);
while (last == RCV_PKT_OK) {
last = process_rcv_packet(&packet, thread);
if (packet.rhqoff == hdrqtail)
last = RCV_PKT_DONE;
process_rcv_update(last, &packet);
}
process_rcv_qp_work(&packet);
bail:
finish_packet(&packet);
return last;
}
static inline void set_all_nodma_rtail(struct hfi1_devdata *dd)
{
int i;
for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++)
dd->rcd[i]->do_interrupt =
&handle_receive_interrupt_nodma_rtail;
}
static inline void set_all_dma_rtail(struct hfi1_devdata *dd)
{
int i;
for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++)
dd->rcd[i]->do_interrupt =
&handle_receive_interrupt_dma_rtail;
}
void set_all_slowpath(struct hfi1_devdata *dd)
{
int i;
/* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++)
dd->rcd[i]->do_interrupt = &handle_receive_interrupt;
}
static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
struct hfi1_packet *packet,
struct hfi1_devdata *dd)
{
struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd,
packet->rhf_addr);
u8 etype = rhf_rcv_type(packet->rhf);
if (etype == RHF_RCV_TYPE_IB && hdr2sc(hdr, packet->rhf) != 0xf) {
int hwstate = read_logical_state(dd);
if (hwstate != LSTATE_ACTIVE) {
dd_dev_info(dd, "Unexpected link state %d\n", hwstate);
return 0;
}
queue_work(rcd->ppd->hfi1_wq, lsaw);
return 1;
}
return 0;
}
/*
* handle_receive_interrupt - receive a packet
* @rcd: the context
*
* Called from interrupt handler for errors or receive interrupt.
* This is the slow path interrupt handler.
*/
int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
{
struct hfi1_devdata *dd = rcd->dd;
u32 hdrqtail;
int needset, last = RCV_PKT_OK;
struct hfi1_packet packet;
int skip_pkt = 0;
/* Control context will always use the slow path interrupt handler */
needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
init_packet(rcd, &packet);
if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
u32 seq = rhf_rcv_seq(packet.rhf);
if (seq != rcd->seq_cnt) {
last = RCV_PKT_DONE;
goto bail;
}
hdrqtail = 0;
} else {
hdrqtail = get_rcvhdrtail(rcd);
if (packet.rhqoff == hdrqtail) {
last = RCV_PKT_DONE;
goto bail;
}
smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
/*
* Control context can potentially receive an invalid
* rhf. Drop such packets.
*/
if (rcd->ctxt == HFI1_CTRL_CTXT) {
u32 seq = rhf_rcv_seq(packet.rhf);
if (seq != rcd->seq_cnt)
skip_pkt = 1;
}
}
prescan_rxq(rcd, &packet);
while (last == RCV_PKT_OK) {
if (unlikely(dd->do_drop &&
atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
DROP_PACKET_ON)) {
dd->do_drop = 0;
/* On to the next packet */
packet.rhqoff += packet.rsize;
packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
packet.rhqoff +
dd->rhf_offset;
packet.rhf = rhf_to_cpu(packet.rhf_addr);
} else if (skip_pkt) {
last = skip_rcv_packet(&packet, thread);
skip_pkt = 0;
} else {
/* Auto activate link on non-SC15 packet receive */
if (unlikely(rcd->ppd->host_link_state ==
HLS_UP_ARMED) &&
set_armed_to_active(rcd, &packet, dd))
goto bail;
last = process_rcv_packet(&packet, thread);
}
if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
u32 seq = rhf_rcv_seq(packet.rhf);
if (++rcd->seq_cnt > 13)
rcd->seq_cnt = 1;
if (seq != rcd->seq_cnt)
last = RCV_PKT_DONE;
if (needset) {
dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
set_all_nodma_rtail(dd);
needset = 0;
}
} else {
if (packet.rhqoff == hdrqtail)
last = RCV_PKT_DONE;
/*
* Control context can potentially receive an invalid
* rhf. Drop such packets.
*/
if (rcd->ctxt == HFI1_CTRL_CTXT) {
u32 seq = rhf_rcv_seq(packet.rhf);
if (++rcd->seq_cnt > 13)
rcd->seq_cnt = 1;
if (!last && (seq != rcd->seq_cnt))
skip_pkt = 1;
}
if (needset) {
dd_dev_info(dd,
"Switching to DMA_RTAIL\n");
set_all_dma_rtail(dd);
needset = 0;
}
}
process_rcv_update(last, &packet);
}
process_rcv_qp_work(&packet);
bail:
/*
* Always write head at end, and setup rcv interrupt, even
* if no packets were processed.
*/
finish_packet(&packet);
return last;
}
/*
* We may discover in the interrupt that the hardware link state has
* changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
* and we need to update the driver's notion of the link state. We cannot
* run set_link_state from interrupt context, so we queue this function on
* a workqueue.
*
* We delay the regular interrupt processing until after the state changes
* so that the link will be in the correct state by the time any application
* we wake up attempts to send a reply to any message it received.
* (Subsequent receive interrupts may possibly force the wakeup before we
* update the link state.)
