0d00449c7a
A few exceptions (like #DB and #BP) can happen at any location in the code, this then means that tracers should treat events from these exceptions as NMI-like. The interrupted context could be holding locks with interrupts disabled for instance. Similarly, #MC is an actual NMI-like exception. All of them use ist_enter() which only concerns itself with RCU, but does not do any of the other setup that NMIs need. This means things like: printk() raw_spin_lock_irq(&logbuf_lock); <#DB/#BP/#MC> printk() raw_spin_lock_irq(&logbuf_lock); are entirely possible (well, not really since printk tries hard to play nice, but the concept stands). So replace ist_enter() with nmi_enter(). Also observe that any nmi_enter() caller must be both notrace and NOKPROBE, or in the noinstr text section. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Link: https://lkml.kernel.org/r/20200505134101.525508608@linutronix.de
912 lines
26 KiB
C
912 lines
26 KiB
C
/*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
*/
|
|
|
|
/*
|
|
* Handle hardware traps and faults.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/kgdb.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/uprobes.h>
|
|
#include <linux/string.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/io.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/atomic.h>
|
|
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/text-patching.h>
|
|
#include <asm/ftrace.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/cpu_entry_area.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/mach_traps.h>
|
|
#include <asm/alternative.h>
|
|
#include <asm/fpu/xstate.h>
|
|
#include <asm/vm86.h>
|
|
#include <asm/umip.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/insn-eval.h>
|
|
|
|
#ifdef CONFIG_X86_64
|
|
#include <asm/x86_init.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/proto.h>
|
|
#else
|
|
#include <asm/processor-flags.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/proto.h>
|
|
#endif
|
|
|
|
DECLARE_BITMAP(system_vectors, NR_VECTORS);
|
|
|
|
static inline void cond_local_irq_enable(struct pt_regs *regs)
|
|
{
|
|
if (regs->flags & X86_EFLAGS_IF)
|
|
local_irq_enable();
|
|
}
|
|
|
|
static inline void cond_local_irq_disable(struct pt_regs *regs)
|
|
{
|
|
if (regs->flags & X86_EFLAGS_IF)
|
|
local_irq_disable();
|
|
}
|
|
|
|
int is_valid_bugaddr(unsigned long addr)
|
|
{
|
|
unsigned short ud;
|
|
|
|
if (addr < TASK_SIZE_MAX)
|
|
return 0;
|
|
|
|
if (probe_kernel_address((unsigned short *)addr, ud))
|
|
return 0;
|
|
|
|
return ud == INSN_UD0 || ud == INSN_UD2;
|
|
}
|
|
|
|
int fixup_bug(struct pt_regs *regs, int trapnr)
|
|
{
|
|
if (trapnr != X86_TRAP_UD)
|
|
return 0;
|
|
|
|
switch (report_bug(regs->ip, regs)) {
|
|
case BUG_TRAP_TYPE_NONE:
|
|
case BUG_TRAP_TYPE_BUG:
|
|
break;
|
|
|
|
case BUG_TRAP_TYPE_WARN:
|
|
regs->ip += LEN_UD2;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static nokprobe_inline int
|
|
do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
|
|
struct pt_regs *regs, long error_code)
|
|
{
|
|
if (v8086_mode(regs)) {
|
|
/*
|
|
* Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
|
|
* On nmi (interrupt 2), do_trap should not be called.
|
|
*/
|
|
if (trapnr < X86_TRAP_UD) {
|
|
if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
|
|
error_code, trapnr))
|
|
return 0;
|
|
}
|
|
} else if (!user_mode(regs)) {
|
|
if (fixup_exception(regs, trapnr, error_code, 0))
|
|
return 0;
|
|
|
|
tsk->thread.error_code = error_code;
|
|
tsk->thread.trap_nr = trapnr;
|
|
die(str, regs, error_code);
|
|
}
|
|
|
|
/*
|
|
* We want error_code and trap_nr set for userspace faults and
|
|
* kernelspace faults which result in die(), but not
|
|
* kernelspace faults which are fixed up. die() gives the
|
|
* process no chance to handle the signal and notice the
|
|
* kernel fault information, so that won't result in polluting
|
|
* the information about previously queued, but not yet
|
|
* delivered, faults. See also do_general_protection below.
