forked from Minki/linux
7ae93f51d7
Based upon a report by Daniel Smolik. We do it too early, which triggers a BUG in cpufreq_register_notifier(). Signed-off-by: David S. Miller <davem@davemloft.net>
1742 lines
41 KiB
C
1742 lines
41 KiB
C
/* time.c: UltraSparc timer and TOD clock support.
|
|
*
|
|
* Copyright (C) 1997, 2008 David S. Miller (davem@davemloft.net)
|
|
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
|
|
*
|
|
* Based largely on code which is:
|
|
*
|
|
* Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/param.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/time.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/bcd.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/clocksource.h>
|
|
|
|
#include <asm/oplib.h>
|
|
#include <asm/mostek.h>
|
|
#include <asm/timer.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/io.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/of_device.h>
|
|
#include <asm/starfire.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/cpudata.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/irq_regs.h>
|
|
|
|
#include "entry.h"
|
|
|
|
DEFINE_SPINLOCK(mostek_lock);
|
|
DEFINE_SPINLOCK(rtc_lock);
|
|
void __iomem *mstk48t02_regs = NULL;
|
|
#ifdef CONFIG_PCI
|
|
unsigned long ds1287_regs = 0UL;
|
|
static void __iomem *bq4802_regs;
|
|
#endif
|
|
|
|
static void __iomem *mstk48t08_regs;
|
|
static void __iomem *mstk48t59_regs;
|
|
|
|
static int set_rtc_mmss(unsigned long);
|
|
|
|
#define TICK_PRIV_BIT (1UL << 63)
|
|
#define TICKCMP_IRQ_BIT (1UL << 63)
|
|
|
|
#ifdef CONFIG_SMP
|
|
unsigned long profile_pc(struct pt_regs *regs)
|
|
{
|
|
unsigned long pc = instruction_pointer(regs);
|
|
|
|
if (in_lock_functions(pc))
|
|
return regs->u_regs[UREG_RETPC];
|
|
return pc;
|
|
}
|
|
EXPORT_SYMBOL(profile_pc);
|
|
#endif
|
|
|
|
static void tick_disable_protection(void)
|
|
{
|
|
/* Set things up so user can access tick register for profiling
|
|
* purposes. Also workaround BB_ERRATA_1 by doing a dummy
|
|
* read back of %tick after writing it.
|
|
*/
|
|
__asm__ __volatile__(
|
|
" ba,pt %%xcc, 1f\n"
|
|
" nop\n"
|
|
" .align 64\n"
|
|
"1: rd %%tick, %%g2\n"
|
|
" add %%g2, 6, %%g2\n"
|
|
" andn %%g2, %0, %%g2\n"
|
|
" wrpr %%g2, 0, %%tick\n"
|
|
" rdpr %%tick, %%g0"
|
|
: /* no outputs */
|
|
: "r" (TICK_PRIV_BIT)
|
|
: "g2");
|
|
}
|
|
|
|
static void tick_disable_irq(void)
|
|
{
|
|
__asm__ __volatile__(
|
|
" ba,pt %%xcc, 1f\n"
|
|
" nop\n"
|
|
" .align 64\n"
|
|
"1: wr %0, 0x0, %%tick_cmpr\n"
|
|
" rd %%tick_cmpr, %%g0"
|
|
: /* no outputs */
|
|
: "r" (TICKCMP_IRQ_BIT));
|
|
}
|
|
|
|
static void tick_init_tick(void)
|
|
{
|
|
tick_disable_protection();
|
|
tick_disable_irq();
|
|
}
|
|
|
|
static unsigned long tick_get_tick(void)
|
|
{
|
|
unsigned long ret;
|
|
|
|
__asm__ __volatile__("rd %%tick, %0\n\t"
|
|
"mov %0, %0"
|
|
: "=r" (ret));
|
|
|
|
return ret & ~TICK_PRIV_BIT;
|
|
}
|
|
|
|
static int tick_add_compare(unsigned long adj)
|
|
{
|
|
unsigned long orig_tick, new_tick, new_compare;
|
|
|
|
__asm__ __volatile__("rd %%tick, %0"
|
|
: "=r" (orig_tick));
|
|
|
|
orig_tick &= ~TICKCMP_IRQ_BIT;
|
|
|
|
/* Workaround for Spitfire Errata (#54 I think??), I discovered
|
|
* this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
|
|
* number 103640.
|
|
*
|
|
* On Blackbird writes to %tick_cmpr can fail, the
|
|
* workaround seems to be to execute the wr instruction
|
|
* at the start of an I-cache line, and perform a dummy
|
|
* read back from %tick_cmpr right after writing to it. -DaveM
|
|
*/
|
|
__asm__ __volatile__("ba,pt %%xcc, 1f\n\t"
|
|
" add %1, %2, %0\n\t"
|
|
".align 64\n"
|
|
"1:\n\t"
|
|
"wr %0, 0, %%tick_cmpr\n\t"
|
|
"rd %%tick_cmpr, %%g0\n\t"
|
|
: "=r" (new_compare)
|
|
: "r" (orig_tick), "r" (adj));
|
|
|
|
__asm__ __volatile__("rd %%tick, %0"
|
|
: "=r" (new_tick));
|
|
new_tick &= ~TICKCMP_IRQ_BIT;
|
|
|
|
return ((long)(new_tick - (orig_tick+adj))) > 0L;
|
|
}
|
|
|
|
static unsigned long tick_add_tick(unsigned long adj)
|
|
{
|
|
unsigned long new_tick;
|
|
|
|
/* Also need to handle Blackbird bug here too. */
|
|
__asm__ __volatile__("rd %%tick, %0\n\t"
|
|
"add %0, %1, %0\n\t"
|
|
"wrpr %0, 0, %%tick\n\t"
|
|
: "=&r" (new_tick)
|
|
: "r" (adj));
|
|
|
|
return new_tick;
|
|
}
|
|
|
|
static struct sparc64_tick_ops tick_operations __read_mostly = {
|
|
.name = "tick",
|
|
.init_tick = tick_init_tick,
|
|
.disable_irq = tick_disable_irq,
|
|
.get_tick = tick_get_tick,
|
|
.add_tick = tick_add_tick,
|
|
.add_compare = tick_add_compare,
|
|
.softint_mask = 1UL << 0,
|
|
};
|
|
|
|
struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
|
|
|
|
static void stick_disable_irq(void)
|
|
{
|
|
__asm__ __volatile__(
|
|
"wr %0, 0x0, %%asr25"
|
|
: /* no outputs */
|
|
: "r" (TICKCMP_IRQ_BIT));
|
|
}
|
|
|
|
static void stick_init_tick(void)
|
|
{
|
|
/* Writes to the %tick and %stick register are not
|
|
* allowed on sun4v. The Hypervisor controls that
|
|
* bit, per-strand.