*
* The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
* dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
* so we're safe from use-after-free of the rcd.
*/
void receive_interrupt_work(struct work_struct *work)
{
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
linkstate_active_work);
struct hfi1_devdata *dd = ppd->dd;
int i;
/* Received non-SC15 packet implies neighbor_normal */
ppd->neighbor_normal = 1;
set_link_state(ppd, HLS_UP_ACTIVE);
/*
* Interrupt all kernel contexts that could have had an
* interrupt during auto activation.
*/
for (i = HFI1_CTRL_CTXT; i < dd->first_user_ctxt; i++)
force_recv_intr(dd->rcd[i]);
}
/*
* Convert a given MTU size to the on-wire MAD packet enumeration.
* Return -1 if the size is invalid.
*/
int mtu_to_enum(u32 mtu, int default_if_bad)
{
switch (mtu) {
case 0: return OPA_MTU_0;
case 256: return OPA_MTU_256;
case 512: return OPA_MTU_512;
case 1024: return OPA_MTU_1024;
case 2048: return OPA_MTU_2048;
case 4096: return OPA_MTU_4096;
case 8192: return OPA_MTU_8192;
case 10240: return OPA_MTU_10240;
}
return default_if_bad;
}
u16 enum_to_mtu(int mtu)
{
switch (mtu) {
case OPA_MTU_0: return 0;
case OPA_MTU_256: return 256;
case OPA_MTU_512: return 512;
case OPA_MTU_1024: return 1024;
case OPA_MTU_2048: return 2048;
case OPA_MTU_4096: return 4096;
case OPA_MTU_8192: return 8192;
case OPA_MTU_10240: return 10240;
default: return 0xffff;
}
}
/*
* set_mtu - set the MTU
* @ppd: the per port data
*
* We can handle "any" incoming size, the issue here is whether we
* need to restrict our outgoing size. We do not deal with what happens
* to programs that are already running when the size changes.
*/
int set_mtu(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
int i, drain, ret = 0, is_up = 0;
ppd->ibmtu = 0;
for (i = 0; i < ppd->vls_supported; i++)
if (ppd->ibmtu < dd->vld[i].mtu)
ppd->ibmtu = dd->vld[i].mtu;
ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
mutex_lock(&ppd->hls_lock);
if (ppd->host_link_state == HLS_UP_INIT ||
ppd->host_link_state == HLS_UP_ARMED ||
ppd->host_link_state == HLS_UP_ACTIVE)
is_up = 1;
drain = !is_ax(dd) && is_up;
if (drain)
/*
* MTU is specified per-VL. To ensure that no packet gets
* stuck (due, e.g., to the MTU for the packet's VL being
* reduced), empty the per-VL FIFOs before adjusting MTU.
*/
ret = stop_drain_data_vls(dd);
if (ret) {
dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
__func__);
goto err;
}
hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
if (drain)
open_fill_data_vls(dd); /* reopen all VLs */
err:
mutex_unlock(&ppd->hls_lock);
return ret;
}
int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
{
struct hfi1_devdata *dd = ppd->dd;
ppd->lid = lid;
ppd->lmc = lmc;
hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
return 0;
}
void shutdown_led_override(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
/*
* This pairs with the memory barrier in hfi1_start_led_override to
* ensure that we read the correct state of LED beaconing represented
* by led_override_timer_active
*/
smp_rmb();
if (atomic_read(&ppd->led_override_timer_active)) {
del_timer_sync(&ppd->led_override_timer);
atomic_set(&ppd->led_override_timer_active, 0);
/* Ensure the atomic_set is visible to all CPUs */
smp_wmb();
}
/* Hand control of the LED to the DC for normal operation */
write_csr(dd, DCC_CFG_LED_CNTRL, 0);
}
static void run_led_override(unsigned long opaque)
{
struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque;
struct hfi1_devdata *dd = ppd->dd;
unsigned long timeout;
int phase_idx;
if (!(dd->flags & HFI1_INITTED))
return;
phase_idx = ppd->led_override_phase & 1;
setextled(dd, phase_idx);
timeout = ppd->led_override_vals[phase_idx];
/* Set up for next phase */
ppd->led_override_phase = !ppd->led_override_phase;
mod_timer(&ppd->led_override_timer, jiffies + timeout);
}
/*
* To have the LED blink in a particular pattern, provide timeon and timeoff
* in milliseconds.
* To turn off custom blinking and return to normal operation, use
* shutdown_led_override()
*/
void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
unsigned int timeoff)
{
if (!(ppd->dd->flags & HFI1_INITTED))
return;
/* Convert to jiffies for direct use in timer */
ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
/* Arbitrarily start from LED on phase */
ppd->led_override_phase = 1;
/*
* If the timer has not already been started, do so. Use a "quick"
* timeout so the handler will be called soon to look at our request.
