66faf9845a
On pSeries systems, according to the platform architecture specs, we are supposed to be supplying a structure to firmware that tells firmware about our capabilities, such as which version of the data structures that describe available memory we are expecting to see. The way we end up having to supply this data structure is a bit gross, since it was designed for AIX and doesn't suit us very well. This patch adds the code to supply this data structure to the firmware. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1946 lines
52 KiB
C
1946 lines
52 KiB
C
/*
|
|
*
|
|
*
|
|
* Procedures for interfacing to Open Firmware.
|
|
*
|
|
* Paul Mackerras August 1996.
|
|
* Copyright (C) 1996 Paul Mackerras.
|
|
*
|
|
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
|
|
* {engebret|bergner}@us.ibm.com
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#undef DEBUG_PROM
|
|
|
|
#include <stdarg.h>
|
|
#include <linux/config.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/version.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/stringify.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/bitops.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/abs_addr.h>
|
|
#include <asm/page.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/io.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/system.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pci.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/bootinfo.h>
|
|
#include <asm/ppcdebug.h>
|
|
#include <asm/btext.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/machdep.h>
|
|
|
|
#ifdef CONFIG_LOGO_LINUX_CLUT224
|
|
#include <linux/linux_logo.h>
|
|
extern const struct linux_logo logo_linux_clut224;
|
|
#endif
|
|
|
|
/*
|
|
* Properties whose value is longer than this get excluded from our
|
|
* copy of the device tree. This value does need to be big enough to
|
|
* ensure that we don't lose things like the interrupt-map property
|
|
* on a PCI-PCI bridge.
|
|
*/
|
|
#define MAX_PROPERTY_LENGTH (1UL * 1024 * 1024)
|
|
|
|
/*
|
|
* Eventually bump that one up
|
|
*/
|
|
#define DEVTREE_CHUNK_SIZE 0x100000
|
|
|
|
/*
|
|
* This is the size of the local memory reserve map that gets copied
|
|
* into the boot params passed to the kernel. That size is totally
|
|
* flexible as the kernel just reads the list until it encounters an
|
|
* entry with size 0, so it can be changed without breaking binary
|
|
* compatibility
|
|
*/
|
|
#define MEM_RESERVE_MAP_SIZE 8
|
|
|
|
/*
|
|
* prom_init() is called very early on, before the kernel text
|
|
* and data have been mapped to KERNELBASE. At this point the code
|
|
* is running at whatever address it has been loaded at, so
|
|
* references to extern and static variables must be relocated
|
|
* explicitly. The procedure reloc_offset() returns the address
|
|
* we're currently running at minus the address we were linked at.
|
|
* (Note that strings count as static variables.)
|
|
*
|
|
* Because OF may have mapped I/O devices into the area starting at
|
|
* KERNELBASE, particularly on CHRP machines, we can't safely call
|
|
* OF once the kernel has been mapped to KERNELBASE. Therefore all
|
|
* OF calls should be done within prom_init(), and prom_init()
|
|
* and all routines called within it must be careful to relocate
|
|
* references as necessary.
|
|
*
|
|
* Note that the bss is cleared *after* prom_init runs, so we have
|
|
* to make sure that any static or extern variables it accesses
|
|
* are put in the data segment.
|
|
*/
|
|
|
|
|
|
#define PROM_BUG() do { \
|
|
prom_printf("kernel BUG at %s line 0x%x!\n", \
|
|
RELOC(__FILE__), __LINE__); \
|
|
__asm__ __volatile__(".long " BUG_ILLEGAL_INSTR); \
|
|
} while (0)
|
|
|
|
#ifdef DEBUG_PROM
|
|
#define prom_debug(x...) prom_printf(x)
|
|
#else
|
|
#define prom_debug(x...)
|
|
#endif
|
|
|
|
|
|
typedef u32 prom_arg_t;
|
|
|
|
struct prom_args {
|
|
u32 service;
|
|
u32 nargs;
|
|
u32 nret;
|
|
prom_arg_t args[10];
|
|
prom_arg_t *rets; /* Pointer to return values in args[16]. */
|
|
};
|
|
|
|
struct prom_t {
|
|
unsigned long entry;
|
|
ihandle root;
|
|
ihandle chosen;
|
|
int cpu;
|
|
ihandle stdout;
|
|
ihandle disp_node;
|
|
struct prom_args args;
|
|
unsigned long version;
|
|
unsigned long root_size_cells;
|
|
unsigned long root_addr_cells;
|
|
};
|
|
|
|
struct pci_reg_property {
|
|
struct pci_address addr;
|
|
u32 size_hi;
|
|
u32 size_lo;
|
|
};
|
|
|
|
struct mem_map_entry {
|
|
u64 base;
|
|
u64 size;
|
|
};
|
|
|
|
typedef u32 cell_t;
|
|
|
|
extern void __start(unsigned long r3, unsigned long r4, unsigned long r5);
|
|
|
|
extern void enter_prom(struct prom_args *args, unsigned long entry);
|
|
extern void copy_and_flush(unsigned long dest, unsigned long src,
|
|
unsigned long size, unsigned long offset);
|
|
|
|
extern unsigned long klimit;
|
|
|
|
/* prom structure */
|
|
static struct prom_t __initdata prom;
|
|
|
|
#define PROM_SCRATCH_SIZE 256
|
|
|
|
static char __initdata of_stdout_device[256];
|
|
static char __initdata prom_scratch[PROM_SCRATCH_SIZE];
|
|
|
|
static unsigned long __initdata dt_header_start;
|
|
static unsigned long __initdata dt_struct_start, dt_struct_end;
|
|
static unsigned long __initdata dt_string_start, dt_string_end;
|
|
|
|
static unsigned long __initdata prom_initrd_start, prom_initrd_end;
|
|
|
|
static int __initdata iommu_force_on;
|
|
static int __initdata ppc64_iommu_off;
|
|
static int __initdata of_platform;
|
|
|
|
static char __initdata prom_cmd_line[COMMAND_LINE_SIZE];
|
|
|
|
static unsigned long __initdata prom_memory_limit;
|
|
static unsigned long __initdata prom_tce_alloc_start;
|
|
static unsigned long __initdata prom_tce_alloc_end;
|
|
|
|
static unsigned long __initdata alloc_top;
|
|
static unsigned long __initdata alloc_top_high;
|
|
static unsigned long __initdata alloc_bottom;
|
|
static unsigned long __initdata rmo_top;
|
|
static unsigned long __initdata ram_top;
|
|
|
|
static struct mem_map_entry __initdata mem_reserve_map[MEM_RESERVE_MAP_SIZE];
|
|
static int __initdata mem_reserve_cnt;
|
|
|
|
static cell_t __initdata regbuf[1024];
|
|
|
|
|
|
#define MAX_CPU_THREADS 2
|
|
|
|
/* TO GO */
|
|
#ifdef CONFIG_HMT
|
|
struct {
|
|
unsigned int pir;
|
|
unsigned int threadid;
|
|
} hmt_thread_data[NR_CPUS];
|
|
#endif /* CONFIG_HMT */
|
|
|
|
/*
|
|
* This are used in calls to call_prom. The 4th and following
|
|
* arguments to call_prom should be 32-bit values. 64 bit values
|
|
* are truncated to 32 bits (and fortunately don't get interpreted
|
|
* as two arguments).
|
|
*/
|
|
#define ADDR(x) (u32) ((unsigned long)(x) - offset)
|
|
|
|
/* This is the one and *ONLY* place where we actually call open
|
|
* firmware from, since we need to make sure we're running in 32b
|
|
* mode when we do. We switch back to 64b mode upon return.
|
|
*/
|
|
|
|
#define PROM_ERROR (-1)
|
|
|
|
static int __init call_prom(const char *service, int nargs, int nret, ...)