|
|
*/
|
|
if (tlb_type != hypervisor) {
|
|
tick_disable_protection();
|
|
tick_disable_irq();
|
|
|
|
/* Let the user get at STICK too. */
|
|
__asm__ __volatile__(
|
|
" rd %%asr24, %%g2\n"
|
|
" andn %%g2, %0, %%g2\n"
|
|
" wr %%g2, 0, %%asr24"
|
|
: /* no outputs */
|
|
: "r" (TICK_PRIV_BIT)
|
|
: "g1", "g2");
|
|
}
|
|
|
|
stick_disable_irq();
|
|
}
|
|
|
|
static unsigned long stick_get_tick(void)
|
|
{
|
|
unsigned long ret;
|
|
|
|
__asm__ __volatile__("rd %%asr24, %0"
|
|
: "=r" (ret));
|
|
|
|
return ret & ~TICK_PRIV_BIT;
|
|
}
|
|
|
|
static unsigned long stick_add_tick(unsigned long adj)
|
|
{
|
|
unsigned long new_tick;
|
|
|
|
__asm__ __volatile__("rd %%asr24, %0\n\t"
|
|
"add %0, %1, %0\n\t"
|
|
"wr %0, 0, %%asr24\n\t"
|
|
: "=&r" (new_tick)
|
|
: "r" (adj));
|
|
|
|
return new_tick;
|
|
}
|
|
|
|
static int stick_add_compare(unsigned long adj)
|
|
{
|
|
unsigned long orig_tick, new_tick;
|
|
|
|
__asm__ __volatile__("rd %%asr24, %0"
|
|
: "=r" (orig_tick));
|
|
orig_tick &= ~TICKCMP_IRQ_BIT;
|
|
|
|
__asm__ __volatile__("wr %0, 0, %%asr25"
|
|
: /* no outputs */
|
|
: "r" (orig_tick + adj));
|
|
|
|
__asm__ __volatile__("rd %%asr24, %0"
|
|
: "=r" (new_tick));
|
|
new_tick &= ~TICKCMP_IRQ_BIT;
|
|
|
|
return ((long)(new_tick - (orig_tick+adj))) > 0L;
|
|
}
|
|
|
|
static struct sparc64_tick_ops stick_operations __read_mostly = {
|
|
.name = "stick",
|
|
.init_tick = stick_init_tick,
|
|
.disable_irq = stick_disable_irq,
|
|
.get_tick = stick_get_tick,
|
|
.add_tick = stick_add_tick,
|
|
.add_compare = stick_add_compare,
|
|
.softint_mask = 1UL << 16,
|
|
};
|
|
|
|
/* On Hummingbird the STICK/STICK_CMPR register is implemented
|
|
* in I/O space. There are two 64-bit registers each, the
|
|
* first holds the low 32-bits of the value and the second holds
|
|
* the high 32-bits.
|
|
*
|
|
* Since STICK is constantly updating, we have to access it carefully.
|
|
*
|
|
* The sequence we use to read is:
|
|
* 1) read high
|
|
* 2) read low
|
|
* 3) read high again, if it rolled re-read both low and high again.
|
|
*
|
|
* Writing STICK safely is also tricky:
|
|
* 1) write low to zero
|
|
* 2) write high
|
|
* 3) write low
|
|
*/
|
|
#define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
|
|
#define HBIRD_STICK_ADDR 0x1fe0000f070UL
|
|
|
|
static unsigned long __hbird_read_stick(void)
|
|
{
|
|
unsigned long ret, tmp1, tmp2, tmp3;
|
|
unsigned long addr = HBIRD_STICK_ADDR+8;
|
|
|
|
__asm__ __volatile__("ldxa [%1] %5, %2\n"
|
|
"1:\n\t"
|
|
"sub %1, 0x8, %1\n\t"
|
|
"ldxa [%1] %5, %3\n\t"
|
|
"add %1, 0x8, %1\n\t"
|
|
"ldxa [%1] %5, %4\n\t"
|
|
"cmp %4, %2\n\t"
|
|
"bne,a,pn %%xcc, 1b\n\t"
|
|
" mov %4, %2\n\t"
|
|
"sllx %4, 32, %4\n\t"
|
|
"or %3, %4, %0\n\t"
|
|
: "=&r" (ret), "=&r" (addr),
|
|
"=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
|
|
: "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __hbird_write_stick(unsigned long val)
|
|
{
|
|
unsigned long low = (val & 0xffffffffUL);
|
|
unsigned long high = (val >> 32UL);
|
|
unsigned long addr = HBIRD_STICK_ADDR;
|
|
|
|
__asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
|
|
"add %0, 0x8, %0\n\t"
|
|
"stxa %3, [%0] %4\n\t"
|
|
"sub %0, 0x8, %0\n\t"
|
|
"stxa %2, [%0] %4"
|
|
: "=&r" (addr)
|
|
: "0" (addr), "r" (low), "r" (high),
|
|
"i" (ASI_PHYS_BYPASS_EC_E));
|
|
}
|
|
|
|
static void __hbird_write_compare(unsigned long val)
|
|
{
|
|
unsigned long low = (val & 0xffffffffUL);
|
|
unsigned long high = (val >> 32UL);
|
|
unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
|
|
|
|
__asm__ __volatile__("stxa %3, [%0] %4\n\t"
|
|
"sub %0, 0x8, %0\n\t"
|
|
"stxa %2, [%0] %4"
|
|
: "=&r" (addr)
|
|
: "0" (addr), "r" (low), "r" (high),
|
|
"i" (ASI_PHYS_BYPASS_EC_E));
|
|
}
|
|
|
|
static void hbtick_disable_irq(void)
|
|
{
|
|
__hbird_write_compare(TICKCMP_IRQ_BIT);
|
|
}
|
|
|
|
static void hbtick_init_tick(void)
|
|
{
|
|
tick_disable_protection();
|
|
|
|
/* XXX This seems to be necessary to 'jumpstart' Hummingbird
|
|
* XXX into actually sending STICK interrupts. I think because
|
|
* XXX of how we store %tick_cmpr in head.S this somehow resets the
|
|
* XXX {TICK + STICK} interrupt mux. -DaveM
|
|
*/
|
|
__hbird_write_stick(__hbird_read_stick());
|
|
|
|
hbtick_disable_irq();
|
|
}
|
|
|
|
static unsigned long hbtick_get_tick(void)
|
|
{
|
|
return __hbird_read_stick() & ~TICK_PRIV_BIT;
|
|
}
|
|
|
|
static unsigned long hbtick_add_tick(unsigned long adj)
|
|
{
|
|
unsigned long val;
|
|
|
|
val = __hbird_read_stick() + adj;
|
|
__hbird_write_stick(val);
|
|
|
|
return val;
|
|
}
|
|
|
|
static int hbtick_add_compare(unsigned long adj)
|
|
{
|
|
unsigned long val = __hbird_read_stick();
|
|
unsigned long val2;
|
|
|
|
val &= ~TICKCMP_IRQ_BIT;
|
|
val += adj;
|
|
__hbird_write_compare(val);
|
|
|
|
val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
|
|
|
|
return ((long)(val2 - val)) > 0L;
|
|
}
|
|
|
|
static struct sparc64_tick_ops hbtick_operations __read_mostly = {
|
|
.name = "hbtick",
|
|
.init_tick = hbtick_init_tick,
|
|
.disable_irq = hbtick_disable_irq,
|
|
.get_tick = hbtick_get_tick,
|
|
.add_tick = hbtick_add_tick,
|
|
.add_compare = hbtick_add_compare,
|
|
.softint_mask = 1UL << 0,
|
|
};
|
|
|
|
static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
|
|
|
|
int update_persistent_clock(struct timespec now)
|
|
{
|
|
return set_rtc_mmss(now.tv_sec);
|
|
}
|
|
|
|
/* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
