linux/drivers/target/target_core_transport.c
Andy Grover 6708bb27bb target: Follow up core updates from AGrover and HCH (round 4)
This patch contains the squashed version of forth round series cleanups
from Andy and Christoph following the post heavy lifting in the preceeding:
'Eliminate usage of struct se_mem' and 'Make all control CDBs scatter-gather'
changes.  This also includes a conversion of target core and the v3.0
mainline fabric modules (loopback and tcm_fc) to use pr_debug and the
CONFIG_DYNAMIC_DEBUG infrastructure!

These have been squashed into this third and final round for v3.1.

target: Remove ifdeffed code in t_g_process_write
target: Remove direct ramdisk code
target: Rename task_sg_num to task_sg_nents
target: Remove custom debug macros for pr_debug. Use pr_err().
target: Remove custom debug macros in mainline fabrics
target: Set WSNZ=1 in block limits VPD. Abort if WRITE_SAME sectors = 0
target: Remove transport do_se_mem_map callback
target: Further simplify transport_free_pages
target: Redo task allocation return value handling
target: Remove extra parentheses
target: change alloc_task call to take *cdb, not *cmd

(nab: Fix bogus struct file assignments in fd_do_readv and fd_do_writev)

Signed-off-by: Andy Grover <agrover@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2011-07-22 09:37:48 +00:00

5230 lines
140 KiB
C

/*******************************************************************************
* Filename: target_core_transport.c
*
* This file contains the Generic Target Engine Core.
*
* Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
* Copyright (c) 2005, 2006, 2007 SBE, Inc.
* Copyright (c) 2007-2010 Rising Tide Systems
* Copyright (c) 2008-2010 Linux-iSCSI.org
*
* Nicholas A. Bellinger <nab@kernel.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
******************************************************************************/
#include <linux/version.h>
#include <linux/net.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <linux/cdrom.h>
#include <asm/unaligned.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_tcq.h>
#include <target/target_core_base.h>
#include <target/target_core_device.h>
#include <target/target_core_tmr.h>
#include <target/target_core_tpg.h>
#include <target/target_core_transport.h>
#include <target/target_core_fabric_ops.h>
#include <target/target_core_configfs.h>
#include "target_core_alua.h"
#include "target_core_hba.h"
#include "target_core_pr.h"
#include "target_core_scdb.h"
#include "target_core_ua.h"
static int sub_api_initialized;
static struct kmem_cache *se_cmd_cache;
static struct kmem_cache *se_sess_cache;
struct kmem_cache *se_tmr_req_cache;
struct kmem_cache *se_ua_cache;
struct kmem_cache *t10_pr_reg_cache;
struct kmem_cache *t10_alua_lu_gp_cache;
struct kmem_cache *t10_alua_lu_gp_mem_cache;
struct kmem_cache *t10_alua_tg_pt_gp_cache;
struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
/* Used for transport_dev_get_map_*() */
typedef int (*map_func_t)(struct se_task *, u32);
static int transport_generic_write_pending(struct se_cmd *);
static int transport_processing_thread(void *param);
static int __transport_execute_tasks(struct se_device *dev);
static void transport_complete_task_attr(struct se_cmd *cmd);
static int transport_complete_qf(struct se_cmd *cmd);
static void transport_handle_queue_full(struct se_cmd *cmd,
struct se_device *dev, int (*qf_callback)(struct se_cmd *));
static void transport_direct_request_timeout(struct se_cmd *cmd);
static void transport_free_dev_tasks(struct se_cmd *cmd);
static u32 transport_allocate_tasks(struct se_cmd *cmd,
unsigned long long starting_lba,
enum dma_data_direction data_direction,
struct scatterlist *sgl, unsigned int nents);
static int transport_generic_get_mem(struct se_cmd *cmd);
static int transport_generic_remove(struct se_cmd *cmd,
int session_reinstatement);
static void transport_release_fe_cmd(struct se_cmd *cmd);
static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
struct se_queue_obj *qobj);
static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
static void transport_stop_all_task_timers(struct se_cmd *cmd);
int init_se_kmem_caches(void)
{
se_cmd_cache = kmem_cache_create("se_cmd_cache",
sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
if (!se_cmd_cache) {
pr_err("kmem_cache_create for struct se_cmd failed\n");
goto out;
}
se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
0, NULL);
if (!se_tmr_req_cache) {
pr_err("kmem_cache_create() for struct se_tmr_req"
" failed\n");
goto out;
}
se_sess_cache = kmem_cache_create("se_sess_cache",
sizeof(struct se_session), __alignof__(struct se_session),
0, NULL);
if (!se_sess_cache) {
pr_err("kmem_cache_create() for struct se_session"
" failed\n");
goto out;
}
se_ua_cache = kmem_cache_create("se_ua_cache",
sizeof(struct se_ua), __alignof__(struct se_ua),
0, NULL);
if (!se_ua_cache) {
pr_err("kmem_cache_create() for struct se_ua failed\n");
goto out;
}
t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
sizeof(struct t10_pr_registration),
__alignof__(struct t10_pr_registration), 0, NULL);
if (!t10_pr_reg_cache) {
pr_err("kmem_cache_create() for struct t10_pr_registration"
" failed\n");
goto out;
}
t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
0, NULL);
if (!t10_alua_lu_gp_cache) {
pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
" failed\n");
goto out;
}
t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
sizeof(struct t10_alua_lu_gp_member),
__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
if (!t10_alua_lu_gp_mem_cache) {
pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
"cache failed\n");
goto out;
}
t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
sizeof(struct t10_alua_tg_pt_gp),
__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
if (!t10_alua_tg_pt_gp_cache) {
pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
"cache failed\n");
goto out;
}
t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
"t10_alua_tg_pt_gp_mem_cache",
sizeof(struct t10_alua_tg_pt_gp_member),
__alignof__(struct t10_alua_tg_pt_gp_member),
0, NULL);
if (!t10_alua_tg_pt_gp_mem_cache) {
pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
"mem_t failed\n");
goto out;
}
return 0;
out:
if (se_cmd_cache)
kmem_cache_destroy(se_cmd_cache);
if (se_tmr_req_cache)
kmem_cache_destroy(se_tmr_req_cache);
if (se_sess_cache)
kmem_cache_destroy(se_sess_cache);
if (se_ua_cache)
kmem_cache_destroy(se_ua_cache);
if (t10_pr_reg_cache)
kmem_cache_destroy(t10_pr_reg_cache);
if (t10_alua_lu_gp_cache)
kmem_cache_destroy(t10_alua_lu_gp_cache);
if (t10_alua_lu_gp_mem_cache)
kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
if (t10_alua_tg_pt_gp_cache)
kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
if (t10_alua_tg_pt_gp_mem_cache)
kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
return -ENOMEM;
}
void release_se_kmem_caches(void)
{
kmem_cache_destroy(se_cmd_cache);
kmem_cache_destroy(se_tmr_req_cache);
kmem_cache_destroy(se_sess_cache);
kmem_cache_destroy(se_ua_cache);
kmem_cache_destroy(t10_pr_reg_cache);
kmem_cache_destroy(t10_alua_lu_gp_cache);
kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
}
/* This code ensures unique mib indexes are handed out. */
static DEFINE_SPINLOCK(scsi_mib_index_lock);
static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
/*
* Allocate a new row index for the entry type specified
*/
u32 scsi_get_new_index(scsi_index_t type)
{
u32 new_index;
BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
spin_lock(&scsi_mib_index_lock);
new_index = ++scsi_mib_index[type];
spin_unlock(&scsi_mib_index_lock);
return new_index;
}
void transport_init_queue_obj(struct se_queue_obj *qobj)
{
atomic_set(&qobj->queue_cnt, 0);
INIT_LIST_HEAD(&qobj->qobj_list);
init_waitqueue_head(&qobj->thread_wq);
spin_lock_init(&qobj->cmd_queue_lock);
}
EXPORT_SYMBOL(transport_init_queue_obj);
static int transport_subsystem_reqmods(void)
{
int ret;
ret = request_module("target_core_iblock");
if (ret != 0)
pr_err("Unable to load target_core_iblock\n");
ret = request_module("target_core_file");
if (ret != 0)
pr_err("Unable to load target_core_file\n");
ret = request_module("target_core_pscsi");
if (ret != 0)
pr_err("Unable to load target_core_pscsi\n");
ret = request_module("target_core_stgt");
if (ret != 0)
pr_err("Unable to load target_core_stgt\n");
return 0;
}
int transport_subsystem_check_init(void)
{
int ret;
if (sub_api_initialized)
return 0;
/*
* Request the loading of known TCM subsystem plugins..
*/
ret = transport_subsystem_reqmods();
if (ret < 0)
return ret;
sub_api_initialized = 1;
return 0;
}
struct se_session *transport_init_session(void)
{
struct se_session *se_sess;
se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
if (!se_sess) {
pr_err("Unable to allocate struct se_session from"
" se_sess_cache\n");
return ERR_PTR(-ENOMEM);
}
INIT_LIST_HEAD(&se_sess->sess_list);
INIT_LIST_HEAD(&se_sess->sess_acl_list);
return se_sess;
}
EXPORT_SYMBOL(transport_init_session);
/*
* Called with spin_lock_bh(&struct se_portal_group->session_lock called.
*/
void __transport_register_session(
struct se_portal_group *se_tpg,
struct se_node_acl *se_nacl,
struct se_session *se_sess,
void *fabric_sess_ptr)
{
unsigned char buf[PR_REG_ISID_LEN];
se_sess->se_tpg = se_tpg;
se_sess->fabric_sess_ptr = fabric_sess_ptr;
/*
* Used by struct se_node_acl's under ConfigFS to locate active se_session-t
*
* Only set for struct se_session's that will actually be moving I/O.
* eg: *NOT* discovery sessions.
*/
if (se_nacl) {
/*
* If the fabric module supports an ISID based TransportID,
* save this value in binary from the fabric I_T Nexus now.
*/
if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
memset(&buf[0], 0, PR_REG_ISID_LEN);
se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
&buf[0], PR_REG_ISID_LEN);
se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
}
spin_lock_irq(&se_nacl->nacl_sess_lock);
/*
* The se_nacl->nacl_sess pointer will be set to the
* last active I_T Nexus for each struct se_node_acl.
*/
se_nacl->nacl_sess = se_sess;
list_add_tail(&se_sess->sess_acl_list,
&se_nacl->acl_sess_list);
spin_unlock_irq(&se_nacl->nacl_sess_lock);
}
list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
}
EXPORT_SYMBOL(__transport_register_session);
void transport_register_session(
struct se_portal_group *se_tpg,
struct se_node_acl *se_nacl,
struct se_session *se_sess,
void *fabric_sess_ptr)
{
spin_lock_bh(&se_tpg->session_lock);
__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
spin_unlock_bh(&se_tpg->session_lock);
}
EXPORT_SYMBOL(transport_register_session);
void transport_deregister_session_configfs(struct se_session *se_sess)
{
struct se_node_acl *se_nacl;
unsigned long flags;
/*
* Used by struct se_node_acl's under ConfigFS to locate active struct se_session
*/
se_nacl = se_sess->se_node_acl;
if (se_nacl) {
spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
list_del(&se_sess->sess_acl_list);
/*
* If the session list is empty, then clear the pointer.
* Otherwise, set the struct se_session pointer from the tail
* element of the per struct se_node_acl active session list.
*/
if (list_empty(&se_nacl->acl_sess_list))
se_nacl->nacl_sess = NULL;
else {
se_nacl->nacl_sess = container_of(
se_nacl->acl_sess_list.prev,
struct se_session, sess_acl_list);
}
spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
}
}
EXPORT_SYMBOL(transport_deregister_session_configfs);
void transport_free_session(struct se_session *se_sess)
{
kmem_cache_free(se_sess_cache, se_sess);
}
EXPORT_SYMBOL(transport_free_session);
void transport_deregister_session(struct se_session *se_sess)
{
struct se_portal_group *se_tpg = se_sess->se_tpg;
struct se_node_acl *se_nacl;
if (!se_tpg) {
transport_free_session(se_sess);
return;
}
spin_lock_bh(&se_tpg->session_lock);
list_del(&se_sess->sess_list);
se_sess->se_tpg = NULL;
se_sess->fabric_sess_ptr = NULL;
spin_unlock_bh(&se_tpg->session_lock);
/*
* Determine if we need to do extra work for this initiator node's
* struct se_node_acl if it had been previously dynamically generated.
*/
se_nacl = se_sess->se_node_acl;
if (se_nacl) {
spin_lock_bh(&se_tpg->acl_node_lock);
if (se_nacl->dynamic_node_acl) {
if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
se_tpg)) {
list_del(&se_nacl->acl_list);
se_tpg->num_node_acls--;
spin_unlock_bh(&se_tpg->acl_node_lock);
core_tpg_wait_for_nacl_pr_ref(se_nacl);
core_free_device_list_for_node(se_nacl, se_tpg);
se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
se_nacl);
spin_lock_bh(&se_tpg->acl_node_lock);
}
}
spin_unlock_bh(&se_tpg->acl_node_lock);
}
transport_free_session(se_sess);
pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
se_tpg->se_tpg_tfo->get_fabric_name());
}
EXPORT_SYMBOL(transport_deregister_session);
/*
* Called with cmd->t_state_lock held.
*/
static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
{
struct se_device *dev;
struct se_task *task;
unsigned long flags;
list_for_each_entry(task, &cmd->t_task_list, t_list) {
dev = task->se_dev;
if (!dev)
continue;
if (atomic_read(&task->task_active))
continue;
if (!atomic_read(&task->task_state_active))
continue;
spin_lock_irqsave(&dev->execute_task_lock, flags);
list_del(&task->t_state_list);
pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
cmd->se_tfo->get_task_tag(cmd), dev, task);
spin_unlock_irqrestore(&dev->execute_task_lock, flags);
atomic_set(&task->task_state_active, 0);
atomic_dec(&cmd->t_task_cdbs_ex_left);
}
}
/* transport_cmd_check_stop():
*
* 'transport_off = 1' determines if t_transport_active should be cleared.
* 'transport_off = 2' determines if task_dev_state should be removed.
*
* A non-zero u8 t_state sets cmd->t_state.
* Returns 1 when command is stopped, else 0.
*/
static int transport_cmd_check_stop(
struct se_cmd *cmd,
int transport_off,
u8 t_state)
{
unsigned long flags;
spin_lock_irqsave(&cmd->t_state_lock, flags);
/*
* Determine if IOCTL context caller in requesting the stopping of this
* command for LUN shutdown purposes.
*/
if (atomic_read(&cmd->transport_lun_stop)) {
pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
" == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
cmd->se_tfo->get_task_tag(cmd));
cmd->deferred_t_state = cmd->t_state;
cmd->t_state = TRANSPORT_DEFERRED_CMD;
atomic_set(&cmd->t_transport_active, 0);
if (transport_off == 2)
transport_all_task_dev_remove_state(cmd);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
complete(&cmd->transport_lun_stop_comp);
return 1;
}
/*
* Determine if frontend context caller is requesting the stopping of
* this command for frontend exceptions.
*/
if (atomic_read(&cmd->t_transport_stop)) {
pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
" TRUE for ITT: 0x%08x\n", __func__, __LINE__,
cmd->se_tfo->get_task_tag(cmd));
cmd->deferred_t_state = cmd->t_state;
cmd->t_state = TRANSPORT_DEFERRED_CMD;
if (transport_off == 2)
transport_all_task_dev_remove_state(cmd);
/*
* Clear struct se_cmd->se_lun before the transport_off == 2 handoff
* to FE.
*/
if (transport_off == 2)
cmd->se_lun = NULL;
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
complete(&cmd->t_transport_stop_comp);
return 1;
}
if (transport_off) {
atomic_set(&cmd->t_transport_active, 0);
if (transport_off == 2) {
transport_all_task_dev_remove_state(cmd);
/*
* Clear struct se_cmd->se_lun before the transport_off == 2
* handoff to fabric module.
*/
cmd->se_lun = NULL;
/*
* Some fabric modules like tcm_loop can release
* their internally allocated I/O reference now and
* struct se_cmd now.