|
|
*/
|
|
tsk->thread.error_code = error_code;
|
|
tsk->thread.trap_nr = trapnr;
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void show_signal(struct task_struct *tsk, int signr,
|
|
const char *type, const char *desc,
|
|
struct pt_regs *regs, long error_code)
|
|
{
|
|
if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
|
|
printk_ratelimit()) {
|
|
pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
|
|
tsk->comm, task_pid_nr(tsk), type, desc,
|
|
regs->ip, regs->sp, error_code);
|
|
print_vma_addr(KERN_CONT " in ", regs->ip);
|
|
pr_cont("\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
|
|
long error_code, int sicode, void __user *addr)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
|
|
if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
|
|
return;
|
|
|
|
show_signal(tsk, signr, "trap ", str, regs, error_code);
|
|
|
|
if (!sicode)
|
|
force_sig(signr);
|
|
else
|
|
force_sig_fault(signr, sicode, addr);
|
|
}
|
|
NOKPROBE_SYMBOL(do_trap);
|
|
|
|
static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
|
|
unsigned long trapnr, int signr, int sicode, void __user *addr)
|
|
{
|
|
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
|
|
|
|
/*
|
|
* WARN*()s end up here; fix them up before we call the
|
|
* notifier chain.
|
|
*/
|
|
if (!user_mode(regs) && fixup_bug(regs, trapnr))
|
|
return;
|
|
|
|
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
|
|
NOTIFY_STOP) {
|
|
cond_local_irq_enable(regs);
|
|
do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
|
|
}
|
|
}
|
|
|
|
#define IP ((void __user *)uprobe_get_trap_addr(regs))
|
|
#define DO_ERROR(trapnr, signr, sicode, addr, str, name) \
|
|
dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
|
|
{ \
|
|
do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
|
|
}
|
|
|
|
DO_ERROR(X86_TRAP_DE, SIGFPE, FPE_INTDIV, IP, "divide error", divide_error)
|
|
DO_ERROR(X86_TRAP_OF, SIGSEGV, 0, NULL, "overflow", overflow)
|
|
DO_ERROR(X86_TRAP_UD, SIGILL, ILL_ILLOPN, IP, "invalid opcode", invalid_op)
|
|
DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, 0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
|
|
DO_ERROR(X86_TRAP_TS, SIGSEGV, 0, NULL, "invalid TSS", invalid_TSS)
|
|
DO_ERROR(X86_TRAP_NP, SIGBUS, 0, NULL, "segment not present", segment_not_present)
|
|
DO_ERROR(X86_TRAP_SS, SIGBUS, 0, NULL, "stack segment", stack_segment)
|
|
#undef IP
|
|
|
|
dotraplinkage void do_alignment_check(struct pt_regs *regs, long error_code)
|
|
{
|
|
char *str = "alignment check";
|
|
|
|
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
|
|
|
|
if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (!user_mode(regs))
|
|
die("Split lock detected\n", regs, error_code);
|
|
|
|
local_irq_enable();
|
|
|
|
if (handle_user_split_lock(regs, error_code))
|
|
return;
|
|
|
|
do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
|
|
error_code, BUS_ADRALN, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_VMAP_STACK
|
|
__visible void __noreturn handle_stack_overflow(const char *message,
|
|
struct pt_regs *regs,
|
|
unsigned long fault_address)
|
|
{
|
|
printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
|
|
(void *)fault_address, current->stack,
|
|
(char *)current->stack + THREAD_SIZE - 1);
|
|
die(message, regs, 0);
|
|
|
|
/* Be absolutely certain we don't return. */
|
|
panic("%s", message);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_X86_64) || defined(CONFIG_DOUBLEFAULT)
|
|
/*
|
|
* Runs on an IST stack for x86_64 and on a special task stack for x86_32.
|
|
*
|
|
* On x86_64, this is more or less a normal kernel entry. Notwithstanding the
|
|
* SDM's warnings about double faults being unrecoverable, returning works as
|
|
* expected. Presumably what the SDM actually means is that the CPU may get
|
|
* the register state wrong on entry, so returning could be a bad idea.
|
|
*
|
|
* Various CPU engineers have promised that double faults due to an IRET fault
|
|
* while the stack is read-only are, in fact, recoverable.
|
|
*
|
|
* On x86_32, this is entered through a task gate, and regs are synthesized
|
|
* from the TSS. Returning is, in principle, okay, but changes to regs will
|
|
* be lost. If, for some reason, we need to return to a context with modified
|
|
* regs, the shim code could be adjusted to synchronize the registers.