|
|
static void __init kick_start_clock(void)
|
|
{
|
|
void __iomem *regs = mstk48t02_regs;
|
|
u8 sec, tmp;
|
|
int i, count;
|
|
|
|
prom_printf("CLOCK: Clock was stopped. Kick start ");
|
|
|
|
spin_lock_irq(&mostek_lock);
|
|
|
|
/* Turn on the kick start bit to start the oscillator. */
|
|
tmp = mostek_read(regs + MOSTEK_CREG);
|
|
tmp |= MSTK_CREG_WRITE;
|
|
mostek_write(regs + MOSTEK_CREG, tmp);
|
|
tmp = mostek_read(regs + MOSTEK_SEC);
|
|
tmp &= ~MSTK_STOP;
|
|
mostek_write(regs + MOSTEK_SEC, tmp);
|
|
tmp = mostek_read(regs + MOSTEK_HOUR);
|
|
tmp |= MSTK_KICK_START;
|
|
mostek_write(regs + MOSTEK_HOUR, tmp);
|
|
tmp = mostek_read(regs + MOSTEK_CREG);
|
|
tmp &= ~MSTK_CREG_WRITE;
|
|
mostek_write(regs + MOSTEK_CREG, tmp);
|
|
|
|
spin_unlock_irq(&mostek_lock);
|
|
|
|
/* Delay to allow the clock oscillator to start. */
|
|
sec = MSTK_REG_SEC(regs);
|
|
for (i = 0; i < 3; i++) {
|
|
while (sec == MSTK_REG_SEC(regs))
|
|
for (count = 0; count < 100000; count++)
|
|
/* nothing */ ;
|
|
prom_printf(".");
|
|
sec = MSTK_REG_SEC(regs);
|
|
}
|
|
prom_printf("\n");
|
|
|
|
spin_lock_irq(&mostek_lock);
|
|
|
|
/* Turn off kick start and set a "valid" time and date. */
|
|
tmp = mostek_read(regs + MOSTEK_CREG);
|
|
tmp |= MSTK_CREG_WRITE;
|
|
mostek_write(regs + MOSTEK_CREG, tmp);
|
|
tmp = mostek_read(regs + MOSTEK_HOUR);
|
|
tmp &= ~MSTK_KICK_START;
|
|
mostek_write(regs + MOSTEK_HOUR, tmp);
|
|
MSTK_SET_REG_SEC(regs,0);
|
|
MSTK_SET_REG_MIN(regs,0);
|
|
MSTK_SET_REG_HOUR(regs,0);
|
|
MSTK_SET_REG_DOW(regs,5);
|
|
MSTK_SET_REG_DOM(regs,1);
|
|
MSTK_SET_REG_MONTH(regs,8);
|
|
MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
|
|
tmp = mostek_read(regs + MOSTEK_CREG);
|
|
tmp &= ~MSTK_CREG_WRITE;
|
|
mostek_write(regs + MOSTEK_CREG, tmp);
|
|
|
|
spin_unlock_irq(&mostek_lock);
|
|
|
|
/* Ensure the kick start bit is off. If it isn't, turn it off. */
|
|
while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) {
|
|
prom_printf("CLOCK: Kick start still on!\n");
|
|
|
|
spin_lock_irq(&mostek_lock);
|
|
|
|
tmp = mostek_read(regs + MOSTEK_CREG);
|
|
tmp |= MSTK_CREG_WRITE;
|
|
mostek_write(regs + MOSTEK_CREG, tmp);
|
|
|
|
tmp = mostek_read(regs + MOSTEK_HOUR);
|
|
tmp &= ~MSTK_KICK_START;
|
|
mostek_write(regs + MOSTEK_HOUR, tmp);
|
|
|
|
tmp = mostek_read(regs + MOSTEK_CREG);
|
|
tmp &= ~MSTK_CREG_WRITE;
|
|
mostek_write(regs + MOSTEK_CREG, tmp);
|
|
|
|
spin_unlock_irq(&mostek_lock);
|
|
}
|
|
|
|
prom_printf("CLOCK: Kick start procedure successful.\n");
|
|
}
|
|
|
|
/* Return nonzero if the clock chip battery is low. */
|
|
static int __init has_low_battery(void)
|
|
{
|
|
void __iomem *regs = mstk48t02_regs;
|
|
u8 data1, data2;
|
|
|
|
spin_lock_irq(&mostek_lock);
|
|
|
|
data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */
|
|
mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */
|
|
data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */
|
|
mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */
|
|
|
|
spin_unlock_irq(&mostek_lock);
|
|
|
|
return (data1 == data2); /* Was the write blocked? */
|
|
}
|
|
|
|
static void __init mostek_set_system_time(void __iomem *mregs)
|
|
{
|
|
unsigned int year, mon, day, hour, min, sec;
|
|
u8 tmp;
|
|
|
|
spin_lock_irq(&mostek_lock);
|
|
|
|
/* Traditional Mostek chip. */
|
|
tmp = mostek_read(mregs + MOSTEK_CREG);
|
|
tmp |= MSTK_CREG_READ;
|
|
mostek_write(mregs + MOSTEK_CREG, tmp);
|
|
|
|
sec = MSTK_REG_SEC(mregs);
|
|
min = MSTK_REG_MIN(mregs);
|
|
hour = MSTK_REG_HOUR(mregs);
|
|
day = MSTK_REG_DOM(mregs);
|
|
mon = MSTK_REG_MONTH(mregs);
|
|
year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
|
|
|
|
xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
|
|
xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
|
|
set_normalized_timespec(&wall_to_monotonic,
|
|
-xtime.tv_sec, -xtime.tv_nsec);
|
|
|
|
tmp = mostek_read(mregs + MOSTEK_CREG);
|
|
tmp &= ~MSTK_CREG_READ;
|
|
mostek_write(mregs + MOSTEK_CREG, tmp);
|
|
|
|
spin_unlock_irq(&mostek_lock);
|
|
}
|
|
|
|
/* Probe for the real time clock chip. */
|
|
static void __init set_system_time(void)
|
|
{
|
|
unsigned int year, mon, day, hour, min, sec;
|
|
void __iomem *mregs = mstk48t02_regs;
|
|
#ifdef CONFIG_PCI
|
|
unsigned long dregs = ds1287_regs;
|
|
void __iomem *bregs = bq4802_regs;
|
|
#else
|
|
unsigned long dregs = 0UL;
|
|
void __iomem *bregs = 0UL;
|
|
#endif
|
|
|
|
if (!mregs && !dregs && !bregs) {
|
|
prom_printf("Something wrong, clock regs not mapped yet.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
if (mregs) {
|
|
mostek_set_system_time(mregs);
|
|
return;
|
|
}
|
|
|
|
if (bregs) {
|
|
unsigned char val = readb(bregs + 0x0e);
|
|
unsigned int century;
|
|
|
|
/* BQ4802 RTC chip. */
|
|
|
|
writeb(val | 0x08, bregs + 0x0e);
|
|
|
|
sec = readb(bregs + 0x00);
|
|
min = readb(bregs + 0x02);
|
|
hour = readb(bregs + 0x04);
|
|
day = readb(bregs + 0x06);
|
|
mon = readb(bregs + 0x09);
|
|
year = readb(bregs + 0x0a);
|
|
century = readb(bregs + 0x0f);
|
|
|
|
writeb(val, bregs + 0x0e);
|
|
|
|
BCD_TO_BIN(sec);
|
|
BCD_TO_BIN(min);
|
|
BCD_TO_BIN(hour);
|
|
BCD_TO_BIN(day);
|
|
BCD_TO_BIN(mon);
|
|
BCD_TO_BIN(year);
|
|
BCD_TO_BIN(century);
|
|
|
|
year += (century * 100);
|
|
} else {
|
|
/* Dallas 12887 RTC chip. */
|
|
|
|
do {
|
|
sec = CMOS_READ(RTC_SECONDS);
|
|
min = CMOS_READ(RTC_MINUTES);
|
|
hour = CMOS_READ(RTC_HOURS);
|