*/
if (!timer_pending(&ppd->led_override_timer)) {
setup_timer(&ppd->led_override_timer, run_led_override,
(unsigned long)ppd);
ppd->led_override_timer.expires = jiffies + 1;
add_timer(&ppd->led_override_timer);
atomic_set(&ppd->led_override_timer_active, 1);
/* Ensure the atomic_set is visible to all CPUs */
smp_wmb();
}
}
/**
* hfi1_reset_device - reset the chip if possible
* @unit: the device to reset
*
* Whether or not reset is successful, we attempt to re-initialize the chip
* (that is, much like a driver unload/reload). We clear the INITTED flag
* so that the various entry points will fail until we reinitialize. For
* now, we only allow this if no user contexts are open that use chip resources
*/
int hfi1_reset_device(int unit)
{
int ret, i;
struct hfi1_devdata *dd = hfi1_lookup(unit);
struct hfi1_pportdata *ppd;
unsigned long flags;
int pidx;
if (!dd) {
ret = -ENODEV;
goto bail;
}
dd_dev_info(dd, "Reset on unit %u requested\n", unit);
if (!dd->kregbase || !(dd->flags & HFI1_PRESENT)) {
dd_dev_info(dd,
"Invalid unit number %u or not initialized or not present\n",
unit);
ret = -ENXIO;
goto bail;
}
spin_lock_irqsave(&dd->uctxt_lock, flags);
if (dd->rcd)
for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
if (!dd->rcd[i] || !dd->rcd[i]->cnt)
continue;
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
ret = -EBUSY;
goto bail;
}
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
for (pidx = 0; pidx < dd->num_pports; ++pidx) {
ppd = dd->pport + pidx;
shutdown_led_override(ppd);
}
if (dd->flags & HFI1_HAS_SEND_DMA)
sdma_exit(dd);
hfi1_reset_cpu_counters(dd);
ret = hfi1_init(dd, 1);
if (ret)
dd_dev_err(dd,
"Reinitialize unit %u after reset failed with %d\n",
unit, ret);
else
dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
unit);
bail:
return ret;
}
void handle_eflags(struct hfi1_packet *packet)
{
struct hfi1_ctxtdata *rcd = packet->rcd;
u32 rte = rhf_rcv_type_err(packet->rhf);
rcv_hdrerr(rcd, rcd->ppd, packet);
if (rhf_err_flags(packet->rhf))
dd_dev_err(rcd->dd,
"receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
rcd->ctxt, packet->rhf,
packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
packet->rhf & RHF_DC_ERR ? "dc " : "",
packet->rhf & RHF_TID_ERR ? "tid " : "",
packet->rhf & RHF_LEN_ERR ? "len " : "",
packet->rhf & RHF_ECC_ERR ? "ecc " : "",
packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
rte);
}
/*
* The following functions are called by the interrupt handler. They are type
* specific handlers for each packet type.
*/
int process_receive_ib(struct hfi1_packet *packet)
{
trace_hfi1_rcvhdr(packet->rcd->ppd->dd,
packet->rcd->ctxt,
rhf_err_flags(packet->rhf),
RHF_RCV_TYPE_IB,
packet->hlen,
packet->tlen,
packet->updegr,
rhf_egr_index(packet->rhf));
if (unlikely(rhf_err_flags(packet->rhf))) {
handle_eflags(packet);
return RHF_RCV_CONTINUE;
}
hfi1_ib_rcv(packet);
return RHF_RCV_CONTINUE;
}
int process_receive_bypass(struct hfi1_packet *packet)
{
struct hfi1_devdata *dd = packet->rcd->dd;
if (unlikely(rhf_err_flags(packet->rhf)))
handle_eflags(packet);
dd_dev_err(dd,
"Bypass packets are not supported in normal operation. Dropping\n");
incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
if (!(dd->err_info_rcvport.status_and_code & OPA_EI_STATUS_SMASK)) {
u64 *flits = packet->ebuf;
if (flits && !(packet->rhf & RHF_LEN_ERR)) {
dd->err_info_rcvport.packet_flit1 = flits[0];
dd->err_info_rcvport.packet_flit2 =
packet->tlen > sizeof(flits[0]) ? flits[1] : 0;
}
dd->err_info_rcvport.status_and_code |=
(OPA_EI_STATUS_SMASK | BAD_L2_ERR);
}
return RHF_RCV_CONTINUE;
}
int process_receive_error(struct hfi1_packet *packet)
{
handle_eflags(packet);
if (unlikely(rhf_err_flags(packet->rhf)))
dd_dev_err(packet->rcd->dd,
"Unhandled error packet received. Dropping.\n");
return RHF_RCV_CONTINUE;
}
int kdeth_process_expected(struct hfi1_packet *packet)
{
if (unlikely(rhf_err_flags(packet->rhf)))
handle_eflags(packet);
dd_dev_err(packet->rcd->dd,
"Unhandled expected packet received. Dropping.\n");
return RHF_RCV_CONTINUE;
}
int kdeth_process_eager(struct hfi1_packet *packet)
{
if (unlikely(rhf_err_flags(packet->rhf)))
handle_eflags(packet);
dd_dev_err(packet->rcd->dd,
"Unhandled eager packet received. Dropping.\n");
return RHF_RCV_CONTINUE;
}
int process_receive_invalid(struct hfi1_packet *packet)
{
dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
rhf_rcv_type(packet->rhf));
return RHF_RCV_CONTINUE;
}