|
|
{
|
|
int i;
|
|
unsigned long offset = reloc_offset();
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
va_list list;
|
|
|
|
_prom->args.service = ADDR(service);
|
|
_prom->args.nargs = nargs;
|
|
_prom->args.nret = nret;
|
|
_prom->args.rets = (prom_arg_t *)&(_prom->args.args[nargs]);
|
|
|
|
va_start(list, nret);
|
|
for (i=0; i < nargs; i++)
|
|
_prom->args.args[i] = va_arg(list, prom_arg_t);
|
|
va_end(list);
|
|
|
|
for (i=0; i < nret ;i++)
|
|
_prom->args.rets[i] = 0;
|
|
|
|
enter_prom(&_prom->args, _prom->entry);
|
|
|
|
return (nret > 0) ? _prom->args.rets[0] : 0;
|
|
}
|
|
|
|
|
|
static unsigned int __init prom_claim(unsigned long virt, unsigned long size,
|
|
unsigned long align)
|
|
{
|
|
return (unsigned int)call_prom("claim", 3, 1,
|
|
(prom_arg_t)virt, (prom_arg_t)size,
|
|
(prom_arg_t)align);
|
|
}
|
|
|
|
static void __init prom_print(const char *msg)
|
|
{
|
|
const char *p, *q;
|
|
unsigned long offset = reloc_offset();
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
|
|
if (_prom->stdout == 0)
|
|
return;
|
|
|
|
for (p = msg; *p != 0; p = q) {
|
|
for (q = p; *q != 0 && *q != '\n'; ++q)
|
|
;
|
|
if (q > p)
|
|
call_prom("write", 3, 1, _prom->stdout, p, q - p);
|
|
if (*q == 0)
|
|
break;
|
|
++q;
|
|
call_prom("write", 3, 1, _prom->stdout, ADDR("\r\n"), 2);
|
|
}
|
|
}
|
|
|
|
|
|
static void __init prom_print_hex(unsigned long val)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
int i, nibbles = sizeof(val)*2;
|
|
char buf[sizeof(val)*2+1];
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
|
|
for (i = nibbles-1; i >= 0; i--) {
|
|
buf[i] = (val & 0xf) + '0';
|
|
if (buf[i] > '9')
|
|
buf[i] += ('a'-'0'-10);
|
|
val >>= 4;
|
|
}
|
|
buf[nibbles] = '\0';
|
|
call_prom("write", 3, 1, _prom->stdout, buf, nibbles);
|
|
}
|
|
|
|
|
|
static void __init prom_printf(const char *format, ...)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
const char *p, *q, *s;
|
|
va_list args;
|
|
unsigned long v;
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
|
|
va_start(args, format);
|
|
for (p = PTRRELOC(format); *p != 0; p = q) {
|
|
for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q)
|
|
;
|
|
if (q > p)
|
|
call_prom("write", 3, 1, _prom->stdout, p, q - p);
|
|
if (*q == 0)
|
|
break;
|
|
if (*q == '\n') {
|
|
++q;
|
|
call_prom("write", 3, 1, _prom->stdout,
|
|
ADDR("\r\n"), 2);
|
|
continue;
|
|
}
|
|
++q;
|
|
if (*q == 0)
|
|
break;
|
|
switch (*q) {
|
|
case 's':
|
|
++q;
|
|
s = va_arg(args, const char *);
|
|
prom_print(s);
|
|
break;
|
|
case 'x':
|
|
++q;
|
|
v = va_arg(args, unsigned long);
|
|
prom_print_hex(v);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void __init __attribute__((noreturn)) prom_panic(const char *reason)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
|
|
prom_print(PTRRELOC(reason));
|
|
/* ToDo: should put up an SRC here */
|
|
call_prom("exit", 0, 0);
|
|
|
|
for (;;) /* should never get here */
|
|
;
|
|
}
|
|
|
|
|
|
static int __init prom_next_node(phandle *nodep)
|
|
{
|
|
phandle node;
|
|
|
|
if ((node = *nodep) != 0
|
|
&& (*nodep = call_prom("child", 1, 1, node)) != 0)
|
|
return 1;
|
|
if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
|
|
return 1;
|
|
for (;;) {
|
|
if ((node = call_prom("parent", 1, 1, node)) == 0)
|
|
return 0;
|
|
if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static int __init prom_getprop(phandle node, const char *pname,
|
|
void *value, size_t valuelen)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
|
|
return call_prom("getprop", 4, 1, node, ADDR(pname),
|
|
(u32)(unsigned long) value, (u32) valuelen);
|
|
}
|
|
|
|
static int __init prom_getproplen(phandle node, const char *pname)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
|
|
return call_prom("getproplen", 2, 1, node, ADDR(pname));
|
|
}
|
|
|
|
static int __init prom_setprop(phandle node, const char *pname,
|
|
void *value, size_t valuelen)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
|
|
return call_prom("setprop", 4, 1, node, ADDR(pname),
|
|
(u32)(unsigned long) value, (u32) valuelen);
|
|
}
|
|
|
|
/* We can't use the standard versions because of RELOC headaches. */
|
|
#define isxdigit(c) (('0' <= (c) && (c) <= '9') \
|
|
|| ('a' <= (c) && (c) <= 'f') \
|
|
|| ('A' <= (c) && (c) <= 'F'))
|
|
|
|
#define isdigit(c) ('0' <= (c) && (c) <= '9')
|
|
#define islower(c) ('a' <= (c) && (c) <= 'z')
|
|
#define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c))
|
|
|
|
unsigned long prom_strtoul(const char *cp, const char **endp)
|
|
{
|
|
unsigned long result = 0, base = 10, value;
|
|
|
|
if (*cp == '0') {
|
|
base = 8;
|
|
cp++;
|
|
if (toupper(*cp) == 'X') {
|
|
cp++;
|
|
base = 16;
|
|
}
|
|
}
|
|
|
|
while (isxdigit(*cp) &&
|
|
(value = isdigit(*cp) ? *cp - '0' : toupper(*cp) - 'A' + 10) < base) {
|
|
result = result * base + value;
|
|
cp++;
|
|
}
|
|
|
|
if (endp)
|
|
*endp = cp;
|
|
|
|
return result;
|
|
}
|
|
|
|
unsigned long prom_memparse(const char *ptr, const char **retptr)
|
|
{
|
|
unsigned long ret = prom_strtoul(ptr, retptr);
|
|
int shift = 0;
|
|
|
|
/*
|
|
* We can't use a switch here because GCC *may* generate a
|
|
* jump table which won't work, because we're not running at
|
|
* the address we're linked at.
|
|
*/
|
|
if ('G' == **retptr || 'g' == **retptr)
|
|
shift = 30;
|
|
|
|
if ('M' == **retptr || 'm' == **retptr)
|
|
shift = 20;
|
|
|
|
if ('K' == **retptr || 'k' == **retptr)
|
|
shift = 10;
|
|
|
|
if (shift) {
|
|
ret <<= shift;
|
|
(*retptr)++;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Early parsing of the command line passed to the kernel, used for
|
|
* "mem=x" and the options that affect the iommu
|
|
*/
|
|
static void __init early_cmdline_parse(void)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
char *opt, *p;
|
|
int l = 0;
|
|
|
|
RELOC(prom_cmd_line[0]) = 0;
|
|
p = RELOC(prom_cmd_line);
|
|
if ((long)_prom->chosen > 0)
|
|
l = prom_getprop(_prom->chosen, "bootargs", p, COMMAND_LINE_SIZE-1);
|
|
#ifdef CONFIG_CMDLINE
|
|
if (l == 0) /* dbl check */
|
|
strlcpy(RELOC(prom_cmd_line),
|
|
RELOC(CONFIG_CMDLINE), sizeof(prom_cmd_line));
|
|
#endif /* CONFIG_CMDLINE */
|
|
prom_printf("command line: %s\n", RELOC(prom_cmd_line));
|
|
|
|
opt = strstr(RELOC(prom_cmd_line), RELOC("iommu="));
|
|
if (opt) {
|
|
prom_printf("iommu opt is: %s\n", opt);
|
|
opt += 6;
|
|
while (*opt && *opt == ' ')
|
|
opt++;
|
|
if (!strncmp(opt, RELOC("off"), 3))
|
|
RELOC(ppc64_iommu_off) = 1;
|
|
else if (!strncmp(opt, RELOC("force"), 5))
|
|
RELOC(iommu_force_on) = 1;
|
|
}
|
|
|
|
opt = strstr(RELOC(prom_cmd_line), RELOC("mem="));
|
|
if (opt) {
|
|
opt += 4;
|
|
RELOC(prom_memory_limit) = prom_memparse(opt, (const char **)&opt);
|
|
/* Align to 16 MB == size of large page */
|
|
RELOC(prom_memory_limit) = ALIGN(RELOC(prom_memory_limit), 0x1000000);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* To tell the firmware what our capabilities are, we have to pass
|
|
* it a fake 32-bit ELF header containing a couple of PT_NOTE sections
|
|
* that contain structures that contain the actual values.
|
|
*/
|
|
static struct fake_elf {
|
|
Elf32_Ehdr elfhdr;
|
|
Elf32_Phdr phdr[2];
|
|
struct chrpnote {
|
|
u32 namesz;
|
|
u32 descsz;
|
|
u32 type;
|
|
char name[8]; /* "PowerPC" */
|
|
struct chrpdesc {
|
|
u32 real_mode;
|
|
u32 real_base;
|
|
u32 real_size;
|
|
u32 virt_base;
|
|
u32 virt_size;
|
|
u32 load_base;
|
|
} chrpdesc;
|
|
} chrpnote;
|
|
struct rpanote {
|
|
u32 namesz;
|
|
u32 descsz;
|
|
u32 type;
|
|
char name[24]; /* "IBM,RPA-Client-Config" */
|
|
struct rpadesc {
|
|
u32 lpar_affinity;
|
|
u32 min_rmo_size;
|
|
u32 min_rmo_percent;
|
|
u32 max_pft_size;
|
|
u32 splpar;
|
|
u32 min_load;
|
|
u32 new_mem_def;
|
|
u32 ignore_me;
|
|
} rpadesc;
|
|
} rpanote;
|
|
} fake_elf = {
|
|
.elfhdr = {
|
|
.e_ident = { 0x7f, 'E', 'L', 'F',
|
|
ELFCLASS32, ELFDATA2MSB, EV_CURRENT },
|
|
.e_type = ET_EXEC, /* yeah right */
|
|
.e_machine = EM_PPC,
|
|
.e_version = EV_CURRENT,
|
|
.e_phoff = offsetof(struct fake_elf, phdr),
|
|
.e_phentsize = sizeof(Elf32_Phdr),
|
|
.e_phnum = 2
|
|
},
|
|
.phdr = {
|
|
[0] = {
|
|
.p_type = PT_NOTE,
|
|
.p_offset = offsetof(struct fake_elf, chrpnote),
|
|
.p_filesz = sizeof(struct chrpnote)
|
|
}, [1] = {
|
|
.p_type = PT_NOTE,
|
|
.p_offset = offsetof(struct fake_elf, rpanote),
|
|
.p_filesz = sizeof(struct rpanote)
|
|
}
|
|
},
|
|
.chrpnote = {
|
|
.namesz = sizeof("PowerPC"),
|
|
.descsz = sizeof(struct chrpdesc),
|
|
.type = 0x1275,
|
|
.name = "PowerPC",
|
|
.chrpdesc = {
|
|
.real_mode = ~0U, /* ~0 means "don't care" */
|
|
.real_base = ~0U,
|
|
.real_size = ~0U,
|
|
.virt_base = ~0U,
|
|
.virt_size = ~0U,
|
|
.load_base = ~0U
|
|
},
|
|
},
|
|
.rpanote = {
|
|
.namesz = sizeof("IBM,RPA-Client-Config"),
|
|
.descsz = sizeof(struct rpadesc),
|
|
.type = 0x12759999,
|
|
.name = "IBM,RPA-Client-Config",
|
|
.rpadesc = {
|
|
.lpar_affinity = 0,
|
|
.min_rmo_size = 64, /* in megabytes */
|
|
.min_rmo_percent = 0,
|
|
.max_pft_size = 48, /* 2^48 bytes max PFT size */
|
|
.splpar = 1,
|
|
.min_load = ~0U,
|
|
.new_mem_def = 0
|
|
}
|
|
}
|
|
};
|
|
|
|
static void __init prom_send_capabilities(void)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
ihandle elfloader;
|
|
int ret;
|
|
|
|
elfloader = call_prom("open", 1, 1, ADDR("/packages/elf-loader"));
|
|
if (elfloader == 0) {
|
|
prom_printf("couldn't open /packages/elf-loader\n");
|
|
return;
|
|
}
|
|
ret = call_prom("call-method", 3, 1, ADDR("process-elf-header"),
|
|
elfloader, ADDR(&fake_elf));
|
|
call_prom("close", 1, 0, elfloader);
|
|
}
|
|
|
|
/*
|
|
* Memory allocation strategy... our layout is normally:
|
|
*
|
|
* at 14Mb or more we vmlinux, then a gap and initrd. In some rare cases, initrd
|
|
* might end up beeing before the kernel though. We assume this won't override
|
|
* the final kernel at 0, we have no provision to handle that in this version,
|
|
* but it should hopefully never happen.