|
day = CMOS_READ(RTC_DAY_OF_MONTH);
|
|
mon = CMOS_READ(RTC_MONTH);
|
|
year = CMOS_READ(RTC_YEAR);
|
|
} while (sec != CMOS_READ(RTC_SECONDS));
|
|
|
|
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
|
BCD_TO_BIN(sec);
|
|
BCD_TO_BIN(min);
|
|
BCD_TO_BIN(hour);
|
|
BCD_TO_BIN(day);
|
|
BCD_TO_BIN(mon);
|
|
BCD_TO_BIN(year);
|
|
}
|
|
if ((year += 1900) < 1970)
|
|
year += 100;
|
|
}
|
|
|
|
xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
|
|
xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
|
|
set_normalized_timespec(&wall_to_monotonic,
|
|
-xtime.tv_sec, -xtime.tv_nsec);
|
|
}
|
|
|
|
/* davem suggests we keep this within the 4M locked kernel image */
|
|
static u32 starfire_get_time(void)
|
|
{
|
|
static char obp_gettod[32];
|
|
static u32 unix_tod;
|
|
|
|
sprintf(obp_gettod, "h# %08x unix-gettod",
|
|
(unsigned int) (long) &unix_tod);
|
|
prom_feval(obp_gettod);
|
|
|
|
return unix_tod;
|
|
}
|
|
|
|
static int starfire_set_time(u32 val)
|
|
{
|
|
/* Do nothing, time is set using the service processor
|
|
* console on this platform.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static u32 hypervisor_get_time(void)
|
|
{
|
|
unsigned long ret, time;
|
|
int retries = 10000;
|
|
|
|
retry:
|
|
ret = sun4v_tod_get(&time);
|
|
if (ret == HV_EOK)
|
|
return time;
|
|
if (ret == HV_EWOULDBLOCK) {
|
|
if (--retries > 0) {
|
|
udelay(100);
|
|
goto retry;
|
|
}
|
|
printk(KERN_WARNING "SUN4V: tod_get() timed out.\n");
|
|
return 0;
|
|
}
|
|
printk(KERN_WARNING "SUN4V: tod_get() not supported.\n");
|
|
return 0;
|
|
}
|
|
|
|
static int hypervisor_set_time(u32 secs)
|
|
{
|
|
unsigned long ret;
|
|
int retries = 10000;
|
|
|
|
retry:
|
|
ret = sun4v_tod_set(secs);
|
|
if (ret == HV_EOK)
|
|
return 0;
|
|
if (ret == HV_EWOULDBLOCK) {
|
|
if (--retries > 0) {
|
|
udelay(100);
|
|
goto retry;
|
|
}
|
|
printk(KERN_WARNING "SUN4V: tod_set() timed out.\n");
|
|
return -EAGAIN;
|
|
}
|
|
printk(KERN_WARNING "SUN4V: tod_set() not supported.\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int __init clock_model_matches(const char *model)
|
|
{
|
|
if (strcmp(model, "mk48t02") &&
|
|
strcmp(model, "mk48t08") &&
|
|
strcmp(model, "mk48t59") &&
|
|
strcmp(model, "m5819") &&
|
|
strcmp(model, "m5819p") &&
|
|
strcmp(model, "m5823") &&
|
|
strcmp(model, "ds1287") &&
|
|
strcmp(model, "bq4802"))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __devinit clock_probe(struct of_device *op, const struct of_device_id *match)
|
|
{
|
|
struct device_node *dp = op->node;
|
|
const char *model = of_get_property(dp, "model", NULL);
|
|
const char *compat = of_get_property(dp, "compatible", NULL);
|
|
unsigned long size, flags;
|
|
void __iomem *regs;
|
|
|
|
if (!model)
|
|
model = compat;
|
|
|
|
if (!model || !clock_model_matches(model))
|
|
return -ENODEV;
|
|
|
|
/* On an Enterprise system there can be multiple mostek clocks.
|
|
* We should only match the one that is on the central FHC bus.
|
|
*/
|
|
if (!strcmp(dp->parent->name, "fhc") &&
|
|
strcmp(dp->parent->parent->name, "central") != 0)
|
|
return -ENODEV;
|
|
|
|
size = (op->resource[0].end - op->resource[0].start) + 1;
|
|
regs = of_ioremap(&op->resource[0], 0, size, "clock");
|
|
if (!regs)
|
|
return -ENOMEM;
|
|
|
|
#ifdef CONFIG_PCI
|
|
if (!strcmp(model, "ds1287") ||
|
|
!strcmp(model, "m5819") ||
|
|
!strcmp(model, "m5819p") ||
|
|
!strcmp(model, "m5823")) {
|
|
ds1287_regs = (unsigned long) regs;
|
|
} else if (!strcmp(model, "bq4802")) {
|
|
bq4802_regs = regs;
|
|
} else
|
|
#endif
|
|
if (model[5] == '0' && model[6] == '2') {
|
|
mstk48t02_regs = regs;
|
|
} else if(model[5] == '0' && model[6] == '8') {
|
|
mstk48t08_regs = regs;
|
|
mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02;
|
|
} else {
|
|
mstk48t59_regs = regs;
|
|
mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
|
|
}
|
|
|
|
printk(KERN_INFO "%s: Clock regs at %p\n", dp->full_name, regs);
|
|
|
|
local_irq_save(flags);
|
|
|
|
if (mstk48t02_regs != NULL) {
|
|
/* Report a low battery voltage condition. */
|
|
if (has_low_battery())
|
|
prom_printf("NVRAM: Low battery voltage!\n");
|
|
|
|
/* Kick start the clock if it is completely stopped. */
|
|
if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
|
|
kick_start_clock();
|
|
}
|
|
|
|
set_system_time();
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct of_device_id clock_match[] = {
|
|
{
|
|
.name = "eeprom",
|
|
},
|
|
{
|
|
.name = "rtc",
|
|
},
|
|
{},
|
|
};
|
|
|
|
static struct of_platform_driver clock_driver = {
|
|
.match_table = clock_match,
|
|
.probe = clock_probe,
|
|
.driver = {
|
|
.name = "clock",
|
|
},
|
|
};
|
|
|
|
static int __init clock_init(void)
|
|
{
|
|
if (this_is_starfire) {
|
|
xtime.tv_sec = starfire_get_time();
|
|
xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
|
|
set_normalized_timespec(&wall_to_monotonic,
|
|
-xtime.tv_sec, -xtime.tv_nsec);
|
|
return 0;
|
|
}
|
|
if (tlb_type == hypervisor) {
|
|
xtime.tv_sec = hypervisor_get_time();
|
|
xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
|
|
set_normalized_timespec(&wall_to_monotonic,
|
|
-xtime.tv_sec, -xtime.tv_nsec);
|
|
return 0;
|
|
}
|
|
|
|
return of_register_driver(&clock_driver, &of_platform_bus_type);
|
|
}
|
|
|
|
/* Must be after subsys_initcall() so that busses are probed. Must
|
|
* be before device_initcall() because things like the RTC driver
|
|
* need to see the clock registers.