|
|
*/
|
|
dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2)
|
|
{
|
|
static const char str[] = "double fault";
|
|
struct task_struct *tsk = current;
|
|
|
|
#ifdef CONFIG_X86_ESPFIX64
|
|
extern unsigned char native_irq_return_iret[];
|
|
|
|
/*
|
|
* If IRET takes a non-IST fault on the espfix64 stack, then we
|
|
* end up promoting it to a doublefault. In that case, take
|
|
* advantage of the fact that we're not using the normal (TSS.sp0)
|
|
* stack right now. We can write a fake #GP(0) frame at TSS.sp0
|
|
* and then modify our own IRET frame so that, when we return,
|
|
* we land directly at the #GP(0) vector with the stack already
|
|
* set up according to its expectations.
|
|
*
|
|
* The net result is that our #GP handler will think that we
|
|
* entered from usermode with the bad user context.
|
|
*
|
|
* No need for nmi_enter() here because we don't use RCU.
|
|
*/
|
|
if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
|
|
regs->cs == __KERNEL_CS &&
|
|
regs->ip == (unsigned long)native_irq_return_iret)
|
|
{
|
|
struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
|
|
|
|
/*
|
|
* regs->sp points to the failing IRET frame on the
|
|
* ESPFIX64 stack. Copy it to the entry stack. This fills
|
|
* in gpregs->ss through gpregs->ip.
|
|
*
|
|
*/
|
|
memmove(&gpregs->ip, (void *)regs->sp, 5*8);
|
|
gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
|
|
|
|
/*
|
|
* Adjust our frame so that we return straight to the #GP
|
|
* vector with the expected RSP value. This is safe because
|
|
* we won't enable interupts or schedule before we invoke
|
|
* general_protection, so nothing will clobber the stack
|
|
* frame we just set up.
|
|
*
|
|
* We will enter general_protection with kernel GSBASE,
|
|
* which is what the stub expects, given that the faulting
|
|
* RIP will be the IRET instruction.
|
|
*/
|
|
regs->ip = (unsigned long)general_protection;
|
|
regs->sp = (unsigned long)&gpregs->orig_ax;
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
nmi_enter();
|
|
notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
|
|
|
|
tsk->thread.error_code = error_code;
|
|
tsk->thread.trap_nr = X86_TRAP_DF;
|
|
|
|
#ifdef CONFIG_VMAP_STACK
|
|
/*
|
|
* If we overflow the stack into a guard page, the CPU will fail
|
|
* to deliver #PF and will send #DF instead. Similarly, if we
|
|
* take any non-IST exception while too close to the bottom of
|
|
* the stack, the processor will get a page fault while
|
|
* delivering the exception and will generate a double fault.
|
|
*
|
|
* According to the SDM (footnote in 6.15 under "Interrupt 14 -
|
|
* Page-Fault Exception (#PF):
|
|
*
|
|
* Processors update CR2 whenever a page fault is detected. If a
|
|
* second page fault occurs while an earlier page fault is being
|
|
* delivered, the faulting linear address of the second fault will
|
|
* overwrite the contents of CR2 (replacing the previous
|
|
* address). These updates to CR2 occur even if the page fault
|
|
* results in a double fault or occurs during the delivery of a
|
|
* double fault.
|
|
*
|
|
* The logic below has a small possibility of incorrectly diagnosing
|
|
* some errors as stack overflows. For example, if the IDT or GDT
|
|
* gets corrupted such that #GP delivery fails due to a bad descriptor
|
|
* causing #GP and we hit this condition while CR2 coincidentally
|
|
* points to the stack guard page, we'll think we overflowed the
|
|
* stack. Given that we're going to panic one way or another
|
|
* if this happens, this isn't necessarily worth fixing.
|
|
*
|
|
* If necessary, we could improve the test by only diagnosing
|
|
* a stack overflow if the saved RSP points within 47 bytes of
|
|
* the bottom of the stack: if RSP == tsk_stack + 48 and we
|
|
* take an exception, the stack is already aligned and there
|
|
* will be enough room SS, RSP, RFLAGS, CS, RIP, and a
|
|
* possible error code, so a stack overflow would *not* double
|
|
* fault. With any less space left, exception delivery could
|
|
* fail, and, as a practical matter, we've overflowed the
|
|
* stack even if the actual trigger for the double fault was
|
|
* something else.