*/
if (cmd->se_tfo->check_stop_free != NULL) {
spin_unlock_irqrestore(
&cmd->t_state_lock, flags);
cmd->se_tfo->check_stop_free(cmd);
return 1;
}
}
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
return 0;
} else if (t_state)
cmd->t_state = t_state;
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
return 0;
}
static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
{
return transport_cmd_check_stop(cmd, 2, 0);
}
static void transport_lun_remove_cmd(struct se_cmd *cmd)
{
struct se_lun *lun = cmd->se_lun;
unsigned long flags;
if (!lun)
return;
spin_lock_irqsave(&cmd->t_state_lock, flags);
if (!atomic_read(&cmd->transport_dev_active)) {
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
goto check_lun;
}
atomic_set(&cmd->transport_dev_active, 0);
transport_all_task_dev_remove_state(cmd);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
check_lun:
spin_lock_irqsave(&lun->lun_cmd_lock, flags);
if (atomic_read(&cmd->transport_lun_active)) {
list_del(&cmd->se_lun_node);
atomic_set(&cmd->transport_lun_active, 0);
#if 0
pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
#endif
}
spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
}
void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
{
transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
transport_lun_remove_cmd(cmd);
if (transport_cmd_check_stop_to_fabric(cmd))
return;
if (remove)
transport_generic_remove(cmd, 0);
}
void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
{
transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
if (transport_cmd_check_stop_to_fabric(cmd))
return;
transport_generic_remove(cmd, 0);
}
static void transport_add_cmd_to_queue(
struct se_cmd *cmd,
int t_state)
{
struct se_device *dev = cmd->se_dev;
struct se_queue_obj *qobj = &dev->dev_queue_obj;
unsigned long flags;
INIT_LIST_HEAD(&cmd->se_queue_node);
if (t_state) {
spin_lock_irqsave(&cmd->t_state_lock, flags);
cmd->t_state = t_state;
atomic_set(&cmd->t_transport_active, 1);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}
spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
list_add(&cmd->se_queue_node, &qobj->qobj_list);
} else
list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
atomic_inc(&cmd->t_transport_queue_active);
spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
atomic_inc(&qobj->queue_cnt);
wake_up_interruptible(&qobj->thread_wq);
}
static struct se_cmd *
transport_get_cmd_from_queue(struct se_queue_obj *qobj)
{
struct se_cmd *cmd;
unsigned long flags;
spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
if (list_empty(&qobj->qobj_list)) {
spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
return NULL;
}
cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
atomic_dec(&cmd->t_transport_queue_active);
list_del(&cmd->se_queue_node);
atomic_dec(&qobj->queue_cnt);
spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
return cmd;
}
static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
struct se_queue_obj *qobj)
{
struct se_cmd *t;
unsigned long flags;
spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
if (!atomic_read(&cmd->t_transport_queue_active)) {
spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
return;
}
list_for_each_entry(t, &qobj->qobj_list, se_queue_node)
if (t == cmd) {
atomic_dec(&cmd->t_transport_queue_active);
atomic_dec(&qobj->queue_cnt);
list_del(&cmd->se_queue_node);
break;
}
spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
if (atomic_read(&cmd->t_transport_queue_active)) {
pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
cmd->se_tfo->get_task_tag(cmd),
atomic_read(&cmd->t_transport_queue_active));
}
}
/*
* Completion function used by TCM subsystem plugins (such as FILEIO)
* for queueing up response from struct se_subsystem_api->do_task()
*/
void transport_complete_sync_cache(struct se_cmd *cmd, int good)
{
struct se_task *task = list_entry(cmd->t_task_list.next,
struct se_task, t_list);
if (good) {
cmd->scsi_status = SAM_STAT_GOOD;
task->task_scsi_status = GOOD;
} else {
task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
task->task_se_cmd->transport_error_status =
PYX_TRANSPORT_ILLEGAL_REQUEST;
}
transport_complete_task(task, good);
}
EXPORT_SYMBOL(transport_complete_sync_cache);
/* transport_complete_task():
*
* Called from interrupt and non interrupt context depending
* on the transport plugin.
*/
void transport_complete_task(struct se_task *task, int success)
{
struct se_cmd *cmd = task->task_se_cmd;
struct se_device *dev = task->se_dev;
int t_state;
unsigned long flags;
#if 0
pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
cmd->t_task_cdb[0], dev);
#endif
if (dev)
atomic_inc(&dev->depth_left);
spin_lock_irqsave(&cmd->t_state_lock, flags);
atomic_set(&task->task_active, 0);
/*
* See if any sense data exists, if so set the TASK_SENSE flag.
* Also check for any other post completion work that needs to be
* done by the plugins.
*/
if (dev && dev->transport->transport_complete) {
if (dev->transport->transport_complete(task) != 0) {
cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
task->task_sense = 1;
success = 1;
}
}
/*
* See if we are waiting for outstanding struct se_task
* to complete for an exception condition
*/
if (atomic_read(&task->task_stop)) {
/*
* Decrement cmd->t_se_count if this task had
* previously thrown its timeout exception handler.
*/
if (atomic_read(&task->task_timeout)) {
atomic_dec(&cmd->t_se_count);
atomic_set(&task->task_timeout, 0);
}
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
complete(&task->task_stop_comp);
return;
}
/*
* If the task's timeout handler has fired, use the t_task_cdbs_timeout
* left counter to determine when the struct se_cmd is ready to be queued to
* the processing thread.
*/
if (atomic_read(&task->task_timeout)) {
if (!atomic_dec_and_test(
&cmd->t_task_cdbs_timeout_left)) {
spin_unlock_irqrestore(&cmd->t_state_lock,
flags);
return;
}
t_state = TRANSPORT_COMPLETE_TIMEOUT;
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
transport_add_cmd_to_queue(cmd, t_state);
return;
}
atomic_dec(&cmd->t_task_cdbs_timeout_left);
/*
* Decrement the outstanding t_task_cdbs_left count. The last
* struct se_task from struct se_cmd will complete itself into the
* device queue depending upon int success.
*/
if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
if (!success)
cmd->t_tasks_failed = 1;
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
return;
}
if (!success || cmd->t_tasks_failed) {
t_state = TRANSPORT_COMPLETE_FAILURE;
if (!task->task_error_status) {
task->task_error_status =
PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
cmd->transport_error_status =
PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
}
} else {
atomic_set(&cmd->t_transport_complete, 1);
t_state = TRANSPORT_COMPLETE_OK;
}
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
transport_add_cmd_to_queue(cmd, t_state);
}
EXPORT_SYMBOL(transport_complete_task);
/*
* Called by transport_add_tasks_from_cmd() once a struct se_cmd's
* struct se_task list are ready to be added to the active execution list
* struct se_device
* Called with se_dev_t->execute_task_lock called.
*/
static inline int transport_add_task_check_sam_attr(
struct se_task *task,
struct se_task *task_prev,
struct se_device *dev)
{
/*
* No SAM Task attribute emulation enabled, add to tail of
* execution queue
*/
if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
list_add_tail(&task->t_execute_list, &dev->execute_task_list);
return 0;
}
/*
* HEAD_OF_QUEUE attribute for received CDB, which means
* the first task that is associated with a struct se_cmd goes to
* head of the struct se_device->execute_task_list, and task_prev
* after that for each subsequent task
*/
if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
list_add(&task->t_execute_list,
(task_prev != NULL) ?
&task_prev->t_execute_list :
&dev->execute_task_list);
pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
" in execution queue\n",
task->task_se_cmd->t_task_cdb[0]);
return 1;
}
/*
* For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
* transitioned from Dermant -> Active state, and are added to the end
* of the struct se_device->execute_task_list
*/
list_add_tail(&task->t_execute_list, &dev->execute_task_list);
return 0;
}
/* __transport_add_task_to_execute_queue():
*
* Called with se_dev_t->execute_task_lock called.
*/
static void __transport_add_task_to_execute_queue(
struct se_task *task,
struct se_task *task_prev,
struct se_device *dev)
{
int head_of_queue;
head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
atomic_inc(&dev->execute_tasks);
if (atomic_read(&task->task_state_active))
return;
/*
* Determine if this task needs to go to HEAD_OF_QUEUE for the
* state list as well. Running with SAM Task Attribute emulation
* will always return head_of_queue == 0 here
*/
if (head_of_queue)
list_add(&task->t_state_list, (task_prev) ?
&task_prev->t_state_list :
&dev->state_task_list);
else
list_add_tail(&task->t_state_list, &dev->state_task_list);
atomic_set(&task->task_state_active, 1);
pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
task, dev);
}
static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
{
struct se_device *dev;
struct se_task *task;
unsigned long flags;
spin_lock_irqsave(&cmd->t_state_lock, flags);
list_for_each_entry(task, &cmd->t_task_list, t_list) {
dev = task->se_dev;
if (atomic_read(&task->task_state_active))
continue;
spin_lock(&dev->execute_task_lock);
list_add_tail(&task->t_state_list, &dev->state_task_list);
atomic_set(&task->task_state_active, 1);
pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
task->task_se_cmd->se_tfo->get_task_tag(
task->task_se_cmd), task, dev);
spin_unlock(&dev->execute_task_lock);
}
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}
static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
struct se_task *task, *task_prev = NULL;
unsigned long flags;
spin_lock_irqsave(&dev->execute_task_lock, flags);
list_for_each_entry(task, &cmd->t_task_list, t_list) {
if (atomic_read(&task->task_execute_queue))
continue;
/*
* __transport_add_task_to_execute_queue() handles the
* SAM Task Attribute emulation if enabled
*/
__transport_add_task_to_execute_queue(task, task_prev, dev);
atomic_set(&task->task_execute_queue, 1);
task_prev = task;
}
spin_unlock_irqrestore(&dev->execute_task_lock, flags);
}
/* transport_remove_task_from_execute_queue():
*
*
*/
void transport_remove_task_from_execute_queue(
struct se_task *task,
struct se_device *dev)
{
unsigned long flags;
if (atomic_read(&task->task_execute_queue) == 0) {
dump_stack();
return;
}
spin_lock_irqsave(&dev->execute_task_lock, flags);
list_del(&task->t_execute_list);
atomic_set(&task->task_execute_queue, 0);
atomic_dec(&dev->execute_tasks);
spin_unlock_irqrestore(&dev->execute_task_lock, flags);
}
/*
* Handle QUEUE_FULL / -EAGAIN status
*/
static void target_qf_do_work(struct work_struct *work)
{
struct se_device *dev = container_of(work, struct se_device,
qf_work_queue);
struct se_cmd *cmd, *cmd_tmp;
spin_lock_irq(&dev->qf_cmd_lock);
list_for_each_entry_safe(cmd, cmd_tmp, &dev->qf_cmd_list, se_qf_node) {
list_del(&cmd->se_qf_node);
atomic_dec(&dev->dev_qf_count);
smp_mb__after_atomic_dec();
spin_unlock_irq(&dev->qf_cmd_lock);
pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
(cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
: "UNKNOWN");
/*
* The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
* has been added to head of queue
*/
transport_add_cmd_to_queue(cmd, cmd->t_state);
spin_lock_irq(&dev->qf_cmd_lock);
}
spin_unlock_irq(&dev->qf_cmd_lock);
}
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
{
switch (cmd->data_direction) {
case DMA_NONE:
return "NONE";
case DMA_FROM_DEVICE:
return "READ";
case DMA_TO_DEVICE:
return "WRITE";
case DMA_BIDIRECTIONAL:
return "BIDI";
default:
break;
}
return "UNKNOWN";
}
void transport_dump_dev_state(
struct se_device *dev,
char *b,
int *bl)
{
*bl += sprintf(b + *bl, "Status: ");
switch (dev->dev_status) {
case TRANSPORT_DEVICE_ACTIVATED:
*bl += sprintf(b + *bl, "ACTIVATED");
break;
case TRANSPORT_DEVICE_DEACTIVATED:
*bl += sprintf(b + *bl, "DEACTIVATED");
break;
case TRANSPORT_DEVICE_SHUTDOWN:
*bl += sprintf(b + *bl, "SHUTDOWN");
break;
case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
*bl += sprintf(b + *bl, "OFFLINE");
break;
default:
*bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
break;
}
*bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
dev->queue_depth);
*bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
*bl += sprintf(b + *bl, " ");
}
/* transport_release_all_cmds():
*
*
*/
static void transport_release_all_cmds(struct se_device *dev)
{
struct se_cmd *cmd, *tcmd;
int bug_out = 0, t_state;
unsigned long flags;
spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
list_for_each_entry_safe(cmd, tcmd, &dev->dev_queue_obj.qobj_list,
se_queue_node) {
t_state = cmd->t_state;
list_del(&cmd->se_queue_node);
spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock,
flags);
pr_err("Releasing ITT: 0x%08x, i_state: %u,"
" t_state: %u directly\n",
cmd->se_tfo->get_task_tag(cmd),
cmd->se_tfo->get_cmd_state(cmd), t_state);
transport_release_fe_cmd(cmd);
bug_out = 1;
spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
}
spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, flags);
#if 0
if (bug_out)
BUG();
#endif
}
void transport_dump_vpd_proto_id(
struct t10_vpd *vpd,
unsigned char *p_buf,
int p_buf_len)
{
unsigned char buf[VPD_TMP_BUF_SIZE];
int len;
memset(buf, 0, VPD_TMP_BUF_SIZE);
len = sprintf(buf, "T10 VPD Protocol Identifier: ");
switch (vpd->protocol_identifier) {
case 0x00:
sprintf(buf+len, "Fibre Channel\n");
break;
case 0x10:
sprintf(buf+len, "Parallel SCSI\n");
break;
case 0x20:
sprintf(buf+len, "SSA\n");
break;
case 0x30:
sprintf(buf+len, "IEEE 1394\n");
break;
case 0x40:
sprintf(buf+len, "SCSI Remote Direct Memory Access"
" Protocol\n");
break;
case 0x50:
sprintf(buf+len, "Internet SCSI (iSCSI)\n");
break;
case 0x60:
sprintf(buf+len, "SAS Serial SCSI Protocol\n");
break;
case 0x70:
sprintf(buf+len, "Automation/Drive Interface Transport"
" Protocol\n");
break;
case 0x80:
sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
break;
default:
sprintf(buf+len, "Unknown 0x%02x\n",
vpd->protocol_identifier);
break;
}
if (p_buf)
strncpy(p_buf, buf, p_buf_len);
else
pr_debug("%s", buf);
}
void
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
{
/*
* Check if the Protocol Identifier Valid (PIV) bit is set..
*
* from spc3r23.pdf section 7.5.1
*/
if (page_83[1] & 0x80) {
vpd->protocol_identifier = (page_83[0] & 0xf0);
vpd->protocol_identifier_set = 1;
transport_dump_vpd_proto_id(vpd, NULL, 0);
}
}
EXPORT_SYMBOL(transport_set_vpd_proto_id);
int transport_dump_vpd_assoc(
struct t10_vpd *vpd,
unsigned char *p_buf,
int p_buf_len)
{
unsigned char buf[VPD_TMP_BUF_SIZE];
int ret = 0;
int len;
memset(buf, 0, VPD_TMP_BUF_SIZE);
len = sprintf(buf, "T10 VPD Identifier Association: ");
switch (vpd->association) {
case 0x00:
sprintf(buf+len, "addressed logical unit\n");
break;
case 0x10:
sprintf(buf+len, "target port\n");
break;
case 0x20:
sprintf(buf+len, "SCSI target device\n");
break;
default:
sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
ret = -EINVAL;
break;
}
if (p_buf)
strncpy(p_buf, buf, p_buf_len);
else
pr_debug("%s", buf);
return ret;
}
int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
{
/*
* The VPD identification association..
*
* from spc3r23.pdf Section 7.6.3.1 Table 297
*/
vpd->association = (page_83[1] & 0x30);
return transport_dump_vpd_assoc(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_assoc);
int transport_dump_vpd_ident_type(
struct t10_vpd *vpd,
unsigned char *p_buf,
int p_buf_len)
{
unsigned char buf[VPD_TMP_BUF_SIZE];
int ret = 0;
int len;
memset(buf, 0, VPD_TMP_BUF_SIZE);
len = sprintf(buf, "T10 VPD Identifier Type: ");
switch (vpd->device_identifier_type) {
case 0x00:
sprintf(buf+len, "Vendor specific\n");
break;
case 0x01:
sprintf(buf+len, "T10 Vendor ID based\n");
break;
case 0x02:
sprintf(buf+len, "EUI-64 based\n");
break;
case 0x03:
sprintf(buf+len, "NAA\n");
break;
case 0x04:
sprintf(buf+len, "Relative target port identifier\n");
break;
case 0x08:
sprintf(buf+len, "SCSI name string\n");
break;
default:
sprintf(buf+len, "Unsupported: 0x%02x\n",
vpd->device_identifier_type);
ret = -EINVAL;
break;
}
if (p_buf) {
if (p_buf_len < strlen(buf)+1)
return -EINVAL;
strncpy(p_buf, buf, p_buf_len);
} else {
pr_debug("%s", buf);
}
return ret;
}
int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
{
/*
* The VPD identifier type..