|
|
*/
|
|
fs_initcall(clock_init);
|
|
|
|
/* This is gets the master TICK_INT timer going. */
|
|
static unsigned long sparc64_init_timers(void)
|
|
{
|
|
struct device_node *dp;
|
|
unsigned long clock;
|
|
|
|
dp = of_find_node_by_path("/");
|
|
if (tlb_type == spitfire) {
|
|
unsigned long ver, manuf, impl;
|
|
|
|
__asm__ __volatile__ ("rdpr %%ver, %0"
|
|
: "=&r" (ver));
|
|
manuf = ((ver >> 48) & 0xffff);
|
|
impl = ((ver >> 32) & 0xffff);
|
|
if (manuf == 0x17 && impl == 0x13) {
|
|
/* Hummingbird, aka Ultra-IIe */
|
|
tick_ops = &hbtick_operations;
|
|
clock = of_getintprop_default(dp, "stick-frequency", 0);
|
|
} else {
|
|
tick_ops = &tick_operations;
|
|
clock = local_cpu_data().clock_tick;
|
|
}
|
|
} else {
|
|
tick_ops = &stick_operations;
|
|
clock = of_getintprop_default(dp, "stick-frequency", 0);
|
|
}
|
|
|
|
return clock;
|
|
}
|
|
|
|
struct freq_table {
|
|
unsigned long clock_tick_ref;
|
|
unsigned int ref_freq;
|
|
};
|
|
static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
|
|
|
|
unsigned long sparc64_get_clock_tick(unsigned int cpu)
|
|
{
|
|
struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
|
|
|
|
if (ft->clock_tick_ref)
|
|
return ft->clock_tick_ref;
|
|
return cpu_data(cpu).clock_tick;
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
|
|
static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
|
|
void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = data;
|
|
unsigned int cpu = freq->cpu;
|
|
struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
|
|
|
|
if (!ft->ref_freq) {
|
|
ft->ref_freq = freq->old;
|
|
ft->clock_tick_ref = cpu_data(cpu).clock_tick;
|
|
}
|
|
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
|
|
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
|
|
(val == CPUFREQ_RESUMECHANGE)) {
|
|
cpu_data(cpu).clock_tick =
|
|
cpufreq_scale(ft->clock_tick_ref,
|
|
ft->ref_freq,
|
|
freq->new);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block sparc64_cpufreq_notifier_block = {
|
|
.notifier_call = sparc64_cpufreq_notifier
|
|
};
|
|
|
|
static int __init register_sparc64_cpufreq_notifier(void)
|
|
{
|
|
|
|
cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
return 0;
|
|
}
|
|
|
|
core_initcall(register_sparc64_cpufreq_notifier);
|
|
|
|
#endif /* CONFIG_CPU_FREQ */
|
|
|
|
static int sparc64_next_event(unsigned long delta,
|
|
struct clock_event_device *evt)
|
|
{
|
|
return tick_ops->add_compare(delta) ? -ETIME : 0;
|
|
}
|
|
|
|
static void sparc64_timer_setup(enum clock_event_mode mode,
|
|
struct clock_event_device *evt)
|
|
{
|
|
switch (mode) {
|
|
case CLOCK_EVT_MODE_ONESHOT:
|
|
case CLOCK_EVT_MODE_RESUME:
|
|
break;
|
|
|
|
case CLOCK_EVT_MODE_SHUTDOWN:
|
|
tick_ops->disable_irq();
|
|
break;
|
|
|
|
case CLOCK_EVT_MODE_PERIODIC:
|
|
case CLOCK_EVT_MODE_UNUSED:
|
|
WARN_ON(1);
|
|
break;
|
|
};
|
|
}
|
|
|
|
static struct clock_event_device sparc64_clockevent = {
|
|
.features = CLOCK_EVT_FEAT_ONESHOT,
|
|
.set_mode = sparc64_timer_setup,
|
|
.set_next_event = sparc64_next_event,
|
|
.rating = 100,
|
|
.shift = 30,
|
|
.irq = -1,
|
|
};
|
|
static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
|
|
|
|
void timer_interrupt(int irq, struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
unsigned long tick_mask = tick_ops->softint_mask;
|
|
int cpu = smp_processor_id();
|
|
struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
|
|
|
|
clear_softint(tick_mask);
|
|
|
|
irq_enter();
|
|
|
|
kstat_this_cpu.irqs[0]++;
|
|
|
|
if (unlikely(!evt->event_handler)) {
|
|
printk(KERN_WARNING
|
|
"Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
|
|
} else
|
|
evt->event_handler(evt);
|
|
|
|
irq_exit();
|
|
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
void __devinit setup_sparc64_timer(void)
|
|
{
|
|
struct clock_event_device *sevt;
|
|
unsigned long pstate;
|
|
|
|
/* Guarantee that the following sequences execute
|
|
* uninterrupted.
|
|
*/
|
|
__asm__ __volatile__("rdpr %%pstate, %0\n\t"
|
|
"wrpr %0, %1, %%pstate"
|
|
: "=r" (pstate)
|
|
: "i" (PSTATE_IE));
|
|
|
|
tick_ops->init_tick();
|
|
|
|
/* Restore PSTATE_IE. */
|
|
__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
|
|
: /* no outputs */
|
|
: "r" (pstate));
|
|
|
|
sevt = &__get_cpu_var(sparc64_events);
|
|
|
|
memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
|
|
sevt->cpumask = cpumask_of_cpu(smp_processor_id());
|
|
|
|
clockevents_register_device(sevt);
|
|
}
|
|
|
|
#define SPARC64_NSEC_PER_CYC_SHIFT 10UL
|
|
|
|
static struct clocksource clocksource_tick = {
|
|
.rating = 100,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.shift = 16,
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
|
|
static void __init setup_clockevent_multiplier(unsigned long hz)
|
|
{
|
|
unsigned long mult, shift = 32;
|
|
|
|
while (1) {
|
|
mult = div_sc(hz, NSEC_PER_SEC, shift);
|
|
if (mult && (mult >> 32UL) == 0UL)
|
|
break;
|
|
|
|
shift--;
|
|
}
|
|
|
|
sparc64_clockevent.shift = shift;
|
|
sparc64_clockevent.mult = mult;
|
|
}
|
|
|
|
static unsigned long tb_ticks_per_usec __read_mostly;
|
|
|
|
void __delay(unsigned long loops)
|
|
{
|
|
unsigned long bclock, now;
|
|
|
|
bclock = tick_ops->get_tick();
|
|
do {
|
|
now = tick_ops->get_tick();
|
|
} while ((now-bclock) < loops);
|
|
}
|
|
EXPORT_SYMBOL(__delay);
|
|
|
|
void udelay(unsigned long usecs)
|
|
{
|
|
__delay(tb_ticks_per_usec * usecs);
|
|
}
|
|
EXPORT_SYMBOL(udelay);
|
|
|
|
void __init time_init(void)
|
|
{
|
|
unsigned long clock = sparc64_init_timers();
|
|
|
|
tb_ticks_per_usec = clock / USEC_PER_SEC;
|
|
|
|
timer_ticks_per_nsec_quotient =
|
|
clocksource_hz2mult(clock, SPARC64_NSEC_PER_CYC_SHIFT);
|
|
|
|
clocksource_tick.name = tick_ops->name;
|
|
clocksource_tick.mult =
|
|
clocksource_hz2mult(clock,
|
|
clocksource_tick.shift);
|
|
clocksource_tick.read = tick_ops->get_tick;
|
|
|
|
printk("clocksource: mult[%x] shift[%d]\n",
|
|
clocksource_tick.mult, clocksource_tick.shift);
|
|
|
|
clocksource_register(&clocksource_tick);
|
|
|
|
sparc64_clockevent.name = tick_ops->name;
|
|
|
|
setup_clockevent_multiplier(clock);
|
|
|
|
sparc64_clockevent.max_delta_ns =
|
|
clockevent_delta2ns(0x7fffffffffffffffUL, &sparc64_clockevent);
|
|
sparc64_clockevent.min_delta_ns =
|
|
clockevent_delta2ns(0xF, &sparc64_clockevent);
|
|
|
|
printk("clockevent: mult[%lx] shift[%d]\n",
|
|
sparc64_clockevent.mult, sparc64_clockevent.shift);
|
|
|
|
setup_sparc64_timer();
|
|
}
|
|
|
|
unsigned long long sched_clock(void)
|
|
{
|
|
unsigned long ticks = tick_ops->get_tick();
|
|
|
|
return (ticks * timer_ticks_per_nsec_quotient)
|
|
>> SPARC64_NSEC_PER_CYC_SHIFT;
|
|
}
|
|
|
|
static int set_rtc_mmss(unsigned long nowtime)
|
|
{
|
|
int real_seconds, real_minutes, chip_minutes;
|
|
void __iomem *mregs = mstk48t02_regs;
|
|
#ifdef CONFIG_PCI
|
|
unsigned long dregs = ds1287_regs;
|
|
void __iomem *bregs = bq4802_regs;
|
|
#else
|
|
unsigned long dregs = 0UL;
|
|
void __iomem *bregs = 0UL;
|
|
#endif
|
|
unsigned long flags;
|
|
u8 tmp;
|
|
|
|
/*
|
|
* Not having a register set can lead to trouble.
|
|
* Also starfire doesn't have a tod clock.