|
|
*
|
|
* alloc_top is set to the top of RMO, eventually shrink down if the TCEs overlap
|
|
* alloc_bottom is set to the top of kernel/initrd
|
|
*
|
|
* from there, allocations are done that way : rtas is allocated topmost, and
|
|
* the device-tree is allocated from the bottom. We try to grow the device-tree
|
|
* allocation as we progress. If we can't, then we fail, we don't currently have
|
|
* a facility to restart elsewhere, but that shouldn't be necessary neither
|
|
*
|
|
* Note that calls to reserve_mem have to be done explicitely, memory allocated
|
|
* with either alloc_up or alloc_down isn't automatically reserved.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Allocates memory in the RMO upward from the kernel/initrd
|
|
*
|
|
* When align is 0, this is a special case, it means to allocate in place
|
|
* at the current location of alloc_bottom or fail (that is basically
|
|
* extending the previous allocation). Used for the device-tree flattening
|
|
*/
|
|
static unsigned long __init alloc_up(unsigned long size, unsigned long align)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
unsigned long base = _ALIGN_UP(RELOC(alloc_bottom), align);
|
|
unsigned long addr = 0;
|
|
|
|
prom_debug("alloc_up(%x, %x)\n", size, align);
|
|
if (RELOC(ram_top) == 0)
|
|
prom_panic("alloc_up() called with mem not initialized\n");
|
|
|
|
if (align)
|
|
base = _ALIGN_UP(RELOC(alloc_bottom), align);
|
|
else
|
|
base = RELOC(alloc_bottom);
|
|
|
|
for(; (base + size) <= RELOC(alloc_top);
|
|
base = _ALIGN_UP(base + 0x100000, align)) {
|
|
prom_debug(" trying: 0x%x\n\r", base);
|
|
addr = (unsigned long)prom_claim(base, size, 0);
|
|
if ((int)addr != PROM_ERROR)
|
|
break;
|
|
addr = 0;
|
|
if (align == 0)
|
|
break;
|
|
}
|
|
if (addr == 0)
|
|
return 0;
|
|
RELOC(alloc_bottom) = addr;
|
|
|
|
prom_debug(" -> %x\n", addr);
|
|
prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom));
|
|
prom_debug(" alloc_top : %x\n", RELOC(alloc_top));
|
|
prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
|
|
prom_debug(" rmo_top : %x\n", RELOC(rmo_top));
|
|
prom_debug(" ram_top : %x\n", RELOC(ram_top));
|
|
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
* Allocates memory downard, either from top of RMO, or if highmem
|
|
* is set, from the top of RAM. Note that this one doesn't handle
|
|
* failures. In does claim memory if highmem is not set.
|
|
*/
|
|
static unsigned long __init alloc_down(unsigned long size, unsigned long align,
|
|
int highmem)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
unsigned long base, addr = 0;
|
|
|
|
prom_debug("alloc_down(%x, %x, %s)\n", size, align,
|
|
highmem ? RELOC("(high)") : RELOC("(low)"));
|
|
if (RELOC(ram_top) == 0)
|
|
prom_panic("alloc_down() called with mem not initialized\n");
|
|
|
|
if (highmem) {
|
|
/* Carve out storage for the TCE table. */
|
|
addr = _ALIGN_DOWN(RELOC(alloc_top_high) - size, align);
|
|
if (addr <= RELOC(alloc_bottom))
|
|
return 0;
|
|
else {
|
|
/* Will we bump into the RMO ? If yes, check out that we
|
|
* didn't overlap existing allocations there, if we did,
|
|
* we are dead, we must be the first in town !
|
|
*/
|
|
if (addr < RELOC(rmo_top)) {
|
|
/* Good, we are first */
|
|
if (RELOC(alloc_top) == RELOC(rmo_top))
|
|
RELOC(alloc_top) = RELOC(rmo_top) = addr;
|
|
else
|
|
return 0;
|
|
}
|
|
RELOC(alloc_top_high) = addr;
|
|
}
|
|
goto bail;
|
|
}
|
|
|
|
base = _ALIGN_DOWN(RELOC(alloc_top) - size, align);
|
|
for(; base > RELOC(alloc_bottom); base = _ALIGN_DOWN(base - 0x100000, align)) {
|
|
prom_debug(" trying: 0x%x\n\r", base);
|
|
addr = (unsigned long)prom_claim(base, size, 0);
|
|
if ((int)addr != PROM_ERROR)
|
|
break;
|
|
addr = 0;
|
|
}
|
|
if (addr == 0)
|
|
return 0;
|
|
RELOC(alloc_top) = addr;
|
|
|
|
bail:
|
|
prom_debug(" -> %x\n", addr);
|
|
prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom));
|
|
prom_debug(" alloc_top : %x\n", RELOC(alloc_top));
|
|
prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
|
|
prom_debug(" rmo_top : %x\n", RELOC(rmo_top));
|
|
prom_debug(" ram_top : %x\n", RELOC(ram_top));
|
|
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
* Parse a "reg" cell
|
|
*/
|
|
static unsigned long __init prom_next_cell(int s, cell_t **cellp)
|
|
{
|
|
cell_t *p = *cellp;
|
|
unsigned long r = 0;
|
|
|
|
/* Ignore more than 2 cells */
|
|
while (s > 2) {
|
|
p++;
|
|
s--;
|
|
}
|
|
while (s) {
|
|
r <<= 32;
|
|
r |= *(p++);
|
|
s--;
|
|
}
|
|
|
|
*cellp = p;
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Very dumb function for adding to the memory reserve list, but
|
|
* we don't need anything smarter at this point
|
|
*
|
|
* XXX Eventually check for collisions. They should NEVER happen
|
|
* if problems seem to show up, it would be a good start to track
|
|
* them down.