*
* from spc3r23.pdf Section 7.6.3.1 Table 298
*/
vpd->device_identifier_type = (page_83[1] & 0x0f);
return transport_dump_vpd_ident_type(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident_type);
int transport_dump_vpd_ident(
struct t10_vpd *vpd,
unsigned char *p_buf,
int p_buf_len)
{
unsigned char buf[VPD_TMP_BUF_SIZE];
int ret = 0;
memset(buf, 0, VPD_TMP_BUF_SIZE);
switch (vpd->device_identifier_code_set) {
case 0x01: /* Binary */
sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
&vpd->device_identifier[0]);
break;
case 0x02: /* ASCII */
sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
&vpd->device_identifier[0]);
break;
case 0x03: /* UTF-8 */
sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
&vpd->device_identifier[0]);
break;
default:
sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
" 0x%02x", vpd->device_identifier_code_set);
ret = -EINVAL;
break;
}
if (p_buf)
strncpy(p_buf, buf, p_buf_len);
else
pr_debug("%s", buf);
return ret;
}
int
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
{
static const char hex_str[] = "0123456789abcdef";
int j = 0, i = 4; /* offset to start of the identifer */
/*
* The VPD Code Set (encoding)
*
* from spc3r23.pdf Section 7.6.3.1 Table 296
*/
vpd->device_identifier_code_set = (page_83[0] & 0x0f);
switch (vpd->device_identifier_code_set) {
case 0x01: /* Binary */
vpd->device_identifier[j++] =
hex_str[vpd->device_identifier_type];
while (i < (4 + page_83[3])) {
vpd->device_identifier[j++] =
hex_str[(page_83[i] & 0xf0) >> 4];
vpd->device_identifier[j++] =
hex_str[page_83[i] & 0x0f];
i++;
}
break;
case 0x02: /* ASCII */
case 0x03: /* UTF-8 */
while (i < (4 + page_83[3]))
vpd->device_identifier[j++] = page_83[i++];
break;
default:
break;
}
return transport_dump_vpd_ident(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident);
static void core_setup_task_attr_emulation(struct se_device *dev)
{
/*
* If this device is from Target_Core_Mod/pSCSI, disable the
* SAM Task Attribute emulation.
*
* This is currently not available in upsream Linux/SCSI Target
* mode code, and is assumed to be disabled while using TCM/pSCSI.
*/
if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
return;
}
dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
" device\n", dev->transport->name,
dev->transport->get_device_rev(dev));
}
static void scsi_dump_inquiry(struct se_device *dev)
{
struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
int i, device_type;
/*
* Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
*/
pr_debug(" Vendor: ");
for (i = 0; i < 8; i++)
if (wwn->vendor[i] >= 0x20)
pr_debug("%c", wwn->vendor[i]);
else
pr_debug(" ");
pr_debug(" Model: ");
for (i = 0; i < 16; i++)
if (wwn->model[i] >= 0x20)
pr_debug("%c", wwn->model[i]);
else
pr_debug(" ");
pr_debug(" Revision: ");
for (i = 0; i < 4; i++)
if (wwn->revision[i] >= 0x20)
pr_debug("%c", wwn->revision[i]);
else
pr_debug(" ");
pr_debug("\n");
device_type = dev->transport->get_device_type(dev);
pr_debug(" Type: %s ", scsi_device_type(device_type));
pr_debug(" ANSI SCSI revision: %02x\n",
dev->transport->get_device_rev(dev));
}
struct se_device *transport_add_device_to_core_hba(
struct se_hba *hba,
struct se_subsystem_api *transport,
struct se_subsystem_dev *se_dev,
u32 device_flags,
void *transport_dev,
struct se_dev_limits *dev_limits,
const char *inquiry_prod,
const char *inquiry_rev)
{
int force_pt;
struct se_device *dev;
dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
if (!dev) {
pr_err("Unable to allocate memory for se_dev_t\n");
return NULL;
}
transport_init_queue_obj(&dev->dev_queue_obj);
dev->dev_flags = device_flags;
dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
dev->dev_ptr = transport_dev;
dev->se_hba = hba;
dev->se_sub_dev = se_dev;
dev->transport = transport;
atomic_set(&dev->active_cmds, 0);
INIT_LIST_HEAD(&dev->dev_list);
INIT_LIST_HEAD(&dev->dev_sep_list);
INIT_LIST_HEAD(&dev->dev_tmr_list);
INIT_LIST_HEAD(&dev->execute_task_list);
INIT_LIST_HEAD(&dev->delayed_cmd_list);
INIT_LIST_HEAD(&dev->ordered_cmd_list);
INIT_LIST_HEAD(&dev->state_task_list);
INIT_LIST_HEAD(&dev->qf_cmd_list);
spin_lock_init(&dev->execute_task_lock);
spin_lock_init(&dev->delayed_cmd_lock);
spin_lock_init(&dev->ordered_cmd_lock);
spin_lock_init(&dev->state_task_lock);
spin_lock_init(&dev->dev_alua_lock);
spin_lock_init(&dev->dev_reservation_lock);
spin_lock_init(&dev->dev_status_lock);
spin_lock_init(&dev->dev_status_thr_lock);
spin_lock_init(&dev->se_port_lock);
spin_lock_init(&dev->se_tmr_lock);
spin_lock_init(&dev->qf_cmd_lock);
dev->queue_depth = dev_limits->queue_depth;
atomic_set(&dev->depth_left, dev->queue_depth);
atomic_set(&dev->dev_ordered_id, 0);
se_dev_set_default_attribs(dev, dev_limits);
dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
dev->creation_time = get_jiffies_64();
spin_lock_init(&dev->stats_lock);
spin_lock(&hba->device_lock);
list_add_tail(&dev->dev_list, &hba->hba_dev_list);
hba->dev_count++;
spin_unlock(&hba->device_lock);
/*
* Setup the SAM Task Attribute emulation for struct se_device
*/
core_setup_task_attr_emulation(dev);
/*
* Force PR and ALUA passthrough emulation with internal object use.
*/
force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
/*
* Setup the Reservations infrastructure for struct se_device
*/
core_setup_reservations(dev, force_pt);
/*
* Setup the Asymmetric Logical Unit Assignment for struct se_device
*/
if (core_setup_alua(dev, force_pt) < 0)
goto out;
/*
* Startup the struct se_device processing thread
*/
dev->process_thread = kthread_run(transport_processing_thread, dev,
"LIO_%s", dev->transport->name);
if (IS_ERR(dev->process_thread)) {
pr_err("Unable to create kthread: LIO_%s\n",
dev->transport->name);
goto out;
}
/*
* Setup work_queue for QUEUE_FULL
*/
INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
/*
* Preload the initial INQUIRY const values if we are doing
* anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
* passthrough because this is being provided by the backend LLD.
* This is required so that transport_get_inquiry() copies these
* originals once back into DEV_T10_WWN(dev) for the virtual device
* setup.
*/
if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
if (!inquiry_prod || !inquiry_rev) {
pr_err("All non TCM/pSCSI plugins require"
" INQUIRY consts\n");
goto out;
}
strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
}
scsi_dump_inquiry(dev);
return dev;
out:
kthread_stop(dev->process_thread);
spin_lock(&hba->device_lock);
list_del(&dev->dev_list);
hba->dev_count--;
spin_unlock(&hba->device_lock);
se_release_vpd_for_dev(dev);
kfree(dev);
return NULL;
}
EXPORT_SYMBOL(transport_add_device_to_core_hba);
/* transport_generic_prepare_cdb():
*
* Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
* contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
* The point of this is since we are mapping iSCSI LUNs to
* SCSI Target IDs having a non-zero LUN in the CDB will throw the
* devices and HBAs for a loop.
*/
static inline void transport_generic_prepare_cdb(
unsigned char *cdb)
{
switch (cdb[0]) {
case READ_10: /* SBC - RDProtect */
case READ_12: /* SBC - RDProtect */
case READ_16: /* SBC - RDProtect */
case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
case VERIFY: /* SBC - VRProtect */
case VERIFY_16: /* SBC - VRProtect */
case WRITE_VERIFY: /* SBC - VRProtect */
case WRITE_VERIFY_12: /* SBC - VRProtect */
break;
default:
cdb[1] &= 0x1f; /* clear logical unit number */
break;
}
}
static struct se_task *
transport_generic_get_task(struct se_cmd *cmd,
enum dma_data_direction data_direction)
{
struct se_task *task;
struct se_device *dev = cmd->se_dev;
task = dev->transport->alloc_task(cmd->t_task_cdb);
if (!task) {
pr_err("Unable to allocate struct se_task\n");
return NULL;
}
INIT_LIST_HEAD(&task->t_list);
INIT_LIST_HEAD(&task->t_execute_list);
INIT_LIST_HEAD(&task->t_state_list);
init_completion(&task->task_stop_comp);
task->task_se_cmd = cmd;
task->se_dev = dev;
task->task_data_direction = data_direction;
return task;
}
static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
/*
* Used by fabric modules containing a local struct se_cmd within their
* fabric dependent per I/O descriptor.
*/
void transport_init_se_cmd(
struct se_cmd *cmd,
struct target_core_fabric_ops *tfo,
struct se_session *se_sess,
u32 data_length,
int data_direction,
int task_attr,
unsigned char *sense_buffer)
{
INIT_LIST_HEAD(&cmd->se_lun_node);
INIT_LIST_HEAD(&cmd->se_delayed_node);
INIT_LIST_HEAD(&cmd->se_ordered_node);
INIT_LIST_HEAD(&cmd->se_qf_node);
INIT_LIST_HEAD(&cmd->t_task_list);
init_completion(&cmd->transport_lun_fe_stop_comp);
init_completion(&cmd->transport_lun_stop_comp);
init_completion(&cmd->t_transport_stop_comp);
spin_lock_init(&cmd->t_state_lock);
atomic_set(&cmd->transport_dev_active, 1);
cmd->se_tfo = tfo;
cmd->se_sess = se_sess;
cmd->data_length = data_length;
cmd->data_direction = data_direction;
cmd->sam_task_attr = task_attr;
cmd->sense_buffer = sense_buffer;
}
EXPORT_SYMBOL(transport_init_se_cmd);
static int transport_check_alloc_task_attr(struct se_cmd *cmd)
{
/*
* Check if SAM Task Attribute emulation is enabled for this
* struct se_device storage object
*/
if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
return 0;
if (cmd->sam_task_attr == MSG_ACA_TAG) {
pr_debug("SAM Task Attribute ACA"
" emulation is not supported\n");
return -EINVAL;
}
/*
* Used to determine when ORDERED commands should go from
* Dormant to Active status.
*/
cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
smp_mb__after_atomic_inc();
pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
cmd->se_ordered_id, cmd->sam_task_attr,
cmd->se_dev->transport->name);
return 0;
}
void transport_free_se_cmd(
struct se_cmd *se_cmd)
{
if (se_cmd->se_tmr_req)
core_tmr_release_req(se_cmd->se_tmr_req);
/*
* Check and free any extended CDB buffer that was allocated
*/
if (se_cmd->t_task_cdb != se_cmd->__t_task_cdb)
kfree(se_cmd->t_task_cdb);
}
EXPORT_SYMBOL(transport_free_se_cmd);
static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
/* transport_generic_allocate_tasks():
*
* Called from fabric RX Thread.
*/
int transport_generic_allocate_tasks(
struct se_cmd *cmd,
unsigned char *cdb)
{
int ret;
transport_generic_prepare_cdb(cdb);
/*
* This is needed for early exceptions.
*/
cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
/*
* Ensure that the received CDB is less than the max (252 + 8) bytes
* for VARIABLE_LENGTH_CMD
*/
if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
pr_err("Received SCSI CDB with command_size: %d that"
" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
return -EINVAL;
}
/*
* If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
* allocate the additional extended CDB buffer now.. Otherwise
* setup the pointer from __t_task_cdb to t_task_cdb.
*/
if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
GFP_KERNEL);
if (!cmd->t_task_cdb) {
pr_err("Unable to allocate cmd->t_task_cdb"
" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
scsi_command_size(cdb),
(unsigned long)sizeof(cmd->__t_task_cdb));
return -ENOMEM;
}
} else
cmd->t_task_cdb = &cmd->__t_task_cdb[0];
/*
* Copy the original CDB into cmd->
*/
memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
/*
* Setup the received CDB based on SCSI defined opcodes and
* perform unit attention, persistent reservations and ALUA
* checks for virtual device backends. The cmd->t_task_cdb
* pointer is expected to be setup before we reach this point.
*/
ret = transport_generic_cmd_sequencer(cmd, cdb);
if (ret < 0)
return ret;
/*
* Check for SAM Task Attribute Emulation
*/
if (transport_check_alloc_task_attr(cmd) < 0) {
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
return -EINVAL;
}
spin_lock(&cmd->se_lun->lun_sep_lock);
if (cmd->se_lun->lun_sep)
cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
spin_unlock(&cmd->se_lun->lun_sep_lock);
return 0;
}
EXPORT_SYMBOL(transport_generic_allocate_tasks);
/*
* Used by fabric module frontends not defining a TFO->new_cmd_map()
* to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
*/
int transport_generic_handle_cdb(
struct se_cmd *cmd)
{
if (!cmd->se_lun) {
dump_stack();
pr_err("cmd->se_lun is NULL\n");
return -EINVAL;
}
transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
return 0;
}
EXPORT_SYMBOL(transport_generic_handle_cdb);
/*
* Used by fabric module frontends to queue tasks directly.
* Many only be used from process context only
*/
int transport_handle_cdb_direct(
struct se_cmd *cmd)
{
if (!cmd->se_lun) {
dump_stack();
pr_err("cmd->se_lun is NULL\n");
return -EINVAL;
}
if (in_interrupt()) {
dump_stack();
pr_err("transport_generic_handle_cdb cannot be called"
" from interrupt context\n");
return -EINVAL;
}
return transport_generic_new_cmd(cmd);
}
EXPORT_SYMBOL(transport_handle_cdb_direct);
/*
* Used by fabric module frontends defining a TFO->new_cmd_map() caller
* to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
* complete setup in TCM process context w/ TFO->new_cmd_map().
*/
int transport_generic_handle_cdb_map(
struct se_cmd *cmd)
{
if (!cmd->se_lun) {
dump_stack();
pr_err("cmd->se_lun is NULL\n");
return -EINVAL;
}
transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
return 0;
}
EXPORT_SYMBOL(transport_generic_handle_cdb_map);
/* transport_generic_handle_data():
*
*
*/
int transport_generic_handle_data(
struct se_cmd *cmd)
{
/*
* For the software fabric case, then we assume the nexus is being
* failed/shutdown when signals are pending from the kthread context
* caller, so we return a failure. For the HW target mode case running
* in interrupt code, the signal_pending() check is skipped.
*/
if (!in_interrupt() && signal_pending(current))
return -EPERM;
/*
* If the received CDB has aleady been ABORTED by the generic
* target engine, we now call transport_check_aborted_status()
* to queue any delated TASK_ABORTED status for the received CDB to the
* fabric module as we are expecting no further incoming DATA OUT
* sequences at this point.
*/
if (transport_check_aborted_status(cmd, 1) != 0)
return 0;
transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
return 0;
}
EXPORT_SYMBOL(transport_generic_handle_data);
/* transport_generic_handle_tmr():
*
*
*/
int transport_generic_handle_tmr(
struct se_cmd *cmd)
{
/*
* This is needed for early exceptions.
*/
cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
return 0;
}
EXPORT_SYMBOL(transport_generic_handle_tmr);
void transport_generic_free_cmd_intr(
struct se_cmd *cmd)
{
transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
}
EXPORT_SYMBOL(transport_generic_free_cmd_intr);
static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
{
struct se_task *task, *task_tmp;
unsigned long flags;
int ret = 0;
pr_debug("ITT[0x%08x] - Stopping tasks\n",
cmd->se_tfo->get_task_tag(cmd));
/*
* No tasks remain in the execution queue
*/
spin_lock_irqsave(&cmd->t_state_lock, flags);
list_for_each_entry_safe(task, task_tmp,
&cmd->t_task_list, t_list) {
pr_debug("task_no[%d] - Processing task %p\n",
task->task_no, task);
/*
* If the struct se_task has not been sent and is not active,
* remove the struct se_task from the execution queue.
*/
if (!atomic_read(&task->task_sent) &&
!atomic_read(&task->task_active)) {
spin_unlock_irqrestore(&cmd->t_state_lock,
flags);
transport_remove_task_from_execute_queue(task,
task->se_dev);
pr_debug("task_no[%d] - Removed from execute queue\n",
task->task_no);
spin_lock_irqsave(&cmd->t_state_lock, flags);
continue;
}
/*
* If the struct se_task is active, sleep until it is returned
* from the plugin.
*/
if (atomic_read(&task->task_active)) {
atomic_set(&task->task_stop, 1);
spin_unlock_irqrestore(&cmd->t_state_lock,
flags);
pr_debug("task_no[%d] - Waiting to complete\n",
task->task_no);
wait_for_completion(&task->task_stop_comp);
pr_debug("task_no[%d] - Stopped successfully\n",
task->task_no);
spin_lock_irqsave(&cmd->t_state_lock, flags);
atomic_dec(&cmd->t_task_cdbs_left);
atomic_set(&task->task_active, 0);
atomic_set(&task->task_stop, 0);
} else {
pr_debug("task_no[%d] - Did nothing\n", task->task_no);
ret++;
}
__transport_stop_task_timer(task, &flags);
}
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
return ret;
}
/*
* Handle SAM-esque emulation for generic transport request failures.