|
|
*/
|
|
if (!mregs && !dregs && !bregs)
|
|
return -1;
|
|
|
|
if (mregs) {
|
|
spin_lock_irqsave(&mostek_lock, flags);
|
|
|
|
/* Read the current RTC minutes. */
|
|
tmp = mostek_read(mregs + MOSTEK_CREG);
|
|
tmp |= MSTK_CREG_READ;
|
|
mostek_write(mregs + MOSTEK_CREG, tmp);
|
|
|
|
chip_minutes = MSTK_REG_MIN(mregs);
|
|
|
|
tmp = mostek_read(mregs + MOSTEK_CREG);
|
|
tmp &= ~MSTK_CREG_READ;
|
|
mostek_write(mregs + MOSTEK_CREG, tmp);
|
|
|
|
/*
|
|
* since we're only adjusting minutes and seconds,
|
|
* don't interfere with hour overflow. This avoids
|
|
* messing with unknown time zones but requires your
|
|
* RTC not to be off by more than 15 minutes
|
|
*/
|
|
real_seconds = nowtime % 60;
|
|
real_minutes = nowtime / 60;
|
|
if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
|
|
real_minutes += 30; /* correct for half hour time zone */
|
|
real_minutes %= 60;
|
|
|
|
if (abs(real_minutes - chip_minutes) < 30) {
|
|
tmp = mostek_read(mregs + MOSTEK_CREG);
|
|
tmp |= MSTK_CREG_WRITE;
|
|
mostek_write(mregs + MOSTEK_CREG, tmp);
|
|
|
|
MSTK_SET_REG_SEC(mregs,real_seconds);
|
|
MSTK_SET_REG_MIN(mregs,real_minutes);
|
|
|
|
tmp = mostek_read(mregs + MOSTEK_CREG);
|
|
tmp &= ~MSTK_CREG_WRITE;
|
|
mostek_write(mregs + MOSTEK_CREG, tmp);
|
|
|
|
spin_unlock_irqrestore(&mostek_lock, flags);
|
|
|
|
return 0;
|
|
} else {
|
|
spin_unlock_irqrestore(&mostek_lock, flags);
|
|
|
|
return -1;
|
|
}
|
|
} else if (bregs) {
|
|
int retval = 0;
|
|
unsigned char val = readb(bregs + 0x0e);
|
|
|
|
/* BQ4802 RTC chip. */
|
|
|
|
writeb(val | 0x08, bregs + 0x0e);
|
|
|
|
chip_minutes = readb(bregs + 0x02);
|
|
BCD_TO_BIN(chip_minutes);
|
|
real_seconds = nowtime % 60;
|
|
real_minutes = nowtime / 60;
|
|
if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
|
|
real_minutes += 30;
|
|
real_minutes %= 60;
|
|
|
|
if (abs(real_minutes - chip_minutes) < 30) {
|
|
BIN_TO_BCD(real_seconds);
|
|
BIN_TO_BCD(real_minutes);
|
|
writeb(real_seconds, bregs + 0x00);
|
|
writeb(real_minutes, bregs + 0x02);
|
|
} else {
|
|
printk(KERN_WARNING
|
|
"set_rtc_mmss: can't update from %d to %d\n",
|
|
chip_minutes, real_minutes);
|
|
retval = -1;
|
|
}
|
|
|
|
writeb(val, bregs + 0x0e);
|
|
|
|
return retval;
|
|
} else {
|
|
int retval = 0;
|
|
unsigned char save_control, save_freq_select;
|
|
|
|
/* Stolen from arch/i386/kernel/time.c, see there for
|
|
* credits and descriptive comments.
|
|
*/
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
|
|
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
|
|
|
|
save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
|
|
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
|
|
|
|
chip_minutes = CMOS_READ(RTC_MINUTES);
|
|
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
|
|
BCD_TO_BIN(chip_minutes);
|
|
real_seconds = nowtime % 60;
|
|
real_minutes = nowtime / 60;
|
|
if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
|
|
real_minutes += 30;
|
|
real_minutes %= 60;
|
|
|
|
if (abs(real_minutes - chip_minutes) < 30) {
|
|
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
|
BIN_TO_BCD(real_seconds);
|
|
BIN_TO_BCD(real_minutes);
|
|
}
|
|
CMOS_WRITE(real_seconds,RTC_SECONDS);
|
|
CMOS_WRITE(real_minutes,RTC_MINUTES);
|
|
} else {
|
|
printk(KERN_WARNING
|
|
"set_rtc_mmss: can't update from %d to %d\n",
|
|
chip_minutes, real_minutes);
|
|
retval = -1;
|
|
}
|
|
|
|
CMOS_WRITE(save_control, RTC_CONTROL);
|
|
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
#define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
|
|
static unsigned char mini_rtc_status; /* bitmapped status byte. */
|
|
|
|
#define FEBRUARY 2
|
|
#define STARTOFTIME 1970
|
|
#define SECDAY 86400L
|
|
#define SECYR (SECDAY * 365)
|
|
#define leapyear(year) ((year) % 4 == 0 && \
|
|
((year) % 100 != 0 || (year) % 400 == 0))
|
|
#define days_in_year(a) (leapyear(a) ? 366 : 365)
|
|
#define days_in_month(a) (month_days[(a) - 1])
|
|
|
|
static int month_days[12] = {
|
|
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
|
|
};
|
|
|
|
/*
|
|
* This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
|
|
*/
|
|
static void GregorianDay(struct rtc_time * tm)
|
|
{
|
|
int leapsToDate;
|
|
int lastYear;
|
|
int day;
|
|
int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
|
|
|
|
lastYear = tm->tm_year - 1;
|
|
|
|
/*
|
|
* Number of leap corrections to apply up to end of last year
|
|
*/
|
|
leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
|
|
|
|
/*
|
|
* This year is a leap year if it is divisible by 4 except when it is
|
|
* divisible by 100 unless it is divisible by 400
|
|
*
|
|
* e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
|
|
*/
|
|
day = tm->tm_mon > 2 && leapyear(tm->tm_year);
|
|
|
|
day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
|
|
tm->tm_mday;
|
|
|
|
tm->tm_wday = day % 7;
|
|
}
|
|
|
|
static void to_tm(int tim, struct rtc_time *tm)
|
|
{
|
|
register int i;
|
|
register long hms, day;
|
|
|
|
day = tim / SECDAY;
|
|
hms = tim % SECDAY;
|
|
|
|
/* Hours, minutes, seconds are easy */
|
|
tm->tm_hour = hms / 3600;
|
|
tm->tm_min = (hms % 3600) / 60;
|
|
tm->tm_sec = (hms % 3600) % 60;
|
|
|
|
/* Number of years in days */
|
|
for (i = STARTOFTIME; day >= days_in_year(i); i++)
|
|
day -= days_in_year(i);
|
|
tm->tm_year = i;
|
|
|
|
/* Number of months in days left */
|
|
if (leapyear(tm->tm_year))
|
|
days_in_month(FEBRUARY) = 29;
|
|
for (i = 1; day >= days_in_month(i); i++)
|
|
day -= days_in_month(i);
|
|
days_in_month(FEBRUARY) = 28;
|
|
tm->tm_mon = i;
|
|
|
|
/* Days are what is left over (+1) from all that. */
|
|
tm->tm_mday = day + 1;
|
|
|
|
/*
|
|
* Determine the day of week
|
|
*/
|
|
GregorianDay(tm);
|
|
}
|
|
|
|
/* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
|
|
* aka Unix time. So we have to convert to/from rtc_time.