|
|
*/
|
|
static void reserve_mem(unsigned long base, unsigned long size)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
unsigned long top = base + size;
|
|
unsigned long cnt = RELOC(mem_reserve_cnt);
|
|
|
|
if (size == 0)
|
|
return;
|
|
|
|
/* We need to always keep one empty entry so that we
|
|
* have our terminator with "size" set to 0 since we are
|
|
* dumb and just copy this entire array to the boot params
|
|
*/
|
|
base = _ALIGN_DOWN(base, PAGE_SIZE);
|
|
top = _ALIGN_UP(top, PAGE_SIZE);
|
|
size = top - base;
|
|
|
|
if (cnt >= (MEM_RESERVE_MAP_SIZE - 1))
|
|
prom_panic("Memory reserve map exhausted !\n");
|
|
RELOC(mem_reserve_map)[cnt].base = base;
|
|
RELOC(mem_reserve_map)[cnt].size = size;
|
|
RELOC(mem_reserve_cnt) = cnt + 1;
|
|
}
|
|
|
|
/*
|
|
* Initialize memory allocation mecanism, parse "memory" nodes and
|
|
* obtain that way the top of memory and RMO to setup out local allocator
|
|
*/
|
|
static void __init prom_init_mem(void)
|
|
{
|
|
phandle node;
|
|
char *path, type[64];
|
|
unsigned int plen;
|
|
cell_t *p, *endp;
|
|
unsigned long offset = reloc_offset();
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
|
|
/*
|
|
* We iterate the memory nodes to find
|
|
* 1) top of RMO (first node)
|
|
* 2) top of memory
|
|
*/
|
|
prom_debug("root_addr_cells: %x\n", (long)_prom->root_addr_cells);
|
|
prom_debug("root_size_cells: %x\n", (long)_prom->root_size_cells);
|
|
|
|
prom_debug("scanning memory:\n");
|
|
path = RELOC(prom_scratch);
|
|
|
|
for (node = 0; prom_next_node(&node); ) {
|
|
type[0] = 0;
|
|
prom_getprop(node, "device_type", type, sizeof(type));
|
|
|
|
if (strcmp(type, RELOC("memory")))
|
|
continue;
|
|
|
|
plen = prom_getprop(node, "reg", RELOC(regbuf), sizeof(regbuf));
|
|
if (plen > sizeof(regbuf)) {
|
|
prom_printf("memory node too large for buffer !\n");
|
|
plen = sizeof(regbuf);
|
|
}
|
|
p = RELOC(regbuf);
|
|
endp = p + (plen / sizeof(cell_t));
|
|
|
|
#ifdef DEBUG_PROM
|
|
memset(path, 0, PROM_SCRATCH_SIZE);
|
|
call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
|
|
prom_debug(" node %s :\n", path);
|
|
#endif /* DEBUG_PROM */
|
|
|
|
while ((endp - p) >= (_prom->root_addr_cells + _prom->root_size_cells)) {
|
|
unsigned long base, size;
|
|
|
|
base = prom_next_cell(_prom->root_addr_cells, &p);
|
|
size = prom_next_cell(_prom->root_size_cells, &p);
|
|
|
|
if (size == 0)
|
|
continue;
|
|
prom_debug(" %x %x\n", base, size);
|
|
if (base == 0)
|
|
RELOC(rmo_top) = size;
|
|
if ((base + size) > RELOC(ram_top))
|
|
RELOC(ram_top) = base + size;
|
|
}
|
|
}
|
|
|
|
RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(klimit) - offset + 0x4000);
|
|
|
|
/* Check if we have an initrd after the kernel, if we do move our bottom
|
|
* point to after it
|
|
*/
|
|
if (RELOC(prom_initrd_start)) {
|
|
if (RELOC(prom_initrd_end) > RELOC(alloc_bottom))
|
|
RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(prom_initrd_end));
|
|
}
|
|
|
|
/*
|
|
* If prom_memory_limit is set we reduce the upper limits *except* for
|
|
* alloc_top_high. This must be the real top of RAM so we can put
|
|
* TCE's up there.
|
|
*/
|
|
|
|
RELOC(alloc_top_high) = RELOC(ram_top);
|
|
|
|
if (RELOC(prom_memory_limit)) {
|
|
if (RELOC(prom_memory_limit) <= RELOC(alloc_bottom)) {
|
|
prom_printf("Ignoring mem=%x <= alloc_bottom.\n",
|
|
RELOC(prom_memory_limit));
|
|
RELOC(prom_memory_limit) = 0;
|
|
} else if (RELOC(prom_memory_limit) >= RELOC(ram_top)) {
|
|
prom_printf("Ignoring mem=%x >= ram_top.\n",
|
|
RELOC(prom_memory_limit));
|
|
RELOC(prom_memory_limit) = 0;
|
|
} else {
|
|
RELOC(ram_top) = RELOC(prom_memory_limit);
|
|
RELOC(rmo_top) = min(RELOC(rmo_top), RELOC(prom_memory_limit));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup our top alloc point, that is top of RMO or top of
|
|
* segment 0 when running non-LPAR.
|
|
*/
|
|
if ( RELOC(of_platform) == PLATFORM_PSERIES_LPAR )
|
|
RELOC(alloc_top) = RELOC(rmo_top);
|
|
else
|
|
RELOC(alloc_top) = RELOC(rmo_top) = min(0x40000000ul, RELOC(ram_top));
|
|
|
|
prom_printf("memory layout at init:\n");
|
|
prom_printf(" memory_limit : %x (16 MB aligned)\n", RELOC(prom_memory_limit));
|
|
prom_printf(" alloc_bottom : %x\n", RELOC(alloc_bottom));
|
|
prom_printf(" alloc_top : %x\n", RELOC(alloc_top));
|
|
prom_printf(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
|
|
prom_printf(" rmo_top : %x\n", RELOC(rmo_top));
|
|
prom_printf(" ram_top : %x\n", RELOC(ram_top));
|
|
}
|
|
|
|
|
|
/*
|
|
* Allocate room for and instanciate RTAS
|
|
*/
|
|
static void __init prom_instantiate_rtas(void)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
phandle prom_rtas, rtas_node;
|
|
u32 base, entry = 0;
|
|
u32 size = 0;
|
|
|
|
prom_debug("prom_instantiate_rtas: start...\n");
|
|
|
|
prom_rtas = call_prom("finddevice", 1, 1, ADDR("/rtas"));
|
|
prom_debug("prom_rtas: %x\n", prom_rtas);
|
|
if (prom_rtas == (phandle) -1)
|
|
return;
|
|
|
|
prom_getprop(prom_rtas, "rtas-size", &size, sizeof(size));
|
|
if (size == 0)
|
|
return;
|
|
|
|
base = alloc_down(size, PAGE_SIZE, 0);
|
|
if (base == 0) {
|
|
prom_printf("RTAS allocation failed !\n");
|
|
return;
|
|
}
|
|
prom_printf("instantiating rtas at 0x%x", base);
|
|
|
|
rtas_node = call_prom("open", 1, 1, ADDR("/rtas"));
|
|
prom_printf("...");
|
|
|
|
if (call_prom("call-method", 3, 2,
|
|
ADDR("instantiate-rtas"),
|
|
rtas_node, base) != PROM_ERROR) {
|
|
entry = (long)_prom->args.rets[1];
|
|
}
|
|
if (entry == 0) {
|
|
prom_printf(" failed\n");
|
|
return;
|
|
}
|
|
prom_printf(" done\n");
|
|
|
|
reserve_mem(base, size);
|
|
|
|
prom_setprop(prom_rtas, "linux,rtas-base", &base, sizeof(base));
|
|
prom_setprop(prom_rtas, "linux,rtas-entry", &entry, sizeof(entry));
|
|
|
|
prom_debug("rtas base = 0x%x\n", base);
|
|
prom_debug("rtas entry = 0x%x\n", entry);
|
|
prom_debug("rtas size = 0x%x\n", (long)size);
|
|
|
|
prom_debug("prom_instantiate_rtas: end...\n");
|
|
}
|
|
|
|
|
|
/*
|
|
* Allocate room for and initialize TCE tables
|
|
*/
|
|
static void __init prom_initialize_tce_table(void)
|
|
{
|
|
phandle node;
|
|
ihandle phb_node;
|
|
unsigned long offset = reloc_offset();
|
|
char compatible[64], type[64], model[64];
|
|
char *path = RELOC(prom_scratch);
|
|
u64 base, align;
|
|
u32 minalign, minsize;
|
|
u64 tce_entry, *tce_entryp;
|
|
u64 local_alloc_top, local_alloc_bottom;
|
|
u64 i;
|
|
|
|
if (RELOC(ppc64_iommu_off))
|
|
return;
|
|
|
|
prom_debug("starting prom_initialize_tce_table\n");
|
|
|
|
/* Cache current top of allocs so we reserve a single block */
|
|
local_alloc_top = RELOC(alloc_top_high);
|
|
local_alloc_bottom = local_alloc_top;
|
|
|
|
/* Search all nodes looking for PHBs. */
|
|
for (node = 0; prom_next_node(&node); ) {
|
|
compatible[0] = 0;
|
|
type[0] = 0;
|
|
model[0] = 0;
|
|
prom_getprop(node, "compatible",
|
|
compatible, sizeof(compatible));
|
|
prom_getprop(node, "device_type", type, sizeof(type));
|
|
prom_getprop(node, "model", model, sizeof(model));
|
|
|
|
if ((type[0] == 0) || (strstr(type, RELOC("pci")) == NULL))
|
|
continue;
|
|
|
|
/* Keep the old logic in tack to avoid regression. */
|
|
if (compatible[0] != 0) {
|
|
if ((strstr(compatible, RELOC("python")) == NULL) &&
|
|
(strstr(compatible, RELOC("Speedwagon")) == NULL) &&
|
|
(strstr(compatible, RELOC("Winnipeg")) == NULL))
|
|
continue;
|
|
} else if (model[0] != 0) {
|
|
if ((strstr(model, RELOC("ython")) == NULL) &&
|
|
(strstr(model, RELOC("peedwagon")) == NULL) &&
|
|
(strstr(model, RELOC("innipeg")) == NULL))
|
|
continue;
|
|
}
|
|
|
|
if (prom_getprop(node, "tce-table-minalign", &minalign,
|
|
sizeof(minalign)) == PROM_ERROR)
|
|
minalign = 0;
|
|
if (prom_getprop(node, "tce-table-minsize", &minsize,
|
|
sizeof(minsize)) == PROM_ERROR)
|
|
minsize = 4UL << 20;
|
|
|
|
/*
|
|
* Even though we read what OF wants, we just set the table
|
|
* size to 4 MB. This is enough to map 2GB of PCI DMA space.
|
|
* By doing this, we avoid the pitfalls of trying to DMA to
|
|
* MMIO space and the DMA alias hole.
|
|
*
|
|
* On POWER4, firmware sets the TCE region by assuming
|
|
* each TCE table is 8MB. Using this memory for anything
|
|
* else will impact performance, so we always allocate 8MB.