*/
static void transport_generic_request_failure(
struct se_cmd *cmd,
struct se_device *dev,
int complete,
int sc)
{
int ret = 0;
pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
cmd->t_task_cdb[0]);
pr_debug("-----[ i_state: %d t_state/def_t_state:"
" %d/%d transport_error_status: %d\n",
cmd->se_tfo->get_cmd_state(cmd),
cmd->t_state, cmd->deferred_t_state,
cmd->transport_error_status);
pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
" t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
" t_transport_active: %d t_transport_stop: %d"
" t_transport_sent: %d\n", cmd->t_task_list_num,
atomic_read(&cmd->t_task_cdbs_left),
atomic_read(&cmd->t_task_cdbs_sent),
atomic_read(&cmd->t_task_cdbs_ex_left),
atomic_read(&cmd->t_transport_active),
atomic_read(&cmd->t_transport_stop),
atomic_read(&cmd->t_transport_sent));
transport_stop_all_task_timers(cmd);
if (dev)
atomic_inc(&dev->depth_left);
/*
* For SAM Task Attribute emulation for failed struct se_cmd
*/
if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
transport_complete_task_attr(cmd);
if (complete) {
transport_direct_request_timeout(cmd);
cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
}
switch (cmd->transport_error_status) {
case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
break;
case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
break;
case PYX_TRANSPORT_INVALID_CDB_FIELD:
cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
break;
case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
break;
case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
if (!sc)
transport_new_cmd_failure(cmd);
/*
* Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
* we force this session to fall back to session
* recovery.
*/
cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
goto check_stop;
case PYX_TRANSPORT_LU_COMM_FAILURE:
case PYX_TRANSPORT_ILLEGAL_REQUEST:
cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
break;
case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
break;
case PYX_TRANSPORT_WRITE_PROTECTED:
cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
break;
case PYX_TRANSPORT_RESERVATION_CONFLICT:
/*
* No SENSE Data payload for this case, set SCSI Status
* and queue the response to $FABRIC_MOD.
*
* Uses linux/include/scsi/scsi.h SAM status codes defs
*/
cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
/*
* For UA Interlock Code 11b, a RESERVATION CONFLICT will
* establish a UNIT ATTENTION with PREVIOUS RESERVATION
* CONFLICT STATUS.
*
* See spc4r17, section 7.4.6 Control Mode Page, Table 349
*/
if (cmd->se_sess &&
cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
cmd->orig_fe_lun, 0x2C,
ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
ret = cmd->se_tfo->queue_status(cmd);
if (ret == -EAGAIN)
goto queue_full;
goto check_stop;
case PYX_TRANSPORT_USE_SENSE_REASON:
/*
* struct se_cmd->scsi_sense_reason already set
*/
break;
default:
pr_err("Unknown transport error for CDB 0x%02x: %d\n",
cmd->t_task_cdb[0],
cmd->transport_error_status);
cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
break;
}
if (!sc)
transport_new_cmd_failure(cmd);
else {
ret = transport_send_check_condition_and_sense(cmd,
cmd->scsi_sense_reason, 0);
if (ret == -EAGAIN)
goto queue_full;
}
check_stop:
transport_lun_remove_cmd(cmd);
if (!transport_cmd_check_stop_to_fabric(cmd))
;
return;
queue_full:
cmd->t_state = TRANSPORT_COMPLETE_OK;
transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
}
static void transport_direct_request_timeout(struct se_cmd *cmd)
{
unsigned long flags;
spin_lock_irqsave(&cmd->t_state_lock, flags);
if (!atomic_read(&cmd->t_transport_timeout)) {
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
return;
}
if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
return;
}
atomic_sub(atomic_read(&cmd->t_transport_timeout),
&cmd->t_se_count);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}
static void transport_generic_request_timeout(struct se_cmd *cmd)
{
unsigned long flags;
/*
* Reset cmd->t_se_count to allow transport_generic_remove()
* to allow last call to free memory resources.
*/
spin_lock_irqsave(&cmd->t_state_lock, flags);
if (atomic_read(&cmd->t_transport_timeout) > 1) {
int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
atomic_sub(tmp, &cmd->t_se_count);
}
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
transport_generic_remove(cmd, 0);
}
static inline u32 transport_lba_21(unsigned char *cdb)
{
return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
}
static inline u32 transport_lba_32(unsigned char *cdb)
{
return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
}
static inline unsigned long long transport_lba_64(unsigned char *cdb)
{
unsigned int __v1, __v2;
__v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
__v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
}
/*
* For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
*/
static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
{
unsigned int __v1, __v2;
__v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
__v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
}
static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
{
unsigned long flags;
spin_lock_irqsave(&se_cmd->t_state_lock, flags);
se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
}
/*
* Called from interrupt context.
*/
static void transport_task_timeout_handler(unsigned long data)
{
struct se_task *task = (struct se_task *)data;
struct se_cmd *cmd = task->task_se_cmd;
unsigned long flags;
pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
spin_lock_irqsave(&cmd->t_state_lock, flags);
if (task->task_flags & TF_STOP) {
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
return;
}
task->task_flags &= ~TF_RUNNING;
/*
* Determine if transport_complete_task() has already been called.
*/
if (!atomic_read(&task->task_active)) {
pr_debug("transport task: %p cmd: %p timeout task_active"
" == 0\n", task, cmd);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
return;
}
atomic_inc(&cmd->t_se_count);
atomic_inc(&cmd->t_transport_timeout);
cmd->t_tasks_failed = 1;
atomic_set(&task->task_timeout, 1);
task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
task->task_scsi_status = 1;
if (atomic_read(&task->task_stop)) {
pr_debug("transport task: %p cmd: %p timeout task_stop"
" == 1\n", task, cmd);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
complete(&task->task_stop_comp);
return;
}
if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
pr_debug("transport task: %p cmd: %p timeout non zero"
" t_task_cdbs_left\n", task, cmd);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
return;
}
pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
task, cmd);
cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
}
/*
* Called with cmd->t_state_lock held.
*/
static void transport_start_task_timer(struct se_task *task)
{
struct se_device *dev = task->se_dev;
int timeout;
if (task->task_flags & TF_RUNNING)
return;
/*
* If the task_timeout is disabled, exit now.
*/
timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
if (!timeout)
return;
init_timer(&task->task_timer);
task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
task->task_timer.data = (unsigned long) task;
task->task_timer.function = transport_task_timeout_handler;
task->task_flags |= TF_RUNNING;
add_timer(&task->task_timer);
#if 0
pr_debug("Starting task timer for cmd: %p task: %p seconds:"
" %d\n", task->task_se_cmd, task, timeout);
#endif
}
/*
* Called with spin_lock_irq(&cmd->t_state_lock) held.
*/
void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
{
struct se_cmd *cmd = task->task_se_cmd;
if (!task->task_flags & TF_RUNNING)
return;
task->task_flags |= TF_STOP;
spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
del_timer_sync(&task->task_timer);
spin_lock_irqsave(&cmd->t_state_lock, *flags);
task->task_flags &= ~TF_RUNNING;
task->task_flags &= ~TF_STOP;
}
static void transport_stop_all_task_timers(struct se_cmd *cmd)
{
struct se_task *task = NULL, *task_tmp;
unsigned long flags;
spin_lock_irqsave(&cmd->t_state_lock, flags);
list_for_each_entry_safe(task, task_tmp,
&cmd->t_task_list, t_list)
__transport_stop_task_timer(task, &flags);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}
static inline int transport_tcq_window_closed(struct se_device *dev)
{
if (dev->dev_tcq_window_closed++ <
PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
} else
msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
return 0;
}
/*
* Called from Fabric Module context from transport_execute_tasks()
*
* The return of this function determins if the tasks from struct se_cmd
* get added to the execution queue in transport_execute_tasks(),
* or are added to the delayed or ordered lists here.
*/
static inline int transport_execute_task_attr(struct se_cmd *cmd)
{
if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
return 1;
/*
* Check for the existence of HEAD_OF_QUEUE, and if true return 1
* to allow the passed struct se_cmd list of tasks to the front of the list.
*/
if (cmd->sam_task_attr == MSG_HEAD_TAG) {
atomic_inc(&cmd->se_dev->dev_hoq_count);
smp_mb__after_atomic_inc();
pr_debug("Added HEAD_OF_QUEUE for CDB:"
" 0x%02x, se_ordered_id: %u\n",
cmd->t_task_cdb[0],
cmd->se_ordered_id);
return 1;
} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
spin_lock(&cmd->se_dev->ordered_cmd_lock);
list_add_tail(&cmd->se_ordered_node,
&cmd->se_dev->ordered_cmd_list);
spin_unlock(&cmd->se_dev->ordered_cmd_lock);
atomic_inc(&cmd->se_dev->dev_ordered_sync);
smp_mb__after_atomic_inc();
pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
" list, se_ordered_id: %u\n",
cmd->t_task_cdb[0],
cmd->se_ordered_id);
/*
* Add ORDERED command to tail of execution queue if
* no other older commands exist that need to be
* completed first.
*/
if (!atomic_read(&cmd->se_dev->simple_cmds))
return 1;
} else {
/*
* For SIMPLE and UNTAGGED Task Attribute commands
*/
atomic_inc(&cmd->se_dev->simple_cmds);
smp_mb__after_atomic_inc();
}
/*
* Otherwise if one or more outstanding ORDERED task attribute exist,
* add the dormant task(s) built for the passed struct se_cmd to the
* execution queue and become in Active state for this struct se_device.
*/
if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
/*
* Otherwise, add cmd w/ tasks to delayed cmd queue that
* will be drained upon completion of HEAD_OF_QUEUE task.
*/
spin_lock(&cmd->se_dev->delayed_cmd_lock);
cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
list_add_tail(&cmd->se_delayed_node,
&cmd->se_dev->delayed_cmd_list);
spin_unlock(&cmd->se_dev->delayed_cmd_lock);
pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
" delayed CMD list, se_ordered_id: %u\n",
cmd->t_task_cdb[0], cmd->sam_task_attr,
cmd->se_ordered_id);
/*
* Return zero to let transport_execute_tasks() know
* not to add the delayed tasks to the execution list.
*/
return 0;
}
/*
* Otherwise, no ORDERED task attributes exist..
*/
return 1;
}
/*
* Called from fabric module context in transport_generic_new_cmd() and
* transport_generic_process_write()
*/
static int transport_execute_tasks(struct se_cmd *cmd)
{
int add_tasks;
if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
transport_generic_request_failure(cmd, NULL, 0, 1);
return 0;
}
/*
* Call transport_cmd_check_stop() to see if a fabric exception
* has occurred that prevents execution.
*/
if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
/*
* Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
* attribute for the tasks of the received struct se_cmd CDB
*/
add_tasks = transport_execute_task_attr(cmd);
if (!add_tasks)
goto execute_tasks;
/*
* This calls transport_add_tasks_from_cmd() to handle
* HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
* (if enabled) in __transport_add_task_to_execute_queue() and
* transport_add_task_check_sam_attr().
*/
transport_add_tasks_from_cmd(cmd);
}
/*
* Kick the execution queue for the cmd associated struct se_device
* storage object.
*/
execute_tasks:
__transport_execute_tasks(cmd->se_dev);
return 0;
}
/*
* Called to check struct se_device tcq depth window, and once open pull struct se_task
* from struct se_device->execute_task_list and
*
* Called from transport_processing_thread()
*/
static int __transport_execute_tasks(struct se_device *dev)
{
int error;
struct se_cmd *cmd = NULL;
struct se_task *task = NULL;
unsigned long flags;
/*
* Check if there is enough room in the device and HBA queue to send
* struct se_tasks to the selected transport.
*/
check_depth:
if (!atomic_read(&dev->depth_left))
return transport_tcq_window_closed(dev);
dev->dev_tcq_window_closed = 0;
spin_lock_irq(&dev->execute_task_lock);
if (list_empty(&dev->execute_task_list)) {
spin_unlock_irq(&dev->execute_task_lock);
return 0;
}
task = list_first_entry(&dev->execute_task_list,
struct se_task, t_execute_list);
list_del(&task->t_execute_list);
atomic_set(&task->task_execute_queue, 0);
atomic_dec(&dev->execute_tasks);
spin_unlock_irq(&dev->execute_task_lock);
atomic_dec(&dev->depth_left);
cmd = task->task_se_cmd;
spin_lock_irqsave(&cmd->t_state_lock, flags);
atomic_set(&task->task_active, 1);
atomic_set(&task->task_sent, 1);
atomic_inc(&cmd->t_task_cdbs_sent);
if (atomic_read(&cmd->t_task_cdbs_sent) ==
cmd->t_task_list_num)
atomic_set(&cmd->transport_sent, 1);
transport_start_task_timer(task);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
/*
* The struct se_cmd->transport_emulate_cdb() function pointer is used
* to grab REPORT_LUNS and other CDBs we want to handle before they hit the
* struct se_subsystem_api->do_task() caller below.
*/
if (cmd->transport_emulate_cdb) {
error = cmd->transport_emulate_cdb(cmd);
if (error != 0) {
cmd->transport_error_status = error;
atomic_set(&task->task_active, 0);
atomic_set(&cmd->transport_sent, 0);
transport_stop_tasks_for_cmd(cmd);
transport_generic_request_failure(cmd, dev, 0, 1);
goto check_depth;
}
/*
* Handle the successful completion for transport_emulate_cdb()
* for synchronous operation, following SCF_EMULATE_CDB_ASYNC
* Otherwise the caller is expected to complete the task with
* proper status.
*/
if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
cmd->scsi_status = SAM_STAT_GOOD;
task->task_scsi_status = GOOD;
transport_complete_task(task, 1);
}
} else {
/*
* Currently for all virtual TCM plugins including IBLOCK, FILEIO and
* RAMDISK we use the internal transport_emulate_control_cdb() logic
* with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
* LUN emulation code.
*
* For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
* call ->do_task() directly and let the underlying TCM subsystem plugin
* code handle the CDB emulation.
*/
if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
(!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
error = transport_emulate_control_cdb(task);
else
error = dev->transport->do_task(task);
if (error != 0) {
cmd->transport_error_status = error;
atomic_set(&task->task_active, 0);
atomic_set(&cmd->transport_sent, 0);
transport_stop_tasks_for_cmd(cmd);
transport_generic_request_failure(cmd, dev, 0, 1);
}
}
goto check_depth;
return 0;
}
void transport_new_cmd_failure(struct se_cmd *se_cmd)
{
unsigned long flags;
/*
* Any unsolicited data will get dumped for failed command inside of
* the fabric plugin
*/
spin_lock_irqsave(&se_cmd->t_state_lock, flags);
se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
}
static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
static inline u32 transport_get_sectors_6(
unsigned char *cdb,
struct se_cmd *cmd,
int *ret)
{
struct se_device *dev = cmd->se_dev;
/*
* Assume TYPE_DISK for non struct se_device objects.
* Use 8-bit sector value.
*/
if (!dev)
goto type_disk;
/*
* Use 24-bit allocation length for TYPE_TAPE.
*/
if (dev->transport->get_device_type(dev) == TYPE_TAPE)
return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
/*
* Everything else assume TYPE_DISK Sector CDB location.
* Use 8-bit sector value.
*/
type_disk:
return (u32)cdb[4];
}
static inline u32 transport_get_sectors_10(
unsigned char *cdb,
struct se_cmd *cmd,
int *ret)
{
struct se_device *dev = cmd->se_dev;
/*
* Assume TYPE_DISK for non struct se_device objects.
* Use 16-bit sector value.
*/
if (!dev)
goto type_disk;
/*
* XXX_10 is not defined in SSC, throw an exception
*/
if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
*ret = -EINVAL;
return 0;
}
/*
* Everything else assume TYPE_DISK Sector CDB location.
* Use 16-bit sector value.
*/
type_disk:
return (u32)(cdb[7] << 8) + cdb[8];
}
static inline u32 transport_get_sectors_12(
unsigned char *cdb,
struct se_cmd *cmd,
int *ret)
{
struct se_device *dev = cmd->se_dev;
/*
* Assume TYPE_DISK for non struct se_device objects.
* Use 32-bit sector value.
*/
if (!dev)
goto type_disk;
/*
* XXX_12 is not defined in SSC, throw an exception
*/
if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
*ret = -EINVAL;
return 0;
}
/*
* Everything else assume TYPE_DISK Sector CDB location.
* Use 32-bit sector value.
*/
type_disk:
return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
}
static inline u32 transport_get_sectors_16(
unsigned char *cdb,
struct se_cmd *cmd,
int *ret)
{
struct se_device *dev = cmd->se_dev;
/*
* Assume TYPE_DISK for non struct se_device objects.
* Use 32-bit sector value.
*/
if (!dev)
goto type_disk;
/*
* Use 24-bit allocation length for TYPE_TAPE.
*/
if (dev->transport->get_device_type(dev) == TYPE_TAPE)
return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
type_disk:
return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
(cdb[12] << 8) + cdb[13];
}
/*
* Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
*/
static inline u32 transport_get_sectors_32(
unsigned char *cdb,
struct se_cmd *cmd,
int *ret)
{
/*
* Assume TYPE_DISK for non struct se_device objects.
* Use 32-bit sector value.