|
|
*/
|
|
if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
|
|
handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
|
|
#endif
|
|
|
|
pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
|
|
die("double fault", regs, error_code);
|
|
panic("Machine halted.");
|
|
}
|
|
#endif
|
|
|
|
dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
|
|
{
|
|
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
|
|
if (notify_die(DIE_TRAP, "bounds", regs, error_code,
|
|
X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
|
|
return;
|
|
cond_local_irq_enable(regs);
|
|
|
|
if (!user_mode(regs))
|
|
die("bounds", regs, error_code);
|
|
|
|
do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
|
|
}
|
|
|
|
enum kernel_gp_hint {
|
|
GP_NO_HINT,
|
|
GP_NON_CANONICAL,
|
|
GP_CANONICAL
|
|
};
|
|
|
|
/*
|
|
* When an uncaught #GP occurs, try to determine the memory address accessed by
|
|
* the instruction and return that address to the caller. Also, try to figure
|
|
* out whether any part of the access to that address was non-canonical.
|
|
*/
|
|
static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
|
|
unsigned long *addr)
|
|
{
|
|
u8 insn_buf[MAX_INSN_SIZE];
|
|
struct insn insn;
|
|
|
|
if (probe_kernel_read(insn_buf, (void *)regs->ip, MAX_INSN_SIZE))
|
|
return GP_NO_HINT;
|
|
|
|
kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
|
|
insn_get_modrm(&insn);
|
|
insn_get_sib(&insn);
|
|
|
|
*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
|
|
if (*addr == -1UL)
|
|
return GP_NO_HINT;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Check that:
|
|
* - the operand is not in the kernel half
|
|
* - the last byte of the operand is not in the user canonical half
|
|
*/
|
|
if (*addr < ~__VIRTUAL_MASK &&
|
|
*addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
|
|
return GP_NON_CANONICAL;
|
|
#endif
|
|
|
|
return GP_CANONICAL;
|
|
}
|
|
|
|
#define GPFSTR "general protection fault"
|
|
|
|
dotraplinkage void do_general_protection(struct pt_regs *regs, long error_code)
|
|
{
|
|
char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
|
|
enum kernel_gp_hint hint = GP_NO_HINT;
|
|
struct task_struct *tsk;
|
|
unsigned long gp_addr;
|
|
int ret;
|
|
|
|
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
|
|
cond_local_irq_enable(regs);
|
|
|
|
if (static_cpu_has(X86_FEATURE_UMIP)) {
|
|
if (user_mode(regs) && fixup_umip_exception(regs))
|
|
return;
|
|
}
|
|
|
|
if (v8086_mode(regs)) {
|
|
local_irq_enable();
|
|
handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
|
|
return;
|
|
}
|
|
|
|
tsk = current;
|
|
|
|
if (user_mode(regs)) {
|
|
tsk->thread.error_code = error_code;
|
|
tsk->thread.trap_nr = X86_TRAP_GP;
|
|
|
|
show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
|
|
force_sig(SIGSEGV);
|
|
|
|
return;
|
|
}
|
|
|
|
if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
|
|
return;
|
|
|
|
tsk->thread.error_code = error_code;
|
|
tsk->thread.trap_nr = X86_TRAP_GP;
|
|
|
|
/*
|
|
* To be potentially processing a kprobe fault and to trust the result
|
|
* from kprobe_running(), we have to be non-preemptible.
|
|
*/
|
|
if (!preemptible() &&
|
|
kprobe_running() &&
|
|
kprobe_fault_handler(regs, X86_TRAP_GP))
|
|
return;
|
|
|
|
ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
|
|
if (ret == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (error_code)
|
|
snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
|
|
else
|
|
hint = get_kernel_gp_address(regs, &gp_addr);
|
|
|
|
if (hint != GP_NO_HINT)
|
|
snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
|
|
(hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
|
|
: "maybe for address",
|
|
gp_addr);
|
|
|
|
/*
|
|
* KASAN is interested only in the non-canonical case, clear it
|
|
* otherwise.
|
|
*/
|
|
if (hint != GP_NON_CANONICAL)
|
|
gp_addr = 0;
|
|
|
|
die_addr(desc, regs, error_code, gp_addr);
|
|
|
|
}
|
|
NOKPROBE_SYMBOL(do_general_protection);
|
|
|
|
dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
|
|
{
|
|
if (poke_int3_handler(regs))
|
|
return;
|
|
|
|
/*
|
|
* Unlike any other non-IST entry, we can be called from pretty much
|
|
* any location in the kernel through kprobes -- text_poke() will most
|
|
* likely be handled by poke_int3_handler() above. This means this
|
|
* handler is effectively NMI-like.