|
|
* Anton
|
|
*/
|
|
if (__is_processor(PV_POWER4) || __is_processor(PV_POWER4p))
|
|
minsize = 8UL << 20;
|
|
else
|
|
minsize = 4UL << 20;
|
|
|
|
/* Align to the greater of the align or size */
|
|
align = max(minalign, minsize);
|
|
base = alloc_down(minsize, align, 1);
|
|
if (base == 0)
|
|
prom_panic("ERROR, cannot find space for TCE table.\n");
|
|
if (base < local_alloc_bottom)
|
|
local_alloc_bottom = base;
|
|
|
|
/* Save away the TCE table attributes for later use. */
|
|
prom_setprop(node, "linux,tce-base", &base, sizeof(base));
|
|
prom_setprop(node, "linux,tce-size", &minsize, sizeof(minsize));
|
|
|
|
/* It seems OF doesn't null-terminate the path :-( */
|
|
memset(path, 0, sizeof(path));
|
|
/* Call OF to setup the TCE hardware */
|
|
if (call_prom("package-to-path", 3, 1, node,
|
|
path, PROM_SCRATCH_SIZE-1) == PROM_ERROR) {
|
|
prom_printf("package-to-path failed\n");
|
|
}
|
|
|
|
prom_debug("TCE table: %s\n", path);
|
|
prom_debug("\tnode = 0x%x\n", node);
|
|
prom_debug("\tbase = 0x%x\n", base);
|
|
prom_debug("\tsize = 0x%x\n", minsize);
|
|
|
|
/* Initialize the table to have a one-to-one mapping
|
|
* over the allocated size.
|
|
*/
|
|
tce_entryp = (unsigned long *)base;
|
|
for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) {
|
|
tce_entry = (i << PAGE_SHIFT);
|
|
tce_entry |= 0x3;
|
|
*tce_entryp = tce_entry;
|
|
}
|
|
|
|
prom_printf("opening PHB %s", path);
|
|
phb_node = call_prom("open", 1, 1, path);
|
|
if ( (long)phb_node <= 0)
|
|
prom_printf("... failed\n");
|
|
else
|
|
prom_printf("... done\n");
|
|
|
|
call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"),
|
|
phb_node, -1, minsize,
|
|
(u32) base, (u32) (base >> 32));
|
|
call_prom("close", 1, 0, phb_node);
|
|
}
|
|
|
|
reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom);
|
|
|
|
if (RELOC(prom_memory_limit)) {
|
|
/*
|
|
* We align the start to a 16MB boundary so we can map the TCE area
|
|
* using large pages if possible. The end should be the top of RAM
|
|
* so no need to align it.
|
|
*/
|
|
RELOC(prom_tce_alloc_start) = _ALIGN_DOWN(local_alloc_bottom, 0x1000000);
|
|
RELOC(prom_tce_alloc_end) = local_alloc_top;
|
|
}
|
|
|
|
/* Flag the first invalid entry */
|
|
prom_debug("ending prom_initialize_tce_table\n");
|
|
}
|
|
|
|
/*
|
|
* With CHRP SMP we need to use the OF to start the other
|
|
* processors so we can't wait until smp_boot_cpus (the OF is
|
|
* trashed by then) so we have to put the processors into
|
|
* a holding pattern controlled by the kernel (not OF) before
|
|
* we destroy the OF.
|
|
*
|
|
* This uses a chunk of low memory, puts some holding pattern
|
|
* code there and sends the other processors off to there until
|
|
* smp_boot_cpus tells them to do something. The holding pattern
|
|
* checks that address until its cpu # is there, when it is that
|
|
* cpu jumps to __secondary_start(). smp_boot_cpus() takes care
|
|
* of setting those values.
|
|
*
|
|
* We also use physical address 0x4 here to tell when a cpu
|
|
* is in its holding pattern code.
|
|
*
|
|
* Fixup comment... DRENG / PPPBBB - Peter
|
|
*
|
|
* -- Cort
|
|
*/
|
|
static void __init prom_hold_cpus(void)
|
|
{
|
|
unsigned long i;
|
|
unsigned int reg;
|
|
phandle node;
|
|
unsigned long offset = reloc_offset();
|
|
char type[64];
|
|
int cpuid = 0;
|
|
unsigned int interrupt_server[MAX_CPU_THREADS];
|
|
unsigned int cpu_threads, hw_cpu_num;
|
|
int propsize;
|
|
extern void __secondary_hold(void);
|
|
extern unsigned long __secondary_hold_spinloop;
|
|
extern unsigned long __secondary_hold_acknowledge;
|
|
unsigned long *spinloop
|
|
= (void *)virt_to_abs(&__secondary_hold_spinloop);
|
|
unsigned long *acknowledge
|
|
= (void *)virt_to_abs(&__secondary_hold_acknowledge);
|
|
unsigned long secondary_hold
|
|
= virt_to_abs(*PTRRELOC((unsigned long *)__secondary_hold));
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
|
|
prom_debug("prom_hold_cpus: start...\n");
|
|
prom_debug(" 1) spinloop = 0x%x\n", (unsigned long)spinloop);
|
|
prom_debug(" 1) *spinloop = 0x%x\n", *spinloop);
|
|
prom_debug(" 1) acknowledge = 0x%x\n",
|
|
(unsigned long)acknowledge);
|
|
prom_debug(" 1) *acknowledge = 0x%x\n", *acknowledge);
|
|
prom_debug(" 1) secondary_hold = 0x%x\n", secondary_hold);
|
|
|
|
/* Set the common spinloop variable, so all of the secondary cpus
|
|
* will block when they are awakened from their OF spinloop.
|
|
* This must occur for both SMP and non SMP kernels, since OF will
|
|
* be trashed when we move the kernel.
|
|
*/
|
|
*spinloop = 0;
|
|
|
|
#ifdef CONFIG_HMT
|
|
for (i=0; i < NR_CPUS; i++) {
|
|
RELOC(hmt_thread_data)[i].pir = 0xdeadbeef;
|
|
}
|
|
#endif
|
|
/* look for cpus */
|
|
for (node = 0; prom_next_node(&node); ) {
|
|
type[0] = 0;
|
|
prom_getprop(node, "device_type", type, sizeof(type));
|
|
if (strcmp(type, RELOC("cpu")) != 0)
|
|
continue;
|
|
|
|
/* Skip non-configured cpus. */
|
|
if (prom_getprop(node, "status", type, sizeof(type)) > 0)
|
|
if (strcmp(type, RELOC("okay")) != 0)
|
|
continue;
|
|
|
|
reg = -1;
|
|
prom_getprop(node, "reg", ®, sizeof(reg));
|
|
|
|
prom_debug("\ncpuid = 0x%x\n", cpuid);
|
|
prom_debug("cpu hw idx = 0x%x\n", reg);
|
|
|
|
/* Init the acknowledge var which will be reset by
|
|
* the secondary cpu when it awakens from its OF
|
|
* spinloop.