|
|
*/
|
|
static void starfire_get_rtc_time(struct rtc_time *time)
|
|
{
|
|
u32 seconds = starfire_get_time();
|
|
|
|
to_tm(seconds, time);
|
|
time->tm_year -= 1900;
|
|
time->tm_mon -= 1;
|
|
}
|
|
|
|
static int starfire_set_rtc_time(struct rtc_time *time)
|
|
{
|
|
u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
|
|
time->tm_mday, time->tm_hour,
|
|
time->tm_min, time->tm_sec);
|
|
|
|
return starfire_set_time(seconds);
|
|
}
|
|
|
|
static void hypervisor_get_rtc_time(struct rtc_time *time)
|
|
{
|
|
u32 seconds = hypervisor_get_time();
|
|
|
|
to_tm(seconds, time);
|
|
time->tm_year -= 1900;
|
|
time->tm_mon -= 1;
|
|
}
|
|
|
|
static int hypervisor_set_rtc_time(struct rtc_time *time)
|
|
{
|
|
u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
|
|
time->tm_mday, time->tm_hour,
|
|
time->tm_min, time->tm_sec);
|
|
|
|
return hypervisor_set_time(seconds);
|
|
}
|
|
|
|
#ifdef CONFIG_PCI
|
|
static void bq4802_get_rtc_time(struct rtc_time *time)
|
|
{
|
|
unsigned char val = readb(bq4802_regs + 0x0e);
|
|
unsigned int century;
|
|
|
|
writeb(val | 0x08, bq4802_regs + 0x0e);
|
|
|
|
time->tm_sec = readb(bq4802_regs + 0x00);
|
|
time->tm_min = readb(bq4802_regs + 0x02);
|
|
time->tm_hour = readb(bq4802_regs + 0x04);
|
|
time->tm_mday = readb(bq4802_regs + 0x06);
|
|
time->tm_mon = readb(bq4802_regs + 0x09);
|
|
time->tm_year = readb(bq4802_regs + 0x0a);
|
|
time->tm_wday = readb(bq4802_regs + 0x08);
|
|
century = readb(bq4802_regs + 0x0f);
|
|
|
|
writeb(val, bq4802_regs + 0x0e);
|
|
|
|
BCD_TO_BIN(time->tm_sec);
|
|
BCD_TO_BIN(time->tm_min);
|
|
BCD_TO_BIN(time->tm_hour);
|
|
BCD_TO_BIN(time->tm_mday);
|
|
BCD_TO_BIN(time->tm_mon);
|
|
BCD_TO_BIN(time->tm_year);
|
|
BCD_TO_BIN(time->tm_wday);
|
|
BCD_TO_BIN(century);
|
|
|
|
time->tm_year += (century * 100);
|
|
time->tm_year -= 1900;
|
|
|
|
time->tm_mon--;
|
|
}
|
|
|
|
static int bq4802_set_rtc_time(struct rtc_time *time)
|
|
{
|
|
unsigned char val = readb(bq4802_regs + 0x0e);
|
|
unsigned char sec, min, hrs, day, mon, yrs, century;
|
|
unsigned int year;
|
|
|
|
year = time->tm_year + 1900;
|
|
century = year / 100;
|
|
yrs = year % 100;
|
|
|
|
mon = time->tm_mon + 1; /* tm_mon starts at zero */
|
|
day = time->tm_mday;
|
|
hrs = time->tm_hour;
|
|
min = time->tm_min;
|
|
sec = time->tm_sec;
|
|
|
|
BIN_TO_BCD(sec);
|
|
BIN_TO_BCD(min);
|
|
BIN_TO_BCD(hrs);
|
|
BIN_TO_BCD(day);
|
|
BIN_TO_BCD(mon);
|
|
BIN_TO_BCD(yrs);
|
|
BIN_TO_BCD(century);
|
|
|
|
writeb(val | 0x08, bq4802_regs + 0x0e);
|
|
|
|
writeb(sec, bq4802_regs + 0x00);
|
|
writeb(min, bq4802_regs + 0x02);
|
|
writeb(hrs, bq4802_regs + 0x04);
|
|
writeb(day, bq4802_regs + 0x06);
|
|
writeb(mon, bq4802_regs + 0x09);
|
|
writeb(yrs, bq4802_regs + 0x0a);
|
|
writeb(century, bq4802_regs + 0x0f);
|
|
|
|
writeb(val, bq4802_regs + 0x0e);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cmos_get_rtc_time(struct rtc_time *rtc_tm)
|
|
{
|
|
unsigned char ctrl;
|
|
|
|
rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
|
|
rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
|
|
rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
|
|
rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
|
|
rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
|
|
rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
|
|
rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
|
|
|
|
ctrl = CMOS_READ(RTC_CONTROL);
|
|
if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
|
BCD_TO_BIN(rtc_tm->tm_sec);
|
|
BCD_TO_BIN(rtc_tm->tm_min);
|
|
BCD_TO_BIN(rtc_tm->tm_hour);
|
|
BCD_TO_BIN(rtc_tm->tm_mday);
|
|
BCD_TO_BIN(rtc_tm->tm_mon);
|
|
BCD_TO_BIN(rtc_tm->tm_year);
|
|
BCD_TO_BIN(rtc_tm->tm_wday);
|
|
}
|
|
|
|
if (rtc_tm->tm_year <= 69)
|
|
rtc_tm->tm_year += 100;
|
|
|
|
rtc_tm->tm_mon--;
|
|
}
|
|
|
|
static int cmos_set_rtc_time(struct rtc_time *rtc_tm)
|
|
{
|
|
unsigned char mon, day, hrs, min, sec;
|
|
unsigned char save_control, save_freq_select;
|
|
unsigned int yrs;
|
|
|
|
yrs = rtc_tm->tm_year;
|
|
mon = rtc_tm->tm_mon + 1;
|
|
day = rtc_tm->tm_mday;
|
|
hrs = rtc_tm->tm_hour;
|
|
min = rtc_tm->tm_min;
|
|
sec = rtc_tm->tm_sec;
|
|
|
|
if (yrs >= 100)
|
|
yrs -= 100;
|
|
|
|
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
|
|
BIN_TO_BCD(sec);
|
|
BIN_TO_BCD(min);
|
|
BIN_TO_BCD(hrs);
|
|
BIN_TO_BCD(day);
|
|
BIN_TO_BCD(mon);
|
|
BIN_TO_BCD(yrs);
|
|
}
|
|
|
|
save_control = CMOS_READ(RTC_CONTROL);
|
|
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
|
|
save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
|
|
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
|
|
|
|
CMOS_WRITE(yrs, RTC_YEAR);
|
|
CMOS_WRITE(mon, RTC_MONTH);
|
|
CMOS_WRITE(day, RTC_DAY_OF_MONTH);
|
|
CMOS_WRITE(hrs, RTC_HOURS);
|
|
CMOS_WRITE(min, RTC_MINUTES);
|
|
CMOS_WRITE(sec, RTC_SECONDS);
|
|
|
|
CMOS_WRITE(save_control, RTC_CONTROL);
|
|
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PCI */
|
|
|
|
static void mostek_get_rtc_time(struct rtc_time *rtc_tm)
|
|
{
|
|
void __iomem *regs = mstk48t02_regs;
|
|
u8 tmp;
|
|
|
|
spin_lock_irq(&mostek_lock);
|
|
|
|
tmp = mostek_read(regs + MOSTEK_CREG);
|
|
tmp |= MSTK_CREG_READ;
|
|
mostek_write(regs + MOSTEK_CREG, tmp);
|
|
|
|
rtc_tm->tm_sec = MSTK_REG_SEC(regs);
|
|
rtc_tm->tm_min = MSTK_REG_MIN(regs);
|
|
rtc_tm->tm_hour = MSTK_REG_HOUR(regs);
|
|
rtc_tm->tm_mday = MSTK_REG_DOM(regs);
|
|
rtc_tm->tm_mon = MSTK_REG_MONTH(regs);
|
|
rtc_tm->tm_year = MSTK_CVT_YEAR( MSTK_REG_YEAR(regs) );
|
|
rtc_tm->tm_wday = MSTK_REG_DOW(regs);
|
|
|
|
tmp = mostek_read(regs + MOSTEK_CREG);
|
|
tmp &= ~MSTK_CREG_READ;
|
|
mostek_write(regs + MOSTEK_CREG, tmp);
|
|
|
|
spin_unlock_irq(&mostek_lock);
|
|
|
|