|
|
*/
|
|
if (!user_mode(regs))
|
|
nmi_enter();
|
|
|
|
#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
|
|
if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
|
|
SIGTRAP) == NOTIFY_STOP)
|
|
goto exit;
|
|
#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
|
|
|
|
#ifdef CONFIG_KPROBES
|
|
if (kprobe_int3_handler(regs))
|
|
goto exit;
|
|
#endif
|
|
|
|
if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
|
|
SIGTRAP) == NOTIFY_STOP)
|
|
goto exit;
|
|
|
|
cond_local_irq_enable(regs);
|
|
do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
|
|
cond_local_irq_disable(regs);
|
|
|
|
exit:
|
|
if (!user_mode(regs))
|
|
nmi_exit();
|
|
}
|
|
NOKPROBE_SYMBOL(do_int3);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Help handler running on a per-cpu (IST or entry trampoline) stack
|
|
* to switch to the normal thread stack if the interrupted code was in
|
|
* user mode. The actual stack switch is done in entry_64.S
|
|
*/
|
|
asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
|
|
{
|
|
struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
|
|
if (regs != eregs)
|
|
*regs = *eregs;
|
|
return regs;
|
|
}
|
|
NOKPROBE_SYMBOL(sync_regs);
|
|
|
|
struct bad_iret_stack {
|
|
void *error_entry_ret;
|
|
struct pt_regs regs;
|
|
};
|
|
|
|
asmlinkage __visible notrace
|
|
struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
|
|
{
|
|
/*
|
|
* This is called from entry_64.S early in handling a fault
|
|
* caused by a bad iret to user mode. To handle the fault
|
|
* correctly, we want to move our stack frame to where it would
|
|
* be had we entered directly on the entry stack (rather than
|
|
* just below the IRET frame) and we want to pretend that the
|
|
* exception came from the IRET target.
|
|
*/
|
|
struct bad_iret_stack *new_stack =
|
|
(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
|
|
|
|
/* Copy the IRET target to the new stack. */
|
|
memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
|
|
|
|
/* Copy the remainder of the stack from the current stack. */
|
|
memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
|
|
|
|
BUG_ON(!user_mode(&new_stack->regs));
|
|
return new_stack;
|
|
}
|
|
NOKPROBE_SYMBOL(fixup_bad_iret);
|
|
#endif
|
|
|
|
static bool is_sysenter_singlestep(struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* We don't try for precision here. If we're anywhere in the region of
|
|
* code that can be single-stepped in the SYSENTER entry path, then
|
|
* assume that this is a useless single-step trap due to SYSENTER
|
|
* being invoked with TF set. (We don't know in advance exactly
|
|
* which instructions will be hit because BTF could plausibly
|
|
* be set.)
|
|
*/
|
|
#ifdef CONFIG_X86_32
|
|
return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
|
|
(unsigned long)__end_SYSENTER_singlestep_region -
|
|
(unsigned long)__begin_SYSENTER_singlestep_region;
|
|
#elif defined(CONFIG_IA32_EMULATION)
|
|
return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
|
|
(unsigned long)__end_entry_SYSENTER_compat -
|
|
(unsigned long)entry_SYSENTER_compat;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Our handling of the processor debug registers is non-trivial.
|
|
* We do not clear them on entry and exit from the kernel. Therefore
|
|
* it is possible to get a watchpoint trap here from inside the kernel.
|
|
* However, the code in ./ptrace.c has ensured that the user can
|
|
* only set watchpoints on userspace addresses. Therefore the in-kernel
|
|
* watchpoint trap can only occur in code which is reading/writing
|
|
* from user space. Such code must not hold kernel locks (since it
|
|
* can equally take a page fault), therefore it is safe to call
|
|
* force_sig_info even though that claims and releases locks.
|
|
*
|
|
* Code in ./signal.c ensures that the debug control register
|
|
* is restored before we deliver any signal, and therefore that
|
|
* user code runs with the correct debug control register even though
|
|
* we clear it here.
|
|
*
|
|
* Being careful here means that we don't have to be as careful in a
|
|
* lot of more complicated places (task switching can be a bit lazy
|
|
* about restoring all the debug state, and ptrace doesn't have to
|
|
* find every occurrence of the TF bit that could be saved away even
|
|
* by user code)
|
|
*
|
|
* May run on IST stack.
