forked from Minki/linux
66dbc325af
EVM protects a file's security extended attributes(xattrs) against integrity attacks. This patchset provides the framework and an initial method. The initial method maintains an HMAC-sha1 value across the security extended attributes, storing the HMAC value as the extended attribute 'security.evm'. Other methods of validating the integrity of a file's metadata will be posted separately (eg. EVM-digital-signatures). While this patchset does authenticate the security xattrs, and cryptographically binds them to the inode, coming extensions will bind other directory and inode metadata for more complete protection. To help simplify the review and upstreaming process, each extension will be posted separately (eg. IMA-appraisal, IMA-appraisal-directory). For a general overview of the proposed Linux integrity subsystem, refer to Dave Safford's whitepaper: http://downloads.sf.net/project/linux-ima/linux-ima/Integrity_overview.pdf. EVM depends on the Kernel Key Retention System to provide it with a trusted/encrypted key for the HMAC-sha1 operation. The key is loaded onto the root's keyring using keyctl. Until EVM receives notification that the key has been successfully loaded onto the keyring (echo 1 > <securityfs>/evm), EVM can not create or validate the 'security.evm' xattr, but returns INTEGRITY_UNKNOWN. Loading the key and signaling EVM should be done as early as possible. Normally this is done in the initramfs, which has already been measured as part of the trusted boot. For more information on creating and loading existing trusted/encrypted keys, refer to Documentation/keys-trusted-encrypted.txt. A sample dracut patch, which loads the trusted/encrypted key and enables EVM, is available from http://linux-ima.sourceforge.net/#EVM. Based on the LSMs enabled, the set of EVM protected security xattrs is defined at compile. EVM adds the following three calls to the existing security hooks: evm