*/
return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
(cdb[30] << 8) + cdb[31];
}
static inline u32 transport_get_size(
u32 sectors,
unsigned char *cdb,
struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
if (cdb[1] & 1) { /* sectors */
return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
} else /* bytes */
return sectors;
}
#if 0
pr_debug("Returning block_size: %u, sectors: %u == %u for"
" %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
dev->se_sub_dev->se_dev_attrib.block_size * sectors,
dev->transport->name);
#endif
return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
}
unsigned char transport_asciihex_to_binaryhex(unsigned char val[2])
{
unsigned char result = 0;
/*
* MSB
*/
if ((val[0] >= 'a') && (val[0] <= 'f'))
result = ((val[0] - 'a' + 10) & 0xf) << 4;
else
if ((val[0] >= 'A') && (val[0] <= 'F'))
result = ((val[0] - 'A' + 10) & 0xf) << 4;
else /* digit */
result = ((val[0] - '0') & 0xf) << 4;
/*
* LSB
*/
if ((val[1] >= 'a') && (val[1] <= 'f'))
result |= ((val[1] - 'a' + 10) & 0xf);
else
if ((val[1] >= 'A') && (val[1] <= 'F'))
result |= ((val[1] - 'A' + 10) & 0xf);
else /* digit */
result |= ((val[1] - '0') & 0xf);
return result;
}
EXPORT_SYMBOL(transport_asciihex_to_binaryhex);
static void transport_xor_callback(struct se_cmd *cmd)
{
unsigned char *buf, *addr;
struct scatterlist *sg;
unsigned int offset;
int i;
int count;
/*
* From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
*
* 1) read the specified logical block(s);
* 2) transfer logical blocks from the data-out buffer;
* 3) XOR the logical blocks transferred from the data-out buffer with
* the logical blocks read, storing the resulting XOR data in a buffer;
* 4) if the DISABLE WRITE bit is set to zero, then write the logical
* blocks transferred from the data-out buffer; and
* 5) transfer the resulting XOR data to the data-in buffer.
*/
buf = kmalloc(cmd->data_length, GFP_KERNEL);
if (!buf) {
pr_err("Unable to allocate xor_callback buf\n");
return;
}
/*
* Copy the scatterlist WRITE buffer located at cmd->t_data_sg
* into the locally allocated *buf
*/
sg_copy_to_buffer(cmd->t_data_sg,
cmd->t_data_nents,
buf,
cmd->data_length);
/*
* Now perform the XOR against the BIDI read memory located at
* cmd->t_mem_bidi_list
*/
offset = 0;
for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
addr = kmap_atomic(sg_page(sg), KM_USER0);
if (!addr)
goto out;
for (i = 0; i < sg->length; i++)
*(addr + sg->offset + i) ^= *(buf + offset + i);
offset += sg->length;
kunmap_atomic(addr, KM_USER0);
}
out:
kfree(buf);
}
/*
* Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
*/
static int transport_get_sense_data(struct se_cmd *cmd)
{
unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
struct se_device *dev;
struct se_task *task = NULL, *task_tmp;
unsigned long flags;
u32 offset = 0;
WARN_ON(!cmd->se_lun);
spin_lock_irqsave(&cmd->t_state_lock, flags);
if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
return 0;
}
list_for_each_entry_safe(task, task_tmp,
&cmd->t_task_list, t_list) {
if (!task->task_sense)
continue;
dev = task->se_dev;
if (!dev)
continue;
if (!dev->transport->get_sense_buffer) {
pr_err("dev->transport->get_sense_buffer"
" is NULL\n");
continue;
}
sense_buffer = dev->transport->get_sense_buffer(task);
if (!sense_buffer) {
pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
" sense buffer for task with sense\n",
cmd->se_tfo->get_task_tag(cmd), task->task_no);
continue;
}
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
offset = cmd->se_tfo->set_fabric_sense_len(cmd,
TRANSPORT_SENSE_BUFFER);
memcpy(&buffer[offset], sense_buffer,
TRANSPORT_SENSE_BUFFER);
cmd->scsi_status = task->task_scsi_status;
/* Automatically padded */
cmd->scsi_sense_length =
(TRANSPORT_SENSE_BUFFER + offset);
pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
" and sense\n",
dev->se_hba->hba_id, dev->transport->name,
cmd->scsi_status);
return 0;
}
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
return -1;
}
static int
transport_handle_reservation_conflict(struct se_cmd *cmd)
{
cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
/*
* For UA Interlock Code 11b, a RESERVATION CONFLICT will
* establish a UNIT ATTENTION with PREVIOUS RESERVATION
* CONFLICT STATUS.
*
* See spc4r17, section 7.4.6 Control Mode Page, Table 349
*/
if (cmd->se_sess &&
cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
cmd->orig_fe_lun, 0x2C,
ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
return -EINVAL;
}
static inline long long transport_dev_end_lba(struct se_device *dev)
{
return dev->transport->get_blocks(dev) + 1;
}
static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
u32 sectors;
if (dev->transport->get_device_type(dev) != TYPE_DISK)
return 0;
sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
pr_err("LBA: %llu Sectors: %u exceeds"
" transport_dev_end_lba(): %llu\n",
cmd->t_task_lba, sectors,
transport_dev_end_lba(dev));
pr_err(" We should return CHECK_CONDITION"
" but we don't yet\n");
return 0;
}
return sectors;
}
/* transport_generic_cmd_sequencer():
*
* Generic Command Sequencer that should work for most DAS transport
* drivers.
*
* Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
* RX Thread.
*
* FIXME: Need to support other SCSI OPCODES where as well.
*/
static int transport_generic_cmd_sequencer(
struct se_cmd *cmd,
unsigned char *cdb)
{
struct se_device *dev = cmd->se_dev;
struct se_subsystem_dev *su_dev = dev->se_sub_dev;
int ret = 0, sector_ret = 0, passthrough;
u32 sectors = 0, size = 0, pr_reg_type = 0;
u16 service_action;
u8 alua_ascq = 0;
/*
* Check for an existing UNIT ATTENTION condition
*/
if (core_scsi3_ua_check(cmd, cdb) < 0) {
cmd->transport_wait_for_tasks =
&transport_nop_wait_for_tasks;
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
return -EINVAL;
}
/*
* Check status of Asymmetric Logical Unit Assignment port
*/
ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
if (ret != 0) {
cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
/*
* Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
* The ALUA additional sense code qualifier (ASCQ) is determined
* by the ALUA primary or secondary access state..
*/
if (ret > 0) {
#if 0
pr_debug("[%s]: ALUA TG Port not available,"
" SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
cmd->se_tfo->get_fabric_name(), alua_ascq);
#endif
transport_set_sense_codes(cmd, 0x04, alua_ascq);
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
return -EINVAL;
}
goto out_invalid_cdb_field;
}
/*
* Check status for SPC-3 Persistent Reservations
*/
if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
cmd, cdb, pr_reg_type) != 0)
return transport_handle_reservation_conflict(cmd);
/*
* This means the CDB is allowed for the SCSI Initiator port
* when said port is *NOT* holding the legacy SPC-2 or
* SPC-3 Persistent Reservation.
*/
}
switch (cdb[0]) {
case READ_6:
sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
if (sector_ret)
goto out_unsupported_cdb;
size = transport_get_size(sectors, cdb, cmd);
cmd->transport_split_cdb = &split_cdb_XX_6;
cmd->t_task_lba = transport_lba_21(cdb);
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
break;
case READ_10:
sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
if (sector_ret)
goto out_unsupported_cdb;
size = transport_get_size(sectors, cdb, cmd);
cmd->transport_split_cdb = &split_cdb_XX_10;
cmd->t_task_lba = transport_lba_32(cdb);
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
break;
case READ_12:
sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
if (sector_ret)
goto out_unsupported_cdb;
size = transport_get_size(sectors, cdb, cmd);
cmd->transport_split_cdb = &split_cdb_XX_12;
cmd->t_task_lba = transport_lba_32(cdb);
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
break;
case READ_16:
sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
if (sector_ret)
goto out_unsupported_cdb;
size = transport_get_size(sectors, cdb, cmd);
cmd->transport_split_cdb = &split_cdb_XX_16;
cmd->t_task_lba = transport_lba_64(cdb);
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
break;
case WRITE_6:
sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
if (sector_ret)
goto out_unsupported_cdb;
size = transport_get_size(sectors, cdb, cmd);
cmd->transport_split_cdb = &split_cdb_XX_6;
cmd->t_task_lba = transport_lba_21(cdb);
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
break;
case WRITE_10:
sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
if (sector_ret)
goto out_unsupported_cdb;
size = transport_get_size(sectors, cdb, cmd);
cmd->transport_split_cdb = &split_cdb_XX_10;
cmd->t_task_lba = transport_lba_32(cdb);
cmd->t_tasks_fua = (cdb[1] & 0x8);
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
break;
case WRITE_12:
sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
if (sector_ret)
goto out_unsupported_cdb;
size = transport_get_size(sectors, cdb, cmd);
cmd->transport_split_cdb = &split_cdb_XX_12;
cmd->t_task_lba = transport_lba_32(cdb);
cmd->t_tasks_fua = (cdb[1] & 0x8);
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
break;
case WRITE_16:
sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
if (sector_ret)
goto out_unsupported_cdb;
size = transport_get_size(sectors, cdb, cmd);
cmd->transport_split_cdb = &split_cdb_XX_16;
cmd->t_task_lba = transport_lba_64(cdb);
cmd->t_tasks_fua = (cdb[1] & 0x8);
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
break;
case XDWRITEREAD_10:
if ((cmd->data_direction != DMA_TO_DEVICE) ||
!(cmd->t_tasks_bidi))
goto out_invalid_cdb_field;
sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
if (sector_ret)
goto out_unsupported_cdb;
size = transport_get_size(sectors, cdb, cmd);
cmd->transport_split_cdb = &split_cdb_XX_10;
cmd->t_task_lba = transport_lba_32(cdb);
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
passthrough = (dev->transport->transport_type ==
TRANSPORT_PLUGIN_PHBA_PDEV);
/*
* Skip the remaining assignments for TCM/PSCSI passthrough
*/
if (passthrough)
break;
/*
* Setup BIDI XOR callback to be run during transport_generic_complete_ok()
*/
cmd->transport_complete_callback = &transport_xor_callback;
cmd->t_tasks_fua = (cdb[1] & 0x8);
break;
case VARIABLE_LENGTH_CMD:
service_action = get_unaligned_be16(&cdb[8]);
/*
* Determine if this is TCM/PSCSI device and we should disable
* internal emulation for this CDB.
*/
passthrough = (dev->transport->transport_type ==
TRANSPORT_PLUGIN_PHBA_PDEV);
switch (service_action) {
case XDWRITEREAD_32:
sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
if (sector_ret)
goto out_unsupported_cdb;
size = transport_get_size(sectors, cdb, cmd);
/*
* Use WRITE_32 and READ_32 opcodes for the emulated
* XDWRITE_READ_32 logic.
*/
cmd->transport_split_cdb = &split_cdb_XX_32;
cmd->t_task_lba = transport_lba_64_ext(cdb);
cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
/*
* Skip the remaining assignments for TCM/PSCSI passthrough
*/
if (passthrough)
break;
/*
* Setup BIDI XOR callback to be run during
* transport_generic_complete_ok()
*/
cmd->transport_complete_callback = &transport_xor_callback;
cmd->t_tasks_fua = (cdb[10] & 0x8);
break;
case WRITE_SAME_32:
sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
if (sector_ret)
goto out_unsupported_cdb;
if (sectors)
size = transport_get_size(sectors, cdb, cmd);
else {
pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
" supported\n");
goto out_invalid_cdb_field;
}
cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
/*
* Skip the remaining assignments for TCM/PSCSI passthrough
*/
if (passthrough)
break;
if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) {
pr_err("WRITE_SAME PBDATA and LBDATA"
" bits not supported for Block Discard"
" Emulation\n");
goto out_invalid_cdb_field;
}
/*
* Currently for the emulated case we only accept
* tpws with the UNMAP=1 bit set.
*/
if (!(cdb[10] & 0x08)) {
pr_err("WRITE_SAME w/o UNMAP bit not"
" supported for Block Discard Emulation\n");
goto out_invalid_cdb_field;
}
break;
default:
pr_err("VARIABLE_LENGTH_CMD service action"
" 0x%04x not supported\n", service_action);
goto out_unsupported_cdb;
}
break;
case MAINTENANCE_IN:
if (dev->transport->get_device_type(dev) != TYPE_ROM) {
/* MAINTENANCE_IN from SCC-2 */
/*
* Check for emulated MI_REPORT_TARGET_PGS.
*/
if (cdb[1] == MI_REPORT_TARGET_PGS) {
cmd->transport_emulate_cdb =
(su_dev->t10_alua.alua_type ==
SPC3_ALUA_EMULATED) ?
core_emulate_report_target_port_groups :
NULL;
}
size = (cdb[6] << 24) | (cdb[7] << 16) |
(cdb[8] << 8) | cdb[9];
} else {
/* GPCMD_SEND_KEY from multi media commands */
size = (cdb[8] << 8) + cdb[9];
}
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case MODE_SELECT:
size = cdb[4];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case MODE_SELECT_10:
size = (cdb[7] << 8) + cdb[8];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case MODE_SENSE:
size = cdb[4];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case MODE_SENSE_10:
case GPCMD_READ_BUFFER_CAPACITY:
case GPCMD_SEND_OPC:
case LOG_SELECT:
case LOG_SENSE:
size = (cdb[7] << 8) + cdb[8];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case READ_BLOCK_LIMITS:
size = READ_BLOCK_LEN;
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case GPCMD_GET_CONFIGURATION:
case GPCMD_READ_FORMAT_CAPACITIES:
case GPCMD_READ_DISC_INFO:
case GPCMD_READ_TRACK_RZONE_INFO:
size = (cdb[7] << 8) + cdb[8];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case PERSISTENT_RESERVE_IN:
case PERSISTENT_RESERVE_OUT:
cmd->transport_emulate_cdb =
(su_dev->t10_pr.res_type ==
SPC3_PERSISTENT_RESERVATIONS) ?
core_scsi3_emulate_pr : NULL;
size = (cdb[7] << 8) + cdb[8];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case GPCMD_MECHANISM_STATUS:
case GPCMD_READ_DVD_STRUCTURE:
size = (cdb[8] << 8) + cdb[9];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case READ_POSITION:
size = READ_POSITION_LEN;
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case MAINTENANCE_OUT:
if (dev->transport->get_device_type(dev) != TYPE_ROM) {
/* MAINTENANCE_OUT from SCC-2
*
* Check for emulated MO_SET_TARGET_PGS.
*/
if (cdb[1] == MO_SET_TARGET_PGS) {
cmd->transport_emulate_cdb =
(su_dev->t10_alua.alua_type ==
SPC3_ALUA_EMULATED) ?
core_emulate_set_target_port_groups :
NULL;
}
size = (cdb[6] << 24) | (cdb[7] << 16) |
(cdb[8] << 8) | cdb[9];
} else {
/* GPCMD_REPORT_KEY from multi media commands */
size = (cdb[8] << 8) + cdb[9];
}
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case INQUIRY:
size = (cdb[3] << 8) + cdb[4];
/*
* Do implict HEAD_OF_QUEUE processing for INQUIRY.
* See spc4r17 section 5.3
*/
if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
cmd->sam_task_attr = MSG_HEAD_TAG;
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case READ_BUFFER:
size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case READ_CAPACITY:
size = READ_CAP_LEN;
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case READ_MEDIA_SERIAL_NUMBER:
case SECURITY_PROTOCOL_IN:
case SECURITY_PROTOCOL_OUT:
size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case SERVICE_ACTION_IN:
case ACCESS_CONTROL_IN:
case ACCESS_CONTROL_OUT:
case EXTENDED_COPY:
case READ_ATTRIBUTE:
case RECEIVE_COPY_RESULTS:
case WRITE_ATTRIBUTE:
size = (cdb[10] << 24) | (cdb[11] << 16) |
(cdb[12] << 8) | cdb[13];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case RECEIVE_DIAGNOSTIC:
case SEND_DIAGNOSTIC:
size = (cdb[3] << 8) | cdb[4];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
/* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
#if 0
case GPCMD_READ_CD:
sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
size = (2336 * sectors);
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
#endif
case READ_TOC:
size = cdb[8];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case REQUEST_SENSE:
size = cdb[4];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case READ_ELEMENT_STATUS:
size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case WRITE_BUFFER:
size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case RESERVE:
case RESERVE_10:
/*
* The SPC-2 RESERVE does not contain a size in the SCSI CDB.
* Assume the passthrough or $FABRIC_MOD will tell us about it.
*/
if (cdb[0] == RESERVE_10)
size = (cdb[7] << 8) | cdb[8];
else
size = cmd->data_length;
/*
* Setup the legacy emulated handler for SPC-2 and
* >= SPC-3 compatible reservation handling (CRH=1)
* Otherwise, we assume the underlying SCSI logic is
* is running in SPC_PASSTHROUGH, and wants reservations
* emulation disabled.
*/
cmd->transport_emulate_cdb =
(su_dev->t10_pr.res_type !=
SPC_PASSTHROUGH) ?
core_scsi2_emulate_crh : NULL;
cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
break;
case RELEASE:
case RELEASE_10:
/*
* The SPC-2 RELEASE does not contain a size in the SCSI CDB.
* Assume the passthrough or $FABRIC_MOD will tell us about it.