|
|
*/
|
|
*acknowledge = (unsigned long)-1;
|
|
|
|
propsize = prom_getprop(node, "ibm,ppc-interrupt-server#s",
|
|
&interrupt_server,
|
|
sizeof(interrupt_server));
|
|
if (propsize < 0) {
|
|
/* no property. old hardware has no SMT */
|
|
cpu_threads = 1;
|
|
interrupt_server[0] = reg; /* fake it with phys id */
|
|
} else {
|
|
/* We have a threaded processor */
|
|
cpu_threads = propsize / sizeof(u32);
|
|
if (cpu_threads > MAX_CPU_THREADS) {
|
|
prom_printf("SMT: too many threads!\n"
|
|
"SMT: found %x, max is %x\n",
|
|
cpu_threads, MAX_CPU_THREADS);
|
|
cpu_threads = 1; /* ToDo: panic? */
|
|
}
|
|
}
|
|
|
|
hw_cpu_num = interrupt_server[0];
|
|
if (hw_cpu_num != _prom->cpu) {
|
|
/* Primary Thread of non-boot cpu */
|
|
prom_printf("%x : starting cpu hw idx %x... ", cpuid, reg);
|
|
call_prom("start-cpu", 3, 0, node,
|
|
secondary_hold, reg);
|
|
|
|
for ( i = 0 ; (i < 100000000) &&
|
|
(*acknowledge == ((unsigned long)-1)); i++ )
|
|
mb();
|
|
|
|
if (*acknowledge == reg) {
|
|
prom_printf("done\n");
|
|
/* We have to get every CPU out of OF,
|
|
* even if we never start it. */
|
|
if (cpuid >= NR_CPUS)
|
|
goto next;
|
|
} else {
|
|
prom_printf("failed: %x\n", *acknowledge);
|
|
}
|
|
}
|
|
#ifdef CONFIG_SMP
|
|
else
|
|
prom_printf("%x : boot cpu %x\n", cpuid, reg);
|
|
#endif
|
|
next:
|
|
#ifdef CONFIG_SMP
|
|
/* Init paca for secondary threads. They start later. */
|
|
for (i=1; i < cpu_threads; i++) {
|
|
cpuid++;
|
|
if (cpuid >= NR_CPUS)
|
|
continue;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
cpuid++;
|
|
}
|
|
#ifdef CONFIG_HMT
|
|
/* Only enable HMT on processors that provide support. */
|
|
if (__is_processor(PV_PULSAR) ||
|
|
__is_processor(PV_ICESTAR) ||
|
|
__is_processor(PV_SSTAR)) {
|
|
prom_printf(" starting secondary threads\n");
|
|
|
|
for (i = 0; i < NR_CPUS; i += 2) {
|
|
if (!cpu_online(i))
|
|
continue;
|
|
|
|
if (i == 0) {
|
|
unsigned long pir = mfspr(SPRN_PIR);
|
|
if (__is_processor(PV_PULSAR)) {
|
|
RELOC(hmt_thread_data)[i].pir =
|
|
pir & 0x1f;
|
|
} else {
|
|
RELOC(hmt_thread_data)[i].pir =
|
|
pir & 0x3ff;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
prom_printf("Processor is not HMT capable\n");
|
|
}
|
|
#endif
|
|
|
|
if (cpuid > NR_CPUS)
|
|
prom_printf("WARNING: maximum CPUs (" __stringify(NR_CPUS)
|
|
") exceeded: ignoring extras\n");
|
|
|
|
prom_debug("prom_hold_cpus: end...\n");
|
|
}
|
|
|
|
|
|
static void __init prom_init_client_services(unsigned long pp)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
|
|
/* Get a handle to the prom entry point before anything else */
|
|
_prom->entry = pp;
|
|
|
|
/* Init default value for phys size */
|
|
_prom->root_size_cells = 1;
|
|
_prom->root_addr_cells = 2;
|
|
|
|
/* get a handle for the stdout device */
|
|
_prom->chosen = call_prom("finddevice", 1, 1, ADDR("/chosen"));
|
|
if ((long)_prom->chosen <= 0)
|
|
prom_panic("cannot find chosen"); /* msg won't be printed :( */
|
|
|
|
/* get device tree root */
|
|
_prom->root = call_prom("finddevice", 1, 1, ADDR("/"));
|
|
if ((long)_prom->root <= 0)
|
|
prom_panic("cannot find device tree root"); /* msg won't be printed :( */
|
|
}
|
|
|
|
static void __init prom_init_stdout(void)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
char *path = RELOC(of_stdout_device);
|
|
char type[16];
|
|
u32 val;
|
|
|
|
if (prom_getprop(_prom->chosen, "stdout", &val, sizeof(val)) <= 0)
|
|
prom_panic("cannot find stdout");
|
|
|
|
_prom->stdout = val;
|
|
|
|
/* Get the full OF pathname of the stdout device */
|
|
memset(path, 0, 256);
|
|
call_prom("instance-to-path", 3, 1, _prom->stdout, path, 255);
|
|
val = call_prom("instance-to-package", 1, 1, _prom->stdout);
|
|
prom_setprop(_prom->chosen, "linux,stdout-package", &val, sizeof(val));
|
|
prom_printf("OF stdout device is: %s\n", RELOC(of_stdout_device));
|
|
prom_setprop(_prom->chosen, "linux,stdout-path",
|
|
RELOC(of_stdout_device), strlen(RELOC(of_stdout_device))+1);
|
|
|
|
/* If it's a display, note it */
|
|
memset(type, 0, sizeof(type));
|
|
prom_getprop(val, "device_type", type, sizeof(type));
|
|
if (strcmp(type, RELOC("display")) == 0) {
|
|
_prom->disp_node = val;
|
|
prom_setprop(val, "linux,boot-display", NULL, 0);
|
|
}
|
|
}
|
|
|
|
static void __init prom_close_stdin(void)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
ihandle val;
|
|
|
|
if (prom_getprop(_prom->chosen, "stdin", &val, sizeof(val)) > 0)
|
|
call_prom("close", 1, 0, val);
|
|
}
|
|
|
|
static int __init prom_find_machine_type(void)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
char compat[256];
|
|
int len, i = 0;
|
|
phandle rtas;
|
|
|
|
len = prom_getprop(_prom->root, "compatible",
|
|
compat, sizeof(compat)-1);
|
|
if (len > 0) {
|
|
compat[len] = 0;
|
|
while (i < len) {
|
|
char *p = &compat[i];
|
|
int sl = strlen(p);
|
|
if (sl == 0)
|
|
break;
|
|
if (strstr(p, RELOC("Power Macintosh")) ||
|
|
strstr(p, RELOC("MacRISC4")))
|
|
return PLATFORM_POWERMAC;
|
|
if (strstr(p, RELOC("Momentum,Maple")))
|
|
return PLATFORM_MAPLE;
|
|
i += sl + 1;
|
|
}
|
|
}
|
|
/* Default to pSeries. We need to know if we are running LPAR */
|
|
rtas = call_prom("finddevice", 1, 1, ADDR("/rtas"));
|
|
if (rtas != (phandle) -1) {
|
|
unsigned long x;
|
|
x = prom_getproplen(rtas, "ibm,hypertas-functions");
|
|
if (x != PROM_ERROR) {
|
|
prom_printf("Hypertas detected, assuming LPAR !\n");
|
|
return PLATFORM_PSERIES_LPAR;
|
|
}
|
|
}
|
|
return PLATFORM_PSERIES;
|
|
}
|
|
|
|
static int __init prom_set_color(ihandle ih, int i, int r, int g, int b)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
|
|
return call_prom("call-method", 6, 1, ADDR("color!"), ih, i, b, g, r);
|
|
}
|
|
|
|
/*
|
|
* If we have a display that we don't know how to drive,
|
|
* we will want to try to execute OF's open method for it
|
|
* later. However, OF will probably fall over if we do that
|
|
* we've taken over the MMU.
|
|
* So we check whether we will need to open the display,
|
|
* and if so, open it now.
|
|
*/
|
|
static void __init prom_check_displays(void)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
char type[16], *path;
|
|
phandle node;
|
|
ihandle ih;
|
|
int i;
|
|
|
|
static unsigned char default_colors[] = {
|
|
0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0xaa,
|
|
0x00, 0xaa, 0x00,
|
|
0x00, 0xaa, 0xaa,
|
|
0xaa, 0x00, 0x00,
|
|
0xaa, 0x00, 0xaa,
|
|
0xaa, 0xaa, 0x00,
|
|
0xaa, 0xaa, 0xaa,
|
|
0x55, 0x55, 0x55,
|
|
0x55, 0x55, 0xff,
|
|
0x55, 0xff, 0x55,
|
|
0x55, 0xff, 0xff,
|
|
0xff, 0x55, 0x55,
|
|
0xff, 0x55, 0xff,
|
|
0xff, 0xff, 0x55,
|
|
0xff, 0xff, 0xff
|
|
};
|
|
const unsigned char *clut;
|
|
|
|
prom_printf("Looking for displays\n");
|
|
for (node = 0; prom_next_node(&node); ) {
|
|
memset(type, 0, sizeof(type));
|
|
prom_getprop(node, "device_type", type, sizeof(type));
|
|
if (strcmp(type, RELOC("display")) != 0)
|
|
continue;
|
|
|
|
/* It seems OF doesn't null-terminate the path :-( */
|
|
path = RELOC(prom_scratch);
|
|
memset(path, 0, PROM_SCRATCH_SIZE);
|
|
|
|
/*
|
|
* leave some room at the end of the path for appending extra
|
|
* arguments
|
|
*/
|
|
if (call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-10) < 0)
|
|
continue;
|
|
prom_printf("found display : %s, opening ... ", path);
|
|
|
|
ih = call_prom("open", 1, 1, path);
|
|
if (ih == (ihandle)0 || ih == (ihandle)-1) {
|
|
prom_printf("failed\n");
|
|
continue;
|
|
}
|
|
|
|
/* Success */
|
|
prom_printf("done\n");
|
|
prom_setprop(node, "linux,opened", NULL, 0);
|
|
|
|
/*
|
|
* stdout wasn't a display node, pick the first we can find
|
|
* for btext
|
|
*/
|
|
if (_prom->disp_node == 0)
|
|
_prom->disp_node = node;
|
|
|
|
/* Setup a useable color table when the appropriate
|
|
* method is available. Should update this to set-colors */
|
|
clut = RELOC(default_colors);
|
|
for (i = 0; i < 32; i++, clut += 3)
|
|
if (prom_set_color(ih, i, clut[0], clut[1],
|
|
clut[2]) != 0)
|
|
break;
|
|
|
|
#ifdef CONFIG_LOGO_LINUX_CLUT224
|
|
clut = PTRRELOC(RELOC(logo_linux_clut224.clut));
|
|
for (i = 0; i < RELOC(logo_linux_clut224.clutsize); i++, clut += 3)
|
|
if (prom_set_color(ih, i + 32, clut[0], clut[1],
|
|
clut[2]) != 0)
|
|
break;
|
|
#endif /* CONFIG_LOGO_LINUX_CLUT224 */