rtc_tm->tm_mon--;
|
|
rtc_tm->tm_wday--;
|
|
rtc_tm->tm_year -= 1900;
|
|
}
|
|
|
|
static int mostek_set_rtc_time(struct rtc_time *rtc_tm)
|
|
{
|
|
unsigned char mon, day, hrs, min, sec, wday;
|
|
void __iomem *regs = mstk48t02_regs;
|
|
unsigned int yrs;
|
|
u8 tmp;
|
|
|
|
yrs = rtc_tm->tm_year + 1900;
|
|
mon = rtc_tm->tm_mon + 1;
|
|
day = rtc_tm->tm_mday;
|
|
wday = rtc_tm->tm_wday + 1;
|
|
hrs = rtc_tm->tm_hour;
|
|
min = rtc_tm->tm_min;
|
|
sec = rtc_tm->tm_sec;
|
|
|
|
spin_lock_irq(&mostek_lock);
|
|
|
|
tmp = mostek_read(regs + MOSTEK_CREG);
|
|
tmp |= MSTK_CREG_WRITE;
|
|
mostek_write(regs + MOSTEK_CREG, tmp);
|
|
|
|
MSTK_SET_REG_SEC(regs, sec);
|
|
MSTK_SET_REG_MIN(regs, min);
|
|
MSTK_SET_REG_HOUR(regs, hrs);
|
|
MSTK_SET_REG_DOW(regs, wday);
|
|
MSTK_SET_REG_DOM(regs, day);
|
|
MSTK_SET_REG_MONTH(regs, mon);
|
|
MSTK_SET_REG_YEAR(regs, yrs - MSTK_YEAR_ZERO);
|
|
|
|
tmp = mostek_read(regs + MOSTEK_CREG);
|
|
tmp &= ~MSTK_CREG_WRITE;
|
|
mostek_write(regs + MOSTEK_CREG, tmp);
|
|
|
|
spin_unlock_irq(&mostek_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct mini_rtc_ops {
|
|
void (*get_rtc_time)(struct rtc_time *);
|
|
int (*set_rtc_time)(struct rtc_time *);
|
|
};
|
|
|
|
static struct mini_rtc_ops starfire_rtc_ops = {
|
|
.get_rtc_time = starfire_get_rtc_time,
|
|
.set_rtc_time = starfire_set_rtc_time,
|
|
};
|
|
|
|
static struct mini_rtc_ops hypervisor_rtc_ops = {
|
|
.get_rtc_time = hypervisor_get_rtc_time,
|
|
.set_rtc_time = hypervisor_set_rtc_time,
|
|
};
|
|
|
|
#ifdef CONFIG_PCI
|
|
static struct mini_rtc_ops bq4802_rtc_ops = {
|
|
.get_rtc_time = bq4802_get_rtc_time,
|
|
.set_rtc_time = bq4802_set_rtc_time,
|
|
};
|
|
|
|
static struct mini_rtc_ops cmos_rtc_ops = {
|
|
.get_rtc_time = cmos_get_rtc_time,
|
|
.set_rtc_time = cmos_set_rtc_time,
|
|
};
|
|
#endif /* CONFIG_PCI */
|
|
|
|
static struct mini_rtc_ops mostek_rtc_ops = {
|
|
.get_rtc_time = mostek_get_rtc_time,
|
|
.set_rtc_time = mostek_set_rtc_time,
|
|
};
|
|
|
|
static struct mini_rtc_ops *mini_rtc_ops;
|
|
|
|
static inline void mini_get_rtc_time(struct rtc_time *time)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
mini_rtc_ops->get_rtc_time(time);
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
}
|
|
|
|
static inline int mini_set_rtc_time(struct rtc_time *time)
|
|
{
|
|
unsigned long flags;
|
|
int err;
|
|
|
|
spin_lock_irqsave(&rtc_lock, flags);
|
|
err = mini_rtc_ops->set_rtc_time(time);
|
|
spin_unlock_irqrestore(&rtc_lock, flags);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int mini_rtc_ioctl(struct inode *inode, struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct rtc_time wtime;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
switch (cmd) {
|
|
|
|
case RTC_PLL_GET:
|
|
return -EINVAL;
|
|
|
|
case RTC_PLL_SET:
|
|
return -EINVAL;
|
|
|
|
case RTC_UIE_OFF: /* disable ints from RTC updates. */
|
|
return 0;
|
|
|
|
case RTC_UIE_ON: /* enable ints for RTC updates. */
|
|
return -EINVAL;
|
|
|
|
case RTC_RD_TIME: /* Read the time/date from RTC */
|
|
/* this doesn't get week-day, who cares */
|
|
memset(&wtime, 0, sizeof(wtime));
|
|
mini_get_rtc_time(&wtime);
|
|
|
|
return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0;
|
|
|
|
case RTC_SET_TIME: /* Set the RTC */
|
|
{
|
|
int year, days;
|
|
|
|
if (!capable(CAP_SYS_TIME))
|
|
return -EACCES;
|
|
|
|
if (copy_from_user(&wtime, argp, sizeof(wtime)))
|
|
return -EFAULT;
|
|
|
|
year = wtime.tm_year + 1900;
|
|
days = month_days[wtime.tm_mon] +
|
|
((wtime.tm_mon == 1) && leapyear(year));
|
|
|
|
if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) ||
|
|
(wtime.tm_mday < 1))
|
|
return -EINVAL;
|
|
|
|
if (wtime.tm_mday < 0 || wtime.tm_mday > days)
|
|
return -EINVAL;
|
|
|
|
if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 ||
|
|
wtime.tm_min < 0 || wtime.tm_min >= 60 ||
|
|
wtime.tm_sec < 0 || wtime.tm_sec >= 60)
|
|
return -EINVAL;
|
|
|
|
return mini_set_rtc_time(&wtime);
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int mini_rtc_open(struct inode *inode, struct file *file)
|
|
{
|
|
lock_kernel();
|
|
if (mini_rtc_status & RTC_IS_OPEN) {
|
|
unlock_kernel();
|
|
return -EBUSY;
|
|
}
|
|
|
|
mini_rtc_status |= RTC_IS_OPEN;
|
|
unlock_kernel();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mini_rtc_release(struct inode *inode, struct file *file)
|
|
{
|
|
mini_rtc_status &= ~RTC_IS_OPEN;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static const struct file_operations mini_rtc_fops = {
|
|
.owner = THIS_MODULE,
|
|
.ioctl = mini_rtc_ioctl,
|
|
.open = mini_rtc_open,
|
|
.release = mini_rtc_release,
|
|
};
|
|
|
|
static struct miscdevice rtc_mini_dev =
|
|
{
|
|
.minor = RTC_MINOR,
|
|
.name = "rtc",
|
|
.fops = &mini_rtc_fops,
|
|
};
|
|
|
|
static int __init rtc_mini_init(void)
|
|
{
|
|
int retval;
|
|
|
|
if (tlb_type == hypervisor)
|
|
mini_rtc_ops = &hypervisor_rtc_ops;
|
|
else if (this_is_starfire)
|
|
mini_rtc_ops = &starfire_rtc_ops;
|
|
#ifdef CONFIG_PCI
|
|
else if (bq4802_regs)
|
|
mini_rtc_ops = &bq4802_rtc_ops;
|
|
else if (ds1287_regs)
|
|
mini_rtc_ops = &cmos_rtc_ops;
|
|
#endif /* CONFIG_PCI */
|
|
else if (mstk48t02_regs)
|
|
mini_rtc_ops = &mostek_rtc_ops;
|
|
else
|
|
return -ENODEV;
|
|
|
|
printk(KERN_INFO "Mini RTC Driver\n");
|
|
|
|
retval = misc_register(&rtc_mini_dev);
|
|
if (retval < 0)
|
|
return retval;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit rtc_mini_exit(void)
|
|
{
|
|
misc_deregister(&rtc_mini_dev);
|
|
}
|
|
|
|
int __devinit read_current_timer(unsigned long *timer_val)
|
|
{
|
|
*timer_val = tick_ops->get_tick();
|
|
return 0;
|
|
}
|
|
|
|
module_init(rtc_mini_init);
|
|
module_exit(rtc_mini_exit);
|