*/
if (cdb[0] == RELEASE_10)
size = (cdb[7] << 8) | cdb[8];
else
size = cmd->data_length;
cmd->transport_emulate_cdb =
(su_dev->t10_pr.res_type !=
SPC_PASSTHROUGH) ?
core_scsi2_emulate_crh : NULL;
cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
break;
case SYNCHRONIZE_CACHE:
case 0x91: /* SYNCHRONIZE_CACHE_16: */
/*
* Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
*/
if (cdb[0] == SYNCHRONIZE_CACHE) {
sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
cmd->t_task_lba = transport_lba_32(cdb);
} else {
sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
cmd->t_task_lba = transport_lba_64(cdb);
}
if (sector_ret)
goto out_unsupported_cdb;
size = transport_get_size(sectors, cdb, cmd);
cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
/*
* For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
*/
if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
break;
/*
* Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
* for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
*/
cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
/*
* Check to ensure that LBA + Range does not exceed past end of
* device.
*/
if (!transport_cmd_get_valid_sectors(cmd))
goto out_invalid_cdb_field;
break;
case UNMAP:
size = get_unaligned_be16(&cdb[7]);
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case WRITE_SAME_16:
sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
if (sector_ret)
goto out_unsupported_cdb;
if (sectors)
size = transport_get_size(sectors, cdb, cmd);
else {
pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
goto out_invalid_cdb_field;
}
cmd->t_task_lba = get_unaligned_be16(&cdb[2]);
passthrough = (dev->transport->transport_type ==
TRANSPORT_PLUGIN_PHBA_PDEV);
/*
* Determine if the received WRITE_SAME_16 is used to for direct
* passthrough into Linux/SCSI with struct request via TCM/pSCSI
* or we are signaling the use of internal WRITE_SAME + UNMAP=1
* emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
* TCM/FILEIO subsystem plugin backstores.
*/
if (!passthrough) {
if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) {
pr_err("WRITE_SAME PBDATA and LBDATA"
" bits not supported for Block Discard"
" Emulation\n");
goto out_invalid_cdb_field;
}
/*
* Currently for the emulated case we only accept
* tpws with the UNMAP=1 bit set.
*/
if (!(cdb[1] & 0x08)) {
pr_err("WRITE_SAME w/o UNMAP bit not "
" supported for Block Discard Emulation\n");
goto out_invalid_cdb_field;
}
}
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
case ALLOW_MEDIUM_REMOVAL:
case GPCMD_CLOSE_TRACK:
case ERASE:
case INITIALIZE_ELEMENT_STATUS:
case GPCMD_LOAD_UNLOAD:
case REZERO_UNIT:
case SEEK_10:
case GPCMD_SET_SPEED:
case SPACE:
case START_STOP:
case TEST_UNIT_READY:
case VERIFY:
case WRITE_FILEMARKS:
case MOVE_MEDIUM:
cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
break;
case REPORT_LUNS:
cmd->transport_emulate_cdb =
transport_core_report_lun_response;
size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
/*
* Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
* See spc4r17 section 5.3
*/
if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
cmd->sam_task_attr = MSG_HEAD_TAG;
cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
break;
default:
pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
" 0x%02x, sending CHECK_CONDITION.\n",
cmd->se_tfo->get_fabric_name(), cdb[0]);
cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
goto out_unsupported_cdb;
}
if (size != cmd->data_length) {
pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
" %u does not match SCSI CDB Length: %u for SAM Opcode:"
" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
cmd->data_length, size, cdb[0]);
cmd->cmd_spdtl = size;
if (cmd->data_direction == DMA_TO_DEVICE) {
pr_err("Rejecting underflow/overflow"
" WRITE data\n");
goto out_invalid_cdb_field;
}
/*
* Reject READ_* or WRITE_* with overflow/underflow for
* type SCF_SCSI_DATA_SG_IO_CDB.
*/
if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
" CDB on non 512-byte sector setup subsystem"
" plugin: %s\n", dev->transport->name);
/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
goto out_invalid_cdb_field;
}
if (size > cmd->data_length) {
cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
cmd->residual_count = (size - cmd->data_length);
} else {
cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
cmd->residual_count = (cmd->data_length - size);
}
cmd->data_length = size;
}
/* Let's limit control cdbs to a page, for simplicity's sake. */
if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
size > PAGE_SIZE)
goto out_invalid_cdb_field;
transport_set_supported_SAM_opcode(cmd);
return ret;
out_unsupported_cdb:
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
return -EINVAL;
out_invalid_cdb_field:
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
return -EINVAL;
}
/*
* Called from transport_generic_complete_ok() and
* transport_generic_request_failure() to determine which dormant/delayed
* and ordered cmds need to have their tasks added to the execution queue.
*/
static void transport_complete_task_attr(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
struct se_cmd *cmd_p, *cmd_tmp;
int new_active_tasks = 0;
if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
atomic_dec(&dev->simple_cmds);
smp_mb__after_atomic_dec();
dev->dev_cur_ordered_id++;
pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
" SIMPLE: %u\n", dev->dev_cur_ordered_id,
cmd->se_ordered_id);
} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
atomic_dec(&dev->dev_hoq_count);
smp_mb__after_atomic_dec();
dev->dev_cur_ordered_id++;
pr_debug("Incremented dev_cur_ordered_id: %u for"
" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
cmd->se_ordered_id);
} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
spin_lock(&dev->ordered_cmd_lock);
list_del(&cmd->se_ordered_node);
atomic_dec(&dev->dev_ordered_sync);
smp_mb__after_atomic_dec();
spin_unlock(&dev->ordered_cmd_lock);
dev->dev_cur_ordered_id++;
pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
}
/*
* Process all commands up to the last received
* ORDERED task attribute which requires another blocking
* boundary
*/
spin_lock(&dev->delayed_cmd_lock);
list_for_each_entry_safe(cmd_p, cmd_tmp,
&dev->delayed_cmd_list, se_delayed_node) {
list_del(&cmd_p->se_delayed_node);
spin_unlock(&dev->delayed_cmd_lock);
pr_debug("Calling add_tasks() for"
" cmd_p: 0x%02x Task Attr: 0x%02x"
" Dormant -> Active, se_ordered_id: %u\n",
cmd_p->t_task_cdb[0],
cmd_p->sam_task_attr, cmd_p->se_ordered_id);
transport_add_tasks_from_cmd(cmd_p);
new_active_tasks++;
spin_lock(&dev->delayed_cmd_lock);
if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
break;
}
spin_unlock(&dev->delayed_cmd_lock);
/*
* If new tasks have become active, wake up the transport thread
* to do the processing of the Active tasks.
*/
if (new_active_tasks != 0)
wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
}
static int transport_complete_qf(struct se_cmd *cmd)
{
int ret = 0;
if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
return cmd->se_tfo->queue_status(cmd);
switch (cmd->data_direction) {
case DMA_FROM_DEVICE:
ret = cmd->se_tfo->queue_data_in(cmd);
break;
case DMA_TO_DEVICE:
if (cmd->t_bidi_data_sg) {
ret = cmd->se_tfo->queue_data_in(cmd);
if (ret < 0)
return ret;
}
/* Fall through for DMA_TO_DEVICE */
case DMA_NONE:
ret = cmd->se_tfo->queue_status(cmd);
break;
default:
break;
}
return ret;
}
static void transport_handle_queue_full(
struct se_cmd *cmd,
struct se_device *dev,
int (*qf_callback)(struct se_cmd *))
{
spin_lock_irq(&dev->qf_cmd_lock);
cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
cmd->transport_qf_callback = qf_callback;
list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
atomic_inc(&dev->dev_qf_count);
smp_mb__after_atomic_inc();
spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
schedule_work(&cmd->se_dev->qf_work_queue);
}
static void transport_generic_complete_ok(struct se_cmd *cmd)
{
int reason = 0, ret;
/*
* Check if we need to move delayed/dormant tasks from cmds on the
* delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
* Attribute.
*/
if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
transport_complete_task_attr(cmd);
/*
* Check to schedule QUEUE_FULL work, or execute an existing
* cmd->transport_qf_callback()
*/
if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
schedule_work(&cmd->se_dev->qf_work_queue);
if (cmd->transport_qf_callback) {
ret = cmd->transport_qf_callback(cmd);
if (ret < 0)
goto queue_full;
cmd->transport_qf_callback = NULL;
goto done;
}
/*
* Check if we need to retrieve a sense buffer from
* the struct se_cmd in question.
*/
if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
if (transport_get_sense_data(cmd) < 0)
reason = TCM_NON_EXISTENT_LUN;
/*
* Only set when an struct se_task->task_scsi_status returned
* a non GOOD status.
*/
if (cmd->scsi_status) {
ret = transport_send_check_condition_and_sense(
cmd, reason, 1);
if (ret == -EAGAIN)
goto queue_full;
transport_lun_remove_cmd(cmd);
transport_cmd_check_stop_to_fabric(cmd);
return;
}
}
/*
* Check for a callback, used by amongst other things
* XDWRITE_READ_10 emulation.
*/
if (cmd->transport_complete_callback)
cmd->transport_complete_callback(cmd);
switch (cmd->data_direction) {
case DMA_FROM_DEVICE:
spin_lock(&cmd->se_lun->lun_sep_lock);
if (cmd->se_lun->lun_sep) {
cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
cmd->data_length;
}
spin_unlock(&cmd->se_lun->lun_sep_lock);
ret = cmd->se_tfo->queue_data_in(cmd);
if (ret == -EAGAIN)
goto queue_full;
break;
case DMA_TO_DEVICE:
spin_lock(&cmd->se_lun->lun_sep_lock);
if (cmd->se_lun->lun_sep) {
cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
cmd->data_length;
}
spin_unlock(&cmd->se_lun->lun_sep_lock);
/*
* Check if we need to send READ payload for BIDI-COMMAND
*/
if (cmd->t_bidi_data_sg) {
spin_lock(&cmd->se_lun->lun_sep_lock);
if (cmd->se_lun->lun_sep) {
cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
cmd->data_length;
}
spin_unlock(&cmd->se_lun->lun_sep_lock);
ret = cmd->se_tfo->queue_data_in(cmd);
if (ret == -EAGAIN)
goto queue_full;
break;
}
/* Fall through for DMA_TO_DEVICE */
case DMA_NONE:
ret = cmd->se_tfo->queue_status(cmd);
if (ret == -EAGAIN)
goto queue_full;
break;
default:
break;
}
done:
transport_lun_remove_cmd(cmd);
transport_cmd_check_stop_to_fabric(cmd);
return;
queue_full:
pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
" data_direction: %d\n", cmd, cmd->data_direction);
transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
}
static void transport_free_dev_tasks(struct se_cmd *cmd)
{
struct se_task *task, *task_tmp;
unsigned long flags;
spin_lock_irqsave(&cmd->t_state_lock, flags);
list_for_each_entry_safe(task, task_tmp,
&cmd->t_task_list, t_list) {
if (atomic_read(&task->task_active))
continue;
kfree(task->task_sg_bidi);
kfree(task->task_sg);
list_del(&task->t_list);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
if (task->se_dev)
task->se_dev->transport->free_task(task);
else
pr_err("task[%u] - task->se_dev is NULL\n",
task->task_no);
spin_lock_irqsave(&cmd->t_state_lock, flags);
}
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}
static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
{
struct scatterlist *sg;
int count;
for_each_sg(sgl, sg, nents, count)
__free_page(sg_page(sg));
kfree(sgl);
}
static inline void transport_free_pages(struct se_cmd *cmd)
{
if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
return;
transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
cmd->t_data_sg = NULL;
cmd->t_data_nents = 0;
transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
cmd->t_bidi_data_sg = NULL;
cmd->t_bidi_data_nents = 0;
}
static inline void transport_release_tasks(struct se_cmd *cmd)
{
transport_free_dev_tasks(cmd);
}
static inline int transport_dec_and_check(struct se_cmd *cmd)
{
unsigned long flags;
spin_lock_irqsave(&cmd->t_state_lock, flags);
if (atomic_read(&cmd->t_fe_count)) {
if (!atomic_dec_and_test(&cmd->t_fe_count)) {
spin_unlock_irqrestore(&cmd->t_state_lock,
flags);
return 1;
}
}
if (atomic_read(&cmd->t_se_count)) {
if (!atomic_dec_and_test(&cmd->t_se_count)) {
spin_unlock_irqrestore(&cmd->t_state_lock,
flags);
return 1;
}
}
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
return 0;
}
static void transport_release_fe_cmd(struct se_cmd *cmd)
{
unsigned long flags;
if (transport_dec_and_check(cmd))
return;
spin_lock_irqsave(&cmd->t_state_lock, flags);
if (!atomic_read(&cmd->transport_dev_active)) {
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
goto free_pages;
}
atomic_set(&cmd->transport_dev_active, 0);
transport_all_task_dev_remove_state(cmd);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
transport_release_tasks(cmd);
free_pages:
transport_free_pages(cmd);
transport_free_se_cmd(cmd);
cmd->se_tfo->release_cmd(cmd);
}
static int
transport_generic_remove(struct se_cmd *cmd, int session_reinstatement)
{
unsigned long flags;
if (transport_dec_and_check(cmd)) {
if (session_reinstatement) {
spin_lock_irqsave(&cmd->t_state_lock, flags);
transport_all_task_dev_remove_state(cmd);
spin_unlock_irqrestore(&cmd->t_state_lock,
flags);
}
return 1;
}
spin_lock_irqsave(&cmd->t_state_lock, flags);
if (!atomic_read(&cmd->transport_dev_active)) {
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
goto free_pages;
}
atomic_set(&cmd->transport_dev_active, 0);
transport_all_task_dev_remove_state(cmd);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
transport_release_tasks(cmd);
free_pages:
transport_free_pages(cmd);
transport_release_cmd(cmd);
return 0;
}
/*
* transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
* allocating in the core.
* @cmd: Associated se_cmd descriptor
* @mem: SGL style memory for TCM WRITE / READ
* @sg_mem_num: Number of SGL elements
* @mem_bidi_in: SGL style memory for TCM BIDI READ
* @sg_mem_bidi_num: Number of BIDI READ SGL elements
*
* Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
* of parameters.
*/
int transport_generic_map_mem_to_cmd(
struct se_cmd *cmd,
struct scatterlist *sgl,
u32 sgl_count,
struct scatterlist *sgl_bidi,
u32 sgl_bidi_count)
{
if (!sgl || !sgl_count)
return 0;
if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
(cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
cmd->t_data_sg = sgl;
cmd->t_data_nents = sgl_count;
if (sgl_bidi && sgl_bidi_count) {
cmd->t_bidi_data_sg = sgl_bidi;
cmd->t_bidi_data_nents = sgl_bidi_count;
}
cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
}
return 0;
}
EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
static int transport_new_cmd_obj(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
u32 task_cdbs;
u32 rc;
int set_counts = 1;
/*
* Setup any BIDI READ tasks and memory from
* cmd->t_mem_bidi_list so the READ struct se_tasks
* are queued first for the non pSCSI passthrough case.
*/
if (cmd->t_bidi_data_sg &&
(dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
rc = transport_allocate_tasks(cmd,
cmd->t_task_lba,
DMA_FROM_DEVICE,
cmd->t_bidi_data_sg,
cmd->t_bidi_data_nents);
if (rc <= 0) {
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
cmd->scsi_sense_reason =
TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
return PYX_TRANSPORT_LU_COMM_FAILURE;
}
atomic_inc(&cmd->t_fe_count);
atomic_inc(&cmd->t_se_count);
set_counts = 0;
}
/*
* Setup the tasks and memory from cmd->t_mem_list
* Note for BIDI transfers this will contain the WRITE payload
*/
task_cdbs = transport_allocate_tasks(cmd,
cmd->t_task_lba,
cmd->data_direction,
cmd->t_data_sg,
cmd->t_data_nents);
if (task_cdbs <= 0) {
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
cmd->scsi_sense_reason =
TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
return PYX_TRANSPORT_LU_COMM_FAILURE;
}
if (set_counts) {
atomic_inc(&cmd->t_fe_count);
atomic_inc(&cmd->t_se_count);
}
cmd->t_task_list_num = task_cdbs;
atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
return 0;
}
void *transport_kmap_first_data_page(struct se_cmd *cmd)
{
struct scatterlist *sg = cmd->t_data_sg;
BUG_ON(!sg);
/*
* We need to take into account a possible offset here for fabrics like
* tcm_loop who may be using a contig buffer from the SCSI midlayer for
* control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
*/
return kmap(sg_page(sg)) + sg->offset;
}
EXPORT_SYMBOL(transport_kmap_first_data_page);
void transport_kunmap_first_data_page(struct se_cmd *cmd)
{
kunmap(sg_page(cmd->t_data_sg));
}
EXPORT_SYMBOL(transport_kunmap_first_data_page);
static int
transport_generic_get_mem(struct se_cmd *cmd)
{
u32 length = cmd->data_length;
unsigned int nents;
struct page *page;
int i = 0;
nents = DIV_ROUND_UP(length, PAGE_SIZE);
cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
if (!cmd->t_data_sg)
return -ENOMEM;
cmd->t_data_nents = nents;
sg_init_table(cmd->t_data_sg, nents);
while (length) {
u32 page_len = min_t(u32, length, PAGE_SIZE);
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!page)
goto out;
sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
length -= page_len;
i++;
}
return 0;
out:
while (i >= 0) {
__free_page(sg_page(&cmd->t_data_sg[i]));
i--;
}
kfree(cmd->t_data_sg);
cmd->t_data_sg = NULL;
return -ENOMEM;
}
/* Reduce sectors if they are too long for the device */
static inline sector_t transport_limit_task_sectors(
struct se_device *dev,
unsigned long long lba,
sector_t sectors)
{
sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
if (dev->transport->get_device_type(dev) == TYPE_DISK)
if ((lba + sectors) > transport_dev_end_lba(dev))
sectors = ((transport_dev_end_lba(dev) - lba) + 1);
return sectors;
}
/*
* This function can be used by HW target mode drivers to create a linked
* scatterlist from all contiguously allocated struct se_task->task_sg[].