|
|
}
|
|
}
|
|
|
|
|
|
/* Return (relocated) pointer to this much memory: moves initrd if reqd. */
|
|
static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end,
|
|
unsigned long needed, unsigned long align)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
void *ret;
|
|
|
|
*mem_start = _ALIGN(*mem_start, align);
|
|
while ((*mem_start + needed) > *mem_end) {
|
|
unsigned long room, chunk;
|
|
|
|
prom_debug("Chunk exhausted, claiming more at %x...\n",
|
|
RELOC(alloc_bottom));
|
|
room = RELOC(alloc_top) - RELOC(alloc_bottom);
|
|
if (room > DEVTREE_CHUNK_SIZE)
|
|
room = DEVTREE_CHUNK_SIZE;
|
|
if (room < PAGE_SIZE)
|
|
prom_panic("No memory for flatten_device_tree (no room)");
|
|
chunk = alloc_up(room, 0);
|
|
if (chunk == 0)
|
|
prom_panic("No memory for flatten_device_tree (claim failed)");
|
|
*mem_end = RELOC(alloc_top);
|
|
}
|
|
|
|
ret = (void *)*mem_start;
|
|
*mem_start += needed;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define dt_push_token(token, mem_start, mem_end) \
|
|
do { *((u32 *)make_room(mem_start, mem_end, 4, 4)) = token; } while(0)
|
|
|
|
static unsigned long __init dt_find_string(char *str)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
char *s, *os;
|
|
|
|
s = os = (char *)RELOC(dt_string_start);
|
|
s += 4;
|
|
while (s < (char *)RELOC(dt_string_end)) {
|
|
if (strcmp(s, str) == 0)
|
|
return s - os;
|
|
s += strlen(s) + 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __init scan_dt_build_strings(phandle node, unsigned long *mem_start,
|
|
unsigned long *mem_end)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
char *prev_name, *namep, *sstart;
|
|
unsigned long soff;
|
|
phandle child;
|
|
|
|
sstart = (char *)RELOC(dt_string_start);
|
|
|
|
/* get and store all property names */
|
|
prev_name = RELOC("");
|
|
for (;;) {
|
|
|
|
/* 32 is max len of name including nul. */
|
|
namep = make_room(mem_start, mem_end, 32, 1);
|
|
if (call_prom("nextprop", 3, 1, node, prev_name, namep) <= 0) {
|
|
/* No more nodes: unwind alloc */
|
|
*mem_start = (unsigned long)namep;
|
|
break;
|
|
}
|
|
soff = dt_find_string(namep);
|
|
if (soff != 0) {
|
|
*mem_start = (unsigned long)namep;
|
|
namep = sstart + soff;
|
|
} else {
|
|
/* Trim off some if we can */
|
|
*mem_start = (unsigned long)namep + strlen(namep) + 1;
|
|
RELOC(dt_string_end) = *mem_start;
|
|
}
|
|
prev_name = namep;
|
|
}
|
|
|
|
/* do all our children */
|
|
child = call_prom("child", 1, 1, node);
|
|
while (child != (phandle)0) {
|
|
scan_dt_build_strings(child, mem_start, mem_end);
|
|
child = call_prom("peer", 1, 1, child);
|
|
}
|
|
}
|
|
|
|
static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start,
|
|
unsigned long *mem_end)
|
|
{
|
|
int l, align;
|
|
phandle child;
|
|
char *namep, *prev_name, *sstart;
|
|
unsigned long soff;
|
|
unsigned char *valp;
|
|
unsigned long offset = reloc_offset();
|
|
char pname[32];
|
|
char *path;
|
|
|
|
path = RELOC(prom_scratch);
|
|
|
|
dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end);
|
|
|
|
/* get the node's full name */
|
|
namep = (char *)*mem_start;
|
|
l = call_prom("package-to-path", 3, 1, node,
|
|
namep, *mem_end - *mem_start);
|
|
if (l >= 0) {
|
|
/* Didn't fit? Get more room. */
|
|
if (l+1 > *mem_end - *mem_start) {
|
|
namep = make_room(mem_start, mem_end, l+1, 1);
|
|
call_prom("package-to-path", 3, 1, node, namep, l);
|
|
}
|
|
namep[l] = '\0';
|
|
*mem_start = _ALIGN(((unsigned long) namep) + strlen(namep) + 1, 4);
|
|
}
|
|
|
|
/* get it again for debugging */
|
|
memset(path, 0, PROM_SCRATCH_SIZE);
|
|
call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
|
|
|
|
/* get and store all properties */
|
|
prev_name = RELOC("");
|
|
sstart = (char *)RELOC(dt_string_start);
|
|
for (;;) {
|
|
if (call_prom("nextprop", 3, 1, node, prev_name, pname) <= 0)
|
|
break;
|
|
|
|
/* find string offset */
|
|
soff = dt_find_string(pname);
|
|
if (soff == 0) {
|
|
prom_printf("WARNING: Can't find string index for <%s>, node %s\n",
|
|
pname, path);
|
|
break;
|
|
}
|
|
prev_name = sstart + soff;
|
|
|
|
/* get length */
|
|
l = call_prom("getproplen", 2, 1, node, pname);
|
|
|
|
/* sanity checks */
|
|
if (l < 0)
|
|
continue;
|
|
if (l > MAX_PROPERTY_LENGTH) {
|
|
prom_printf("WARNING: ignoring large property ");
|
|
/* It seems OF doesn't null-terminate the path :-( */
|
|
prom_printf("[%s] ", path);
|
|
prom_printf("%s length 0x%x\n", pname, l);
|
|
continue;
|
|
}
|
|
|
|
/* push property head */
|
|
dt_push_token(OF_DT_PROP, mem_start, mem_end);
|
|
dt_push_token(l, mem_start, mem_end);
|
|
dt_push_token(soff, mem_start, mem_end);
|
|
|
|
/* push property content */
|
|
align = (l >= 8) ? 8 : 4;
|
|
valp = make_room(mem_start, mem_end, l, align);
|
|
call_prom("getprop", 4, 1, node, pname, valp, l);
|
|
*mem_start = _ALIGN(*mem_start, 4);
|
|
}
|
|
|
|
/* Add a "linux,phandle" property. */
|
|
soff = dt_find_string(RELOC("linux,phandle"));
|
|
if (soff == 0)
|
|
prom_printf("WARNING: Can't find string index for <linux-phandle>"
|
|
" node %s\n", path);
|
|
else {
|
|
dt_push_token(OF_DT_PROP, mem_start, mem_end);
|
|
dt_push_token(4, mem_start, mem_end);
|
|
dt_push_token(soff, mem_start, mem_end);
|
|
valp = make_room(mem_start, mem_end, 4, 4);
|
|
*(u32 *)valp = node;
|
|
}
|
|
|
|
/* do all our children */
|
|
child = call_prom("child", 1, 1, node);
|
|
while (child != (phandle)0) {
|
|
scan_dt_build_struct(child, mem_start, mem_end);
|
|
child = call_prom("peer", 1, 1, child);
|
|
}
|
|
|
|
dt_push_token(OF_DT_END_NODE, mem_start, mem_end);
|
|
}
|
|
|
|
static void __init flatten_device_tree(void)
|
|
{
|
|
phandle root;
|
|
unsigned long offset = reloc_offset();
|
|
unsigned long mem_start, mem_end, room;
|
|
struct boot_param_header *hdr;
|
|
char *namep;
|
|
u64 *rsvmap;
|
|
|
|
/*
|
|
* Check how much room we have between alloc top & bottom (+/- a
|
|
* few pages), crop to 4Mb, as this is our "chuck" size
|
|
*/
|
|
room = RELOC(alloc_top) - RELOC(alloc_bottom) - 0x4000;
|
|
if (room > DEVTREE_CHUNK_SIZE)
|
|
room = DEVTREE_CHUNK_SIZE;
|
|
prom_debug("starting device tree allocs at %x\n", RELOC(alloc_bottom));
|
|
|
|
/* Now try to claim that */
|
|
mem_start = (unsigned long)alloc_up(room, PAGE_SIZE);
|
|
if (mem_start == 0)
|
|
prom_panic("Can't allocate initial device-tree chunk\n");
|
|
mem_end = RELOC(alloc_top);
|
|
|
|
/* Get root of tree */
|
|
root = call_prom("peer", 1, 1, (phandle)0);
|
|
if (root == (phandle)0)
|
|
prom_panic ("couldn't get device tree root\n");
|
|
|
|
/* Build header and make room for mem rsv map */
|
|
mem_start = _ALIGN(mem_start, 4);
|
|
hdr = make_room(&mem_start, &mem_end, sizeof(struct boot_param_header), 4);
|
|
RELOC(dt_header_start) = (unsigned long)hdr;
|
|
rsvmap = make_room(&mem_start, &mem_end, sizeof(mem_reserve_map), 8);
|
|
|
|
/* Start of strings */
|
|
mem_start = PAGE_ALIGN(mem_start);
|
|
RELOC(dt_string_start) = mem_start;
|
|
mem_start += 4; /* hole */
|
|
|
|
/* Add "linux,phandle" in there, we'll need it */
|
|
namep = make_room(&mem_start, &mem_end, 16, 1);
|
|
strcpy(namep, RELOC("linux,phandle"));
|
|
mem_start = (unsigned long)namep + strlen(namep) + 1;
|
|
RELOC(dt_string_end) = mem_start;
|
|
|
|
/* Build string array */
|
|
prom_printf("Building dt strings...\n");
|
|
scan_dt_build_strings(root, &mem_start, &mem_end);
|
|
|
|
/* Build structure */
|
|
mem_start = PAGE_ALIGN(mem_start);
|
|
RELOC(dt_struct_start) = mem_start;
|
|
prom_printf("Building dt structure...\n");
|
|
scan_dt_build_struct(root, &mem_start, &mem_end);
|
|
dt_push_token(OF_DT_END, &mem_start, &mem_end);
|
|
RELOC(dt_struct_end) = PAGE_ALIGN(mem_start);
|
|
|
|
/* Finish header */
|
|
hdr->magic = OF_DT_HEADER;
|
|
hdr->totalsize = RELOC(dt_struct_end) - RELOC(dt_header_start);
|
|
hdr->off_dt_struct = RELOC(dt_struct_start) - RELOC(dt_header_start);
|
|
hdr->off_dt_strings = RELOC(dt_string_start) - RELOC(dt_header_start);
|
|
hdr->off_mem_rsvmap = ((unsigned long)rsvmap) - RELOC(dt_header_start);
|
|
hdr->version = OF_DT_VERSION;
|
|
hdr->last_comp_version = 1;
|
|
|
|
/* Reserve the whole thing and copy the reserve map in, we
|
|
* also bump mem_reserve_cnt to cause further reservations to
|
|
* fail since it's too late.