|
|
*/
|
|
dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
int user_icebp = 0;
|
|
unsigned long dr6;
|
|
int si_code;
|
|
|
|
nmi_enter();
|
|
|
|
get_debugreg(dr6, 6);
|
|
/*
|
|
* The Intel SDM says:
|
|
*
|
|
* Certain debug exceptions may clear bits 0-3. The remaining
|
|
* contents of the DR6 register are never cleared by the
|
|
* processor. To avoid confusion in identifying debug
|
|
* exceptions, debug handlers should clear the register before
|
|
* returning to the interrupted task.
|
|
*
|
|
* Keep it simple: clear DR6 immediately.
|
|
*/
|
|
set_debugreg(0, 6);
|
|
|
|
/* Filter out all the reserved bits which are preset to 1 */
|
|
dr6 &= ~DR6_RESERVED;
|
|
|
|
/*
|
|
* The SDM says "The processor clears the BTF flag when it
|
|
* generates a debug exception." Clear TIF_BLOCKSTEP to keep
|
|
* TIF_BLOCKSTEP in sync with the hardware BTF flag.
|
|
*/
|
|
clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
|
|
|
|
if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
|
|
is_sysenter_singlestep(regs))) {
|
|
dr6 &= ~DR_STEP;
|
|
if (!dr6)
|
|
goto exit;
|
|
/*
|
|
* else we might have gotten a single-step trap and hit a
|
|
* watchpoint at the same time, in which case we should fall
|
|
* through and handle the watchpoint.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* If dr6 has no reason to give us about the origin of this trap,
|
|
* then it's very likely the result of an icebp/int01 trap.
|
|
* User wants a sigtrap for that.
|
|
*/
|
|
if (!dr6 && user_mode(regs))
|
|
user_icebp = 1;
|
|
|
|
/* Store the virtualized DR6 value */
|
|
tsk->thread.debugreg6 = dr6;
|
|
|
|
#ifdef CONFIG_KPROBES
|
|
if (kprobe_debug_handler(regs))
|
|
goto exit;
|
|
#endif
|
|
|
|
if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
|
|
SIGTRAP) == NOTIFY_STOP)
|
|
goto exit;
|
|
|
|
/*
|
|
* Let others (NMI) know that the debug stack is in use
|
|
* as we may switch to the interrupt stack.
|
|
*/
|
|
debug_stack_usage_inc();
|
|
|
|
/* It's safe to allow irq's after DR6 has been saved */
|
|
cond_local_irq_enable(regs);
|
|
|
|
if (v8086_mode(regs)) {
|
|
handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
|
|
X86_TRAP_DB);
|
|
cond_local_irq_disable(regs);
|
|
debug_stack_usage_dec();
|
|
goto exit;
|
|
}
|
|
|
|
if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
|
|
/*
|
|
* Historical junk that used to handle SYSENTER single-stepping.
|
|
* This should be unreachable now. If we survive for a while
|
|
* without anyone hitting this warning, we'll turn this into
|
|
* an oops.
|
|
*/
|
|
tsk->thread.debugreg6 &= ~DR_STEP;
|
|
set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
|
|
regs->flags &= ~X86_EFLAGS_TF;
|
|
}
|
|
si_code = get_si_code(tsk->thread.debugreg6);
|
|
if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
|
|
send_sigtrap(regs, error_code, si_code);
|
|
cond_local_irq_disable(regs);
|
|
debug_stack_usage_dec();
|
|
|
|
exit:
|
|
nmi_exit();
|
|
}
|
|
NOKPROBE_SYMBOL(do_debug);
|
|
|
|
/*
|
|
* Note that we play around with the 'TS' bit in an attempt to get
|
|
* the correct behaviour even in the presence of the asynchronous
|
|
* IRQ13 behaviour
|
|
*/
|
|
static void math_error(struct pt_regs *regs, int error_code, int trapnr)
|
|
{
|
|
struct task_struct *task = current;
|
|
struct fpu *fpu = &task->thread.fpu;
|
|
int si_code;
|
|
char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
|
|
"simd exception";
|
|
|
|
cond_local_irq_enable(regs);
|
|
|
|
if (!user_mode(regs)) {
|
|
if (fixup_exception(regs, trapnr, error_code, 0))
|
|
return;
|
|
|
|
task->thread.error_code = error_code;
|
|
task->thread.trap_nr = trapnr;
|
|
|
|
if (notify_die(DIE_TRAP, str, regs, error_code,
|
|
trapnr, SIGFPE) != NOTIFY_STOP)
|
|
die(str, regs, error_code);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Save the info for the exception handler and clear the error.