* This is intended to be called during the completion path by TCM Core
* when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
*/
void transport_do_task_sg_chain(struct se_cmd *cmd)
{
struct scatterlist *sg_first = NULL;
struct scatterlist *sg_prev = NULL;
int sg_prev_nents = 0;
struct scatterlist *sg;
struct se_task *task;
u32 chained_nents = 0;
int i;
BUG_ON(!cmd->se_tfo->task_sg_chaining);
/*
* Walk the struct se_task list and setup scatterlist chains
* for each contiguously allocated struct se_task->task_sg[].
*/
list_for_each_entry(task, &cmd->t_task_list, t_list) {
if (!task->task_sg)
continue;
BUG_ON(!task->task_padded_sg);
if (!sg_first) {
sg_first = task->task_sg;
chained_nents = task->task_sg_nents;
} else {
sg_chain(sg_prev, sg_prev_nents, task->task_sg);
chained_nents += task->task_sg_nents;
}
sg_prev = task->task_sg;
sg_prev_nents = task->task_sg_nents;
}
/*
* Setup the starting pointer and total t_tasks_sg_linked_no including
* padding SGs for linking and to mark the end.
*/
cmd->t_tasks_sg_chained = sg_first;
cmd->t_tasks_sg_chained_no = chained_nents;
pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
" t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
cmd->t_tasks_sg_chained_no);
for_each_sg(cmd->t_tasks_sg_chained, sg,
cmd->t_tasks_sg_chained_no, i) {
pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
i, sg, sg_page(sg), sg->length, sg->offset);
if (sg_is_chain(sg))
pr_debug("SG: %p sg_is_chain=1\n", sg);
if (sg_is_last(sg))
pr_debug("SG: %p sg_is_last=1\n", sg);
}
}
EXPORT_SYMBOL(transport_do_task_sg_chain);
/*
* Break up cmd into chunks transport can handle
*/
static int transport_allocate_data_tasks(
struct se_cmd *cmd,
unsigned long long lba,
enum dma_data_direction data_direction,
struct scatterlist *sgl,
unsigned int sgl_nents)
{
unsigned char *cdb = NULL;
struct se_task *task;
struct se_device *dev = cmd->se_dev;
unsigned long flags;
sector_t sectors;
int task_count;
int i;
sector_t dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
struct scatterlist *sg;
struct scatterlist *cmd_sg;
WARN_ON(cmd->data_length % sector_size);
sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
task_count = DIV_ROUND_UP(sectors, dev_max_sectors);
cmd_sg = sgl;
for (i = 0; i < task_count; i++) {
unsigned int task_size;
int count;
task = transport_generic_get_task(cmd, data_direction);
if (!task)
return -ENOMEM;
task->task_lba = lba;
task->task_sectors = min(sectors, dev_max_sectors);
task->task_size = task->task_sectors * sector_size;
cdb = dev->transport->get_cdb(task);
BUG_ON(!cdb);
memcpy(cdb, cmd->t_task_cdb,
scsi_command_size(cmd->t_task_cdb));
/* Update new cdb with updated lba/sectors */
cmd->transport_split_cdb(task->task_lba, task->task_sectors, cdb);
/*
* Check if the fabric module driver is requesting that all
* struct se_task->task_sg[] be chained together.. If so,
* then allocate an extra padding SG entry for linking and
* marking the end of the chained SGL.
* Possibly over-allocate task sgl size by using cmd sgl size.
* It's so much easier and only a waste when task_count > 1.
* That is extremely rare.
*/
task->task_sg_nents = sgl_nents;
if (cmd->se_tfo->task_sg_chaining) {
task->task_sg_nents++;
task->task_padded_sg = 1;
}
task->task_sg = kmalloc(sizeof(struct scatterlist) * \
task->task_sg_nents, GFP_KERNEL);
if (!task->task_sg) {
cmd->se_dev->transport->free_task(task);
return -ENOMEM;
}
sg_init_table(task->task_sg, task->task_sg_nents);
task_size = task->task_size;
/* Build new sgl, only up to task_size */
for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
if (cmd_sg->length > task_size)
break;
*sg = *cmd_sg;
task_size -= cmd_sg->length;
cmd_sg = sg_next(cmd_sg);
}
lba += task->task_sectors;
sectors -= task->task_sectors;
spin_lock_irqsave(&cmd->t_state_lock, flags);
list_add_tail(&task->t_list, &cmd->t_task_list);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}
return task_count;
}
static int
transport_allocate_control_task(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
unsigned char *cdb;
struct se_task *task;
unsigned long flags;
int ret = 0;
task = transport_generic_get_task(cmd, cmd->data_direction);
if (!task)
return -ENOMEM;
cdb = dev->transport->get_cdb(task);
BUG_ON(!cdb);
memcpy(cdb, cmd->t_task_cdb,
scsi_command_size(cmd->t_task_cdb));
task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
GFP_KERNEL);
if (!task->task_sg) {
cmd->se_dev->transport->free_task(task);
return -ENOMEM;
}
memcpy(task->task_sg, cmd->t_data_sg,
sizeof(struct scatterlist) * cmd->t_data_nents);
task->task_size = cmd->data_length;
task->task_sg_nents = cmd->t_data_nents;
spin_lock_irqsave(&cmd->t_state_lock, flags);
list_add_tail(&task->t_list, &cmd->t_task_list);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
if (dev->transport->map_task_SG)
ret = dev->transport->map_task_SG(task);
} else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
if (dev->transport->cdb_none)
ret = dev->transport->cdb_none(task);
} else {
pr_err("target: Unknown control cmd type!\n");
BUG();
}
/* Success! Return number of tasks allocated */
if (ret == 0)
return 1;
return ret;
}
static u32 transport_allocate_tasks(
struct se_cmd *cmd,
unsigned long long lba,
enum dma_data_direction data_direction,
struct scatterlist *sgl,
unsigned int sgl_nents)
{
if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)
return transport_allocate_data_tasks(cmd, lba, data_direction,
sgl, sgl_nents);
else
return transport_allocate_control_task(cmd);
}
/* transport_generic_new_cmd(): Called from transport_processing_thread()
*
* Allocate storage transport resources from a set of values predefined
* by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
* Any non zero return here is treated as an "out of resource' op here.
*/
/*
* Generate struct se_task(s) and/or their payloads for this CDB.
*/
int transport_generic_new_cmd(struct se_cmd *cmd)
{
struct se_task *task;
struct se_device *dev = cmd->se_dev;
int ret = 0;
/*
* Determine is the TCM fabric module has already allocated physical
* memory, and is directly calling transport_generic_map_mem_to_cmd()
* beforehand.
*/
if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
cmd->data_length) {
ret = transport_generic_get_mem(cmd);
if (ret < 0)
return ret;
}
ret = transport_new_cmd_obj(cmd);
if (ret < 0)
return ret;
list_for_each_entry(task, &cmd->t_task_list, t_list) {
if (atomic_read(&task->task_sent))
continue;
if (!dev->transport->map_task_SG)
continue;
ret = dev->transport->map_task_SG(task);
if (ret < 0)
return ret;
}
/*
* For WRITEs, let the fabric know its buffer is ready..
* This WRITE struct se_cmd (and all of its associated struct se_task's)
* will be added to the struct se_device execution queue after its WRITE
* data has arrived. (ie: It gets handled by the transport processing
* thread a second time)
*/
if (cmd->data_direction == DMA_TO_DEVICE) {
transport_add_tasks_to_state_queue(cmd);
return transport_generic_write_pending(cmd);
}
/*
* Everything else but a WRITE, add the struct se_cmd's struct se_task's
* to the execution queue.
*/
transport_execute_tasks(cmd);
return 0;
}
EXPORT_SYMBOL(transport_generic_new_cmd);
/* transport_generic_process_write():
*
*
*/
void transport_generic_process_write(struct se_cmd *cmd)
{
transport_execute_tasks(cmd);
}
EXPORT_SYMBOL(transport_generic_process_write);
static int transport_write_pending_qf(struct se_cmd *cmd)
{
return cmd->se_tfo->write_pending(cmd);
}
/* transport_generic_write_pending():
*
*
*/
static int transport_generic_write_pending(struct se_cmd *cmd)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&cmd->t_state_lock, flags);
cmd->t_state = TRANSPORT_WRITE_PENDING;
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
if (cmd->transport_qf_callback) {
ret = cmd->transport_qf_callback(cmd);
if (ret == -EAGAIN)
goto queue_full;
else if (ret < 0)
return ret;
cmd->transport_qf_callback = NULL;
return 0;
}
/*
* Clear the se_cmd for WRITE_PENDING status in order to set
* cmd->t_transport_active=0 so that transport_generic_handle_data
* can be called from HW target mode interrupt code. This is safe
* to be called with transport_off=1 before the cmd->se_tfo->write_pending
* because the se_cmd->se_lun pointer is not being cleared.
*/
transport_cmd_check_stop(cmd, 1, 0);
/*
* Call the fabric write_pending function here to let the
* frontend know that WRITE buffers are ready.
*/
ret = cmd->se_tfo->write_pending(cmd);
if (ret == -EAGAIN)
goto queue_full;
else if (ret < 0)
return ret;
return PYX_TRANSPORT_WRITE_PENDING;
queue_full:
pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
transport_handle_queue_full(cmd, cmd->se_dev,
transport_write_pending_qf);
return ret;
}
void transport_release_cmd(struct se_cmd *cmd)
{
BUG_ON(!cmd->se_tfo);
transport_free_se_cmd(cmd);
cmd->se_tfo->release_cmd(cmd);
}
EXPORT_SYMBOL(transport_release_cmd);
/* transport_generic_free_cmd():
*
* Called from processing frontend to release storage engine resources
*/
void transport_generic_free_cmd(
struct se_cmd *cmd,
int wait_for_tasks,
int session_reinstatement)
{
if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD))
transport_release_cmd(cmd);
else {
core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
if (cmd->se_lun) {
#if 0
pr_debug("cmd: %p ITT: 0x%08x contains"
" cmd->se_lun\n", cmd,
cmd->se_tfo->get_task_tag(cmd));
#endif
transport_lun_remove_cmd(cmd);
}
if (wait_for_tasks && cmd->transport_wait_for_tasks)
cmd->transport_wait_for_tasks(cmd, 0, 0);
transport_free_dev_tasks(cmd);
transport_generic_remove(cmd, session_reinstatement);
}
}
EXPORT_SYMBOL(transport_generic_free_cmd);
static void transport_nop_wait_for_tasks(
struct se_cmd *cmd,
int remove_cmd,
int session_reinstatement)
{
return;
}
/* transport_lun_wait_for_tasks():
*
* Called from ConfigFS context to stop the passed struct se_cmd to allow
* an struct se_lun to be successfully shutdown.
*/
static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
{
unsigned long flags;
int ret;
/*
* If the frontend has already requested this struct se_cmd to
* be stopped, we can safely ignore this struct se_cmd.
*/
spin_lock_irqsave(&cmd->t_state_lock, flags);
if (atomic_read(&cmd->t_transport_stop)) {
atomic_set(&cmd->transport_lun_stop, 0);
pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
" TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
transport_cmd_check_stop(cmd, 1, 0);
return -EPERM;
}
atomic_set(&cmd->transport_lun_fe_stop, 1);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
ret = transport_stop_tasks_for_cmd(cmd);
pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
" %d\n", cmd, cmd->t_task_list_num, ret);
if (!ret) {
pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
cmd->se_tfo->get_task_tag(cmd));
wait_for_completion(&cmd->transport_lun_stop_comp);
pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
cmd->se_tfo->get_task_tag(cmd));
}
transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
return 0;
}
static void __transport_clear_lun_from_sessions(struct se_lun *lun)
{
struct se_cmd *cmd = NULL;
unsigned long lun_flags, cmd_flags;
/*
* Do exception processing and return CHECK_CONDITION status to the
* Initiator Port.
*/
spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
while (!list_empty(&lun->lun_cmd_list)) {
cmd = list_first_entry(&lun->lun_cmd_list,
struct se_cmd, se_lun_node);
list_del(&cmd->se_lun_node);
atomic_set(&cmd->transport_lun_active, 0);
/*
* This will notify iscsi_target_transport.c:
* transport_cmd_check_stop() that a LUN shutdown is in
* progress for the iscsi_cmd_t.
*/
spin_lock(&cmd->t_state_lock);
pr_debug("SE_LUN[%d] - Setting cmd->transport"
"_lun_stop for ITT: 0x%08x\n",
cmd->se_lun->unpacked_lun,
cmd->se_tfo->get_task_tag(cmd));
atomic_set(&cmd->transport_lun_stop, 1);
spin_unlock(&cmd->t_state_lock);
spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
if (!cmd->se_lun) {
pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
cmd->se_tfo->get_task_tag(cmd),
cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
BUG();
}
/*
* If the Storage engine still owns the iscsi_cmd_t, determine
* and/or stop its context.
*/
pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
"_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
cmd->se_tfo->get_task_tag(cmd));
if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
continue;
}
pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
"_wait_for_tasks(): SUCCESS\n",
cmd->se_lun->unpacked_lun,
cmd->se_tfo->get_task_tag(cmd));
spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
if (!atomic_read(&cmd->transport_dev_active)) {
spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
goto check_cond;
}
atomic_set(&cmd->transport_dev_active, 0);
transport_all_task_dev_remove_state(cmd);
spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
transport_free_dev_tasks(cmd);
/*
* The Storage engine stopped this struct se_cmd before it was
* send to the fabric frontend for delivery back to the
* Initiator Node. Return this SCSI CDB back with an
* CHECK_CONDITION status.
*/
check_cond:
transport_send_check_condition_and_sense(cmd,
TCM_NON_EXISTENT_LUN, 0);
/*
* If the fabric frontend is waiting for this iscsi_cmd_t to
* be released, notify the waiting thread now that LU has
* finished accessing it.
*/
spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
if (atomic_read(&cmd->transport_lun_fe_stop)) {
pr_debug("SE_LUN[%d] - Detected FE stop for"
" struct se_cmd: %p ITT: 0x%08x\n",
lun->unpacked_lun,
cmd, cmd->se_tfo->get_task_tag(cmd));
spin_unlock_irqrestore(&cmd->t_state_lock,
cmd_flags);
transport_cmd_check_stop(cmd, 1, 0);
complete(&cmd->transport_lun_fe_stop_comp);
spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
continue;
}
pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
}
spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
}
static int transport_clear_lun_thread(void *p)
{
struct se_lun *lun = (struct se_lun *)p;
__transport_clear_lun_from_sessions(lun);
complete(&lun->lun_shutdown_comp);
return 0;
}
int transport_clear_lun_from_sessions(struct se_lun *lun)
{
struct task_struct *kt;
kt = kthread_run(transport_clear_lun_thread, lun,
"tcm_cl_%u", lun->unpacked_lun);
if (IS_ERR(kt)) {
pr_err("Unable to start clear_lun thread\n");
return PTR_ERR(kt);
}
wait_for_completion(&lun->lun_shutdown_comp);
return 0;
}
/* transport_generic_wait_for_tasks():
*
* Called from frontend or passthrough context to wait for storage engine
* to pause and/or release frontend generated struct se_cmd.
*/
static void transport_generic_wait_for_tasks(
struct se_cmd *cmd,
int remove_cmd,
int session_reinstatement)
{
unsigned long flags;
if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
return;
spin_lock_irqsave(&cmd->t_state_lock, flags);
/*
* If we are already stopped due to an external event (ie: LUN shutdown)
* sleep until the connection can have the passed struct se_cmd back.
* The cmd->transport_lun_stopped_sem will be upped by
* transport_clear_lun_from_sessions() once the ConfigFS context caller
* has completed its operation on the struct se_cmd.
*/
if (atomic_read(&cmd->transport_lun_stop)) {
pr_debug("wait_for_tasks: Stopping"
" wait_for_completion(&cmd->t_tasktransport_lun_fe"
"_stop_comp); for ITT: 0x%08x\n",
cmd->se_tfo->get_task_tag(cmd));
/*
* There is a special case for WRITES where a FE exception +
* LUN shutdown means ConfigFS context is still sleeping on
* transport_lun_stop_comp in transport_lun_wait_for_tasks().
* We go ahead and up transport_lun_stop_comp just to be sure
* here.
*/
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
complete(&cmd->transport_lun_stop_comp);
wait_for_completion(&cmd->transport_lun_fe_stop_comp);
spin_lock_irqsave(&cmd->t_state_lock, flags);
transport_all_task_dev_remove_state(cmd);
/*
* At this point, the frontend who was the originator of this
* struct se_cmd, now owns the structure and can be released through
* normal means below.