|
|
*/
|
|
reserve_mem(RELOC(dt_header_start), hdr->totalsize);
|
|
memcpy(rsvmap, RELOC(mem_reserve_map), sizeof(mem_reserve_map));
|
|
|
|
#ifdef DEBUG_PROM
|
|
{
|
|
int i;
|
|
prom_printf("reserved memory map:\n");
|
|
for (i = 0; i < RELOC(mem_reserve_cnt); i++)
|
|
prom_printf(" %x - %x\n", RELOC(mem_reserve_map)[i].base,
|
|
RELOC(mem_reserve_map)[i].size);
|
|
}
|
|
#endif
|
|
RELOC(mem_reserve_cnt) = MEM_RESERVE_MAP_SIZE;
|
|
|
|
prom_printf("Device tree strings 0x%x -> 0x%x\n",
|
|
RELOC(dt_string_start), RELOC(dt_string_end));
|
|
prom_printf("Device tree struct 0x%x -> 0x%x\n",
|
|
RELOC(dt_struct_start), RELOC(dt_struct_end));
|
|
|
|
}
|
|
|
|
static void __init prom_find_boot_cpu(void)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
u32 getprop_rval;
|
|
ihandle prom_cpu;
|
|
phandle cpu_pkg;
|
|
|
|
if (prom_getprop(_prom->chosen, "cpu", &prom_cpu, sizeof(prom_cpu)) <= 0)
|
|
prom_panic("cannot find boot cpu");
|
|
|
|
cpu_pkg = call_prom("instance-to-package", 1, 1, prom_cpu);
|
|
|
|
prom_setprop(cpu_pkg, "linux,boot-cpu", NULL, 0);
|
|
prom_getprop(cpu_pkg, "reg", &getprop_rval, sizeof(getprop_rval));
|
|
_prom->cpu = getprop_rval;
|
|
|
|
prom_debug("Booting CPU hw index = 0x%x\n", _prom->cpu);
|
|
}
|
|
|
|
static void __init prom_check_initrd(unsigned long r3, unsigned long r4)
|
|
{
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
unsigned long offset = reloc_offset();
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
|
|
if ( r3 && r4 && r4 != 0xdeadbeef) {
|
|
u64 val;
|
|
|
|
RELOC(prom_initrd_start) = (r3 >= KERNELBASE) ? __pa(r3) : r3;
|
|
RELOC(prom_initrd_end) = RELOC(prom_initrd_start) + r4;
|
|
|
|
val = (u64)RELOC(prom_initrd_start);
|
|
prom_setprop(_prom->chosen, "linux,initrd-start", &val, sizeof(val));
|
|
val = (u64)RELOC(prom_initrd_end);
|
|
prom_setprop(_prom->chosen, "linux,initrd-end", &val, sizeof(val));
|
|
|
|
reserve_mem(RELOC(prom_initrd_start),
|
|
RELOC(prom_initrd_end) - RELOC(prom_initrd_start));
|
|
|
|
prom_debug("initrd_start=0x%x\n", RELOC(prom_initrd_start));
|
|
prom_debug("initrd_end=0x%x\n", RELOC(prom_initrd_end));
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_INITRD */
|
|
}
|
|
|
|
/*
|
|
* We enter here early on, when the Open Firmware prom is still
|
|
* handling exceptions and the MMU hash table for us.
|
|
*/
|
|
|
|
unsigned long __init prom_init(unsigned long r3, unsigned long r4, unsigned long pp,
|
|
unsigned long r6, unsigned long r7)
|
|
{
|
|
unsigned long offset = reloc_offset();
|
|
struct prom_t *_prom = PTRRELOC(&prom);
|
|
unsigned long phys = KERNELBASE - offset;
|
|
u32 getprop_rval;
|
|
|
|
/*
|
|
* First zero the BSS
|
|
*/
|
|
memset(PTRRELOC(&__bss_start), 0, __bss_stop - __bss_start);
|
|
|
|
/*
|
|
* Init interface to Open Firmware, get some node references,
|
|
* like /chosen
|
|
*/
|
|
prom_init_client_services(pp);
|
|
|
|
/*
|
|
* Init prom stdout device
|
|
*/
|
|
prom_init_stdout();
|
|
prom_debug("klimit=0x%x\n", RELOC(klimit));
|
|
prom_debug("offset=0x%x\n", offset);
|
|
|
|
/*
|
|
* Check for an initrd
|
|
*/
|
|
prom_check_initrd(r3, r4);
|
|
|
|
/*
|
|
* Get default machine type. At this point, we do not differenciate
|
|
* between pSeries SMP and pSeries LPAR
|
|
*/
|
|
RELOC(of_platform) = prom_find_machine_type();
|
|
getprop_rval = RELOC(of_platform);
|
|
prom_setprop(_prom->chosen, "linux,platform",
|
|
&getprop_rval, sizeof(getprop_rval));
|
|
|
|
/*
|
|
* On pSeries, copy the CPU hold code
|
|
*/
|
|
if (RELOC(of_platform) & PLATFORM_PSERIES)
|
|
copy_and_flush(0, KERNELBASE - offset, 0x100, 0);
|
|
|
|
/*
|
|
* Get memory cells format
|
|
*/
|
|
getprop_rval = 1;
|
|
prom_getprop(_prom->root, "#size-cells",
|
|
&getprop_rval, sizeof(getprop_rval));
|
|
_prom->root_size_cells = getprop_rval;
|
|
getprop_rval = 2;
|
|
prom_getprop(_prom->root, "#address-cells",
|
|
&getprop_rval, sizeof(getprop_rval));
|
|
_prom->root_addr_cells = getprop_rval;
|
|
|
|
/*
|
|
* Do early parsing of command line
|
|
*/
|
|
early_cmdline_parse();
|
|
|
|
/*
|
|
* Initialize memory management within prom_init
|
|
*/
|
|
prom_init_mem();
|
|
|
|
/*
|
|
* Determine which cpu is actually running right _now_
|
|
*/
|
|
prom_find_boot_cpu();
|
|
|
|
/*
|
|
* Initialize display devices
|
|
*/
|
|
prom_check_displays();
|
|
|
|
/*
|
|
* Initialize IOMMU (TCE tables) on pSeries. Do that before anything else
|
|
* that uses the allocator, we need to make sure we get the top of memory
|
|
* available for us here...
|
|
*/
|
|
if (RELOC(of_platform) == PLATFORM_PSERIES)
|
|
prom_initialize_tce_table();
|
|
|
|
/*
|
|
* On non-powermacs, try to instantiate RTAS and puts all CPUs
|
|
* in spin-loops. PowerMacs don't have a working RTAS and use
|
|
* a different way to spin CPUs
|
|
*/
|
|
if (RELOC(of_platform) != PLATFORM_POWERMAC) {
|
|
prom_instantiate_rtas();
|
|
prom_hold_cpus();
|
|
}
|
|
|
|
/*
|
|
* Fill in some infos for use by the kernel later on
|
|
*/
|
|
if (RELOC(ppc64_iommu_off))
|
|
prom_setprop(_prom->chosen, "linux,iommu-off", NULL, 0);
|
|
|
|
if (RELOC(iommu_force_on))
|
|
prom_setprop(_prom->chosen, "linux,iommu-force-on", NULL, 0);
|
|
|
|
if (RELOC(prom_memory_limit))
|
|
prom_setprop(_prom->chosen, "linux,memory-limit",
|
|
PTRRELOC(&prom_memory_limit), sizeof(RELOC(prom_memory_limit)));
|
|
|
|
if (RELOC(prom_tce_alloc_start)) {
|
|
prom_setprop(_prom->chosen, "linux,tce-alloc-start",
|
|
PTRRELOC(&prom_tce_alloc_start), sizeof(RELOC(prom_tce_alloc_start)));
|
|
prom_setprop(_prom->chosen, "linux,tce-alloc-end",
|
|
PTRRELOC(&prom_tce_alloc_end), sizeof(RELOC(prom_tce_alloc_end)));
|
|
}
|
|
|
|
/*
|
|
* Now finally create the flattened device-tree
|
|
*/
|
|
prom_printf("copying OF device tree ...\n");
|
|
flatten_device_tree();
|
|
|
|
/* in case stdin is USB and still active on IBM machines... */
|
|
prom_close_stdin();
|
|
|
|
/*
|
|
* Call OF "quiesce" method to shut down pending DMA's from
|
|
* devices etc...
|
|
*/
|
|
prom_printf("Calling quiesce ...\n");
|
|
call_prom("quiesce", 0, 0);
|
|
|
|
/*
|
|
* And finally, call the kernel passing it the flattened device
|
|
* tree and NULL as r5, thus triggering the new entry point which
|
|
* is common to us and kexec
|
|
*/
|
|
prom_printf("returning from prom_init\n");
|
|
prom_debug("->dt_header_start=0x%x\n", RELOC(dt_header_start));
|
|
prom_debug("->phys=0x%x\n", phys);
|
|
|
|
__start(RELOC(dt_header_start), phys, 0);
|
|
|
|
return 0;
|
|
}
|
|
|