|
|
*/
|
|
fpu__save(fpu);
|
|
|
|
task->thread.trap_nr = trapnr;
|
|
task->thread.error_code = error_code;
|
|
|
|
si_code = fpu__exception_code(fpu, trapnr);
|
|
/* Retry when we get spurious exceptions: */
|
|
if (!si_code)
|
|
return;
|
|
|
|
force_sig_fault(SIGFPE, si_code,
|
|
(void __user *)uprobe_get_trap_addr(regs));
|
|
}
|
|
|
|
dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
|
|
{
|
|
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
|
|
math_error(regs, error_code, X86_TRAP_MF);
|
|
}
|
|
|
|
dotraplinkage void
|
|
do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
|
|
{
|
|
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
|
|
math_error(regs, error_code, X86_TRAP_XF);
|
|
}
|
|
|
|
dotraplinkage void
|
|
do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
|
|
{
|
|
/*
|
|
* This addresses a Pentium Pro Erratum:
|
|
*
|
|
* PROBLEM: If the APIC subsystem is configured in mixed mode with
|
|
* Virtual Wire mode implemented through the local APIC, an
|
|
* interrupt vector of 0Fh (Intel reserved encoding) may be
|
|
* generated by the local APIC (Int 15). This vector may be
|
|
* generated upon receipt of a spurious interrupt (an interrupt
|
|
* which is removed before the system receives the INTA sequence)
|
|
* instead of the programmed 8259 spurious interrupt vector.
|
|
*
|
|
* IMPLICATION: The spurious interrupt vector programmed in the
|
|
* 8259 is normally handled by an operating system's spurious
|
|
* interrupt handler. However, a vector of 0Fh is unknown to some
|
|
* operating systems, which would crash if this erratum occurred.
|
|
*
|
|
* In theory this could be limited to 32bit, but the handler is not
|
|
* hurting and who knows which other CPUs suffer from this.
|
|
*/
|
|
}
|
|
|
|
dotraplinkage void
|
|
do_device_not_available(struct pt_regs *regs, long error_code)
|
|
{
|
|
unsigned long cr0 = read_cr0();
|
|
|
|
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
|
|
|
|
#ifdef CONFIG_MATH_EMULATION
|
|
if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
|
|
struct math_emu_info info = { };
|
|
|
|
cond_local_irq_enable(regs);
|
|
|
|
info.regs = regs;
|
|
math_emulate(&info);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* This should not happen. */
|
|
if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
|
|
/* Try to fix it up and carry on. */
|
|
write_cr0(cr0 & ~X86_CR0_TS);
|
|
} else {
|
|
/*
|
|
* Something terrible happened, and we're better off trying
|
|
* to kill the task than getting stuck in a never-ending
|
|
* loop of #NM faults.
|
|
*/
|
|
die("unexpected #NM exception", regs, error_code);
|
|
}
|
|
}
|
|
NOKPROBE_SYMBOL(do_device_not_available);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
|
|
{
|
|
RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
|
|
local_irq_enable();
|
|
|
|
if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
|
|
X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
|
|
do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
|
|
ILL_BADSTK, (void __user *)NULL);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void __init trap_init(void)
|
|
{
|
|
/* Init cpu_entry_area before IST entries are set up */
|
|
setup_cpu_entry_areas();
|
|
|
|
idt_setup_traps();
|
|
|
|
/*
|
|
* Set the IDT descriptor to a fixed read-only location, so that the
|
|
* "sidt" instruction will not leak the location of the kernel, and
|
|
* to defend the IDT against arbitrary memory write vulnerabilities.
|
|
* It will be reloaded in cpu_init() */
|
|
cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
|
|
PAGE_KERNEL_RO);
|
|
idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
|
|
|
|
/*
|
|
* Should be a barrier for any external CPU state:
|
|
*/
|
|
cpu_init();
|
|
|
|
idt_setup_ist_traps();
|
|
|
|
x86_init.irqs.trap_init();
|
|
|
|
idt_setup_debugidt_traps();
|
|
}
|