*/
pr_debug("wait_for_tasks: Stopped"
" wait_for_completion(&cmd->t_tasktransport_lun_fe_"
"stop_comp); for ITT: 0x%08x\n",
cmd->se_tfo->get_task_tag(cmd));
atomic_set(&cmd->transport_lun_stop, 0);
}
if (!atomic_read(&cmd->t_transport_active) ||
atomic_read(&cmd->t_transport_aborted))
goto remove;
atomic_set(&cmd->t_transport_stop, 1);
pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
" i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
" = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
cmd->deferred_t_state);
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
wait_for_completion(&cmd->t_transport_stop_comp);
spin_lock_irqsave(&cmd->t_state_lock, flags);
atomic_set(&cmd->t_transport_active, 0);
atomic_set(&cmd->t_transport_stop, 0);
pr_debug("wait_for_tasks: Stopped wait_for_compltion("
"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
cmd->se_tfo->get_task_tag(cmd));
remove:
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
if (!remove_cmd)
return;
transport_generic_free_cmd(cmd, 0, session_reinstatement);
}
static int transport_get_sense_codes(
struct se_cmd *cmd,
u8 *asc,
u8 *ascq)
{
*asc = cmd->scsi_asc;
*ascq = cmd->scsi_ascq;
return 0;
}
static int transport_set_sense_codes(
struct se_cmd *cmd,
u8 asc,
u8 ascq)
{
cmd->scsi_asc = asc;
cmd->scsi_ascq = ascq;
return 0;
}
int transport_send_check_condition_and_sense(
struct se_cmd *cmd,
u8 reason,
int from_transport)
{
unsigned char *buffer = cmd->sense_buffer;
unsigned long flags;
int offset;
u8 asc = 0, ascq = 0;
spin_lock_irqsave(&cmd->t_state_lock, flags);
if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
return 0;
}
cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
spin_unlock_irqrestore(&cmd->t_state_lock, flags);
if (!reason && from_transport)
goto after_reason;
if (!from_transport)
cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
/*
* Data Segment and SenseLength of the fabric response PDU.
*
* TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
* from include/scsi/scsi_cmnd.h
*/
offset = cmd->se_tfo->set_fabric_sense_len(cmd,
TRANSPORT_SENSE_BUFFER);
/*
* Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
* SENSE KEY values from include/scsi/scsi.h
*/
switch (reason) {
case TCM_NON_EXISTENT_LUN:
case TCM_UNSUPPORTED_SCSI_OPCODE:
case TCM_SECTOR_COUNT_TOO_MANY:
/* CURRENT ERROR */
buffer[offset] = 0x70;
/* ILLEGAL REQUEST */
buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
/* INVALID COMMAND OPERATION CODE */
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
break;
case TCM_UNKNOWN_MODE_PAGE:
/* CURRENT ERROR */
buffer[offset] = 0x70;
/* ILLEGAL REQUEST */
buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
/* INVALID FIELD IN CDB */
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
break;
case TCM_CHECK_CONDITION_ABORT_CMD:
/* CURRENT ERROR */
buffer[offset] = 0x70;
/* ABORTED COMMAND */
buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
/* BUS DEVICE RESET FUNCTION OCCURRED */
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
break;
case TCM_INCORRECT_AMOUNT_OF_DATA:
/* CURRENT ERROR */
buffer[offset] = 0x70;
/* ABORTED COMMAND */
buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
/* WRITE ERROR */
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
/* NOT ENOUGH UNSOLICITED DATA */
buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
break;
case TCM_INVALID_CDB_FIELD:
/* CURRENT ERROR */
buffer[offset] = 0x70;
/* ABORTED COMMAND */
buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
/* INVALID FIELD IN CDB */
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
break;
case TCM_INVALID_PARAMETER_LIST:
/* CURRENT ERROR */
buffer[offset] = 0x70;
/* ABORTED COMMAND */
buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
/* INVALID FIELD IN PARAMETER LIST */
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
break;
case TCM_UNEXPECTED_UNSOLICITED_DATA:
/* CURRENT ERROR */
buffer[offset] = 0x70;
/* ABORTED COMMAND */
buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
/* WRITE ERROR */
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
/* UNEXPECTED_UNSOLICITED_DATA */
buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
break;
case TCM_SERVICE_CRC_ERROR:
/* CURRENT ERROR */
buffer[offset] = 0x70;
/* ABORTED COMMAND */
buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
/* PROTOCOL SERVICE CRC ERROR */
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
/* N/A */
buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
break;
case TCM_SNACK_REJECTED:
/* CURRENT ERROR */
buffer[offset] = 0x70;
/* ABORTED COMMAND */
buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
/* READ ERROR */
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
/* FAILED RETRANSMISSION REQUEST */
buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
break;
case TCM_WRITE_PROTECTED:
/* CURRENT ERROR */
buffer[offset] = 0x70;
/* DATA PROTECT */
buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
/* WRITE PROTECTED */
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
break;
case TCM_CHECK_CONDITION_UNIT_ATTENTION:
/* CURRENT ERROR */
buffer[offset] = 0x70;
/* UNIT ATTENTION */
buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
break;
case TCM_CHECK_CONDITION_NOT_READY:
/* CURRENT ERROR */
buffer[offset] = 0x70;
/* Not Ready */
buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
transport_get_sense_codes(cmd, &asc, &ascq);
buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
break;
case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
default:
/* CURRENT ERROR */
buffer[offset] = 0x70;
/* ILLEGAL REQUEST */
buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
/* LOGICAL UNIT COMMUNICATION FAILURE */
buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
break;
}
/*
* This code uses linux/include/scsi/scsi.h SAM status codes!
*/
cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
/*
* Automatically padded, this value is encoded in the fabric's
* data_length response PDU containing the SCSI defined sense data.
*/
cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
after_reason:
return cmd->se_tfo->queue_status(cmd);
}
EXPORT_SYMBOL(transport_send_check_condition_and_sense);
int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
{
int ret = 0;
if (atomic_read(&cmd->t_transport_aborted) != 0) {
if (!send_status ||
(cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
return 1;
#if 0
pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
" status for CDB: 0x%02x ITT: 0x%08x\n",
cmd->t_task_cdb[0],
cmd->se_tfo->get_task_tag(cmd));
#endif
cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
cmd->se_tfo->queue_status(cmd);
ret = 1;
}
return ret;
}
EXPORT_SYMBOL(transport_check_aborted_status);
void transport_send_task_abort(struct se_cmd *cmd)
{
/*
* If there are still expected incoming fabric WRITEs, we wait
* until until they have completed before sending a TASK_ABORTED
* response. This response with TASK_ABORTED status will be
* queued back to fabric module by transport_check_aborted_status().
*/
if (cmd->data_direction == DMA_TO_DEVICE) {
if (cmd->se_tfo->write_pending_status(cmd) != 0) {
atomic_inc(&cmd->t_transport_aborted);
smp_mb__after_atomic_inc();
cmd->scsi_status = SAM_STAT_TASK_ABORTED;
transport_new_cmd_failure(cmd);
return;
}
}
cmd->scsi_status = SAM_STAT_TASK_ABORTED;
#if 0
pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
" ITT: 0x%08x\n", cmd->t_task_cdb[0],
cmd->se_tfo->get_task_tag(cmd));
#endif
cmd->se_tfo->queue_status(cmd);
}
/* transport_generic_do_tmr():
*
*
*/
int transport_generic_do_tmr(struct se_cmd *cmd)
{
struct se_device *dev = cmd->se_dev;
struct se_tmr_req *tmr = cmd->se_tmr_req;
int ret;
switch (tmr->function) {
case TMR_ABORT_TASK:
tmr->response = TMR_FUNCTION_REJECTED;
break;
case TMR_ABORT_TASK_SET:
case TMR_CLEAR_ACA:
case TMR_CLEAR_TASK_SET:
tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
break;
case TMR_LUN_RESET:
ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
TMR_FUNCTION_REJECTED;
break;
case TMR_TARGET_WARM_RESET:
tmr->response = TMR_FUNCTION_REJECTED;
break;
case TMR_TARGET_COLD_RESET:
tmr->response = TMR_FUNCTION_REJECTED;
break;
default:
pr_err("Uknown TMR function: 0x%02x.\n",
tmr->function);
tmr->response = TMR_FUNCTION_REJECTED;
break;
}
cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
cmd->se_tfo->queue_tm_rsp(cmd);
transport_cmd_check_stop(cmd, 2, 0);
return 0;
}
/*
* Called with spin_lock_irq(&dev->execute_task_lock); held
*
*/
static struct se_task *
transport_get_task_from_state_list(struct se_device *dev)
{
struct se_task *task;
if (list_empty(&dev->state_task_list))
return NULL;
list_for_each_entry(task, &dev->state_task_list, t_state_list)
break;
list_del(&task->t_state_list);
atomic_set(&task->task_state_active, 0);
return task;
}
static void transport_processing_shutdown(struct se_device *dev)
{
struct se_cmd *cmd;
struct se_task *task;
unsigned long flags;
/*
* Empty the struct se_device's struct se_task state list.
*/
spin_lock_irqsave(&dev->execute_task_lock, flags);
while ((task = transport_get_task_from_state_list(dev))) {
if (!task->task_se_cmd) {
pr_err("task->task_se_cmd is NULL!\n");
continue;
}
cmd = task->task_se_cmd;
spin_unlock_irqrestore(&dev->execute_task_lock, flags);
spin_lock_irqsave(&cmd->t_state_lock, flags);
pr_debug("PT: cmd: %p task: %p ITT: 0x%08x,"
" i_state: %d, t_state/def_t_state:"
" %d/%d cdb: 0x%02x\n", cmd, task,
cmd->se_tfo->get_task_tag(cmd),
cmd->se_tfo->get_cmd_state(cmd),
cmd->t_state, cmd->deferred_t_state,
cmd->t_task_cdb[0]);
pr_debug("PT: ITT[0x%08x] - t_tasks: %d t_task_cdbs_left:"
" %d t_task_cdbs_sent: %d -- t_transport_active: %d"
" t_transport_stop: %d t_transport_sent: %d\n",
cmd->se_tfo->get_task_tag(cmd),
cmd->t_task_list_num,
atomic_read(&cmd->t_task_cdbs_left),
atomic_read(&cmd->t_task_cdbs_sent),
atomic_read(&cmd->t_transport_active),
atomic_read(&cmd->t_transport_stop),
atomic_read(&cmd->t_transport_sent));
if (atomic_read(&task->task_active)) {
atomic_set(&task->task_stop, 1);
spin_unlock_irqrestore(
&cmd->t_state_lock, flags);
pr_debug("Waiting for task: %p to shutdown for dev:"
" %p\n", task, dev);
wait_for_completion(&task->task_stop_comp);
pr_debug("Completed task: %p shutdown for dev: %p\n",
task, dev);
spin_lock_irqsave(&cmd->t_state_lock, flags);
atomic_dec(&cmd->t_task_cdbs_left);
atomic_set(&task->task_active, 0);
atomic_set(&task->task_stop, 0);
} else {
if (atomic_read(&task->task_execute_queue) != 0)
transport_remove_task_from_execute_queue(task, dev);
}
__transport_stop_task_timer(task, &flags);
if (!atomic_dec_and_test(&cmd->t_task_cdbs_ex_left)) {
spin_unlock_irqrestore(
&cmd->t_state_lock, flags);
pr_debug("Skipping task: %p, dev: %p for"
" t_task_cdbs_ex_left: %d\n", task, dev,
atomic_read(&cmd->t_task_cdbs_ex_left));
spin_lock_irqsave(&dev->execute_task_lock, flags);
continue;
}
if (atomic_read(&cmd->t_transport_active)) {
pr_debug("got t_transport_active = 1 for task: %p, dev:"
" %p\n", task, dev);
if (atomic_read(&cmd->t_fe_count)) {
spin_unlock_irqrestore(
&cmd->t_state_lock, flags);
transport_send_check_condition_and_sense(
cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
0);
transport_remove_cmd_from_queue(cmd,
&cmd->se_dev->dev_queue_obj);
transport_lun_remove_cmd(cmd);
transport_cmd_check_stop(cmd, 1, 0);
} else {
spin_unlock_irqrestore(
&cmd->t_state_lock, flags);
transport_remove_cmd_from_queue(cmd,
&cmd->se_dev->dev_queue_obj);
transport_lun_remove_cmd(cmd);
if (transport_cmd_check_stop(cmd, 1, 0))
transport_generic_remove(cmd, 0);
}
spin_lock_irqsave(&dev->execute_task_lock, flags);
continue;
}
pr_debug("Got t_transport_active = 0 for task: %p, dev: %p\n",
task, dev);
if (atomic_read(&cmd->t_fe_count)) {
spin_unlock_irqrestore(
&cmd->t_state_lock, flags);
transport_send_check_condition_and_sense(cmd,
TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
transport_remove_cmd_from_queue(cmd,
&cmd->se_dev->dev_queue_obj);
transport_lun_remove_cmd(cmd);
transport_cmd_check_stop(cmd, 1, 0);
} else {
spin_unlock_irqrestore(
&cmd->t_state_lock, flags);
transport_remove_cmd_from_queue(cmd,
&cmd->se_dev->dev_queue_obj);
transport_lun_remove_cmd(cmd);
if (transport_cmd_check_stop(cmd, 1, 0))
transport_generic_remove(cmd, 0);
}
spin_lock_irqsave(&dev->execute_task_lock, flags);
}
spin_unlock_irqrestore(&dev->execute_task_lock, flags);
/*
* Empty the struct se_device's struct se_cmd list.
*/
while ((cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj))) {
pr_debug("From Device Queue: cmd: %p t_state: %d\n",
cmd, cmd->t_state);
if (atomic_read(&cmd->t_fe_count)) {
transport_send_check_condition_and_sense(cmd,
TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
transport_lun_remove_cmd(cmd);
transport_cmd_check_stop(cmd, 1, 0);
} else {
transport_lun_remove_cmd(cmd);
if (transport_cmd_check_stop(cmd, 1, 0))
transport_generic_remove(cmd, 0);
}
}
}
/* transport_processing_thread():
*
*
*/
static int transport_processing_thread(void *param)
{
int ret;
struct se_cmd *cmd;
struct se_device *dev = (struct se_device *) param;
set_user_nice(current, -20);
while (!kthread_should_stop()) {
ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
atomic_read(&dev->dev_queue_obj.queue_cnt) ||
kthread_should_stop());
if (ret < 0)
goto out;
spin_lock_irq(&dev->dev_status_lock);
if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
spin_unlock_irq(&dev->dev_status_lock);
transport_processing_shutdown(dev);
continue;
}
spin_unlock_irq(&dev->dev_status_lock);
get_cmd:
__transport_execute_tasks(dev);
cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
if (!cmd)
continue;
switch (cmd->t_state) {
case TRANSPORT_NEW_CMD_MAP:
if (!cmd->se_tfo->new_cmd_map) {
pr_err("cmd->se_tfo->new_cmd_map is"
" NULL for TRANSPORT_NEW_CMD_MAP\n");
BUG();
}
ret = cmd->se_tfo->new_cmd_map(cmd);
if (ret < 0) {
cmd->transport_error_status = ret;
transport_generic_request_failure(cmd, NULL,
0, (cmd->data_direction !=
DMA_TO_DEVICE));
break;
}
/* Fall through */
case TRANSPORT_NEW_CMD:
ret = transport_generic_new_cmd(cmd);
if (ret == -EAGAIN)
break;
else if (ret < 0) {
cmd->transport_error_status = ret;
transport_generic_request_failure(cmd, NULL,
0, (cmd->data_direction !=
DMA_TO_DEVICE));
}
break;
case TRANSPORT_PROCESS_WRITE:
transport_generic_process_write(cmd);
break;
case TRANSPORT_COMPLETE_OK:
transport_stop_all_task_timers(cmd);
transport_generic_complete_ok(cmd);
break;
case TRANSPORT_REMOVE:
transport_generic_remove(cmd, 0);
break;
case TRANSPORT_FREE_CMD_INTR:
transport_generic_free_cmd(cmd, 0, 0);
break;
case TRANSPORT_PROCESS_TMR:
transport_generic_do_tmr(cmd);
break;
case TRANSPORT_COMPLETE_FAILURE:
transport_generic_request_failure(cmd, NULL, 1, 1);
break;
case TRANSPORT_COMPLETE_TIMEOUT:
transport_stop_all_task_timers(cmd);
transport_generic_request_timeout(cmd);
break;
case TRANSPORT_COMPLETE_QF_WP:
transport_generic_write_pending(cmd);
break;
default:
pr_err("Unknown t_state: %d deferred_t_state:"
" %d for ITT: 0x%08x i_state: %d on SE LUN:"
" %u\n", cmd->t_state, cmd->deferred_t_state,
cmd->se_tfo->get_task_tag(cmd),
cmd->se_tfo->get_cmd_state(cmd),
cmd->se_lun->unpacked_lun);
BUG();
}
goto get_cmd;
}
out:
transport_release_all_cmds(dev);
dev->process_thread = NULL;
return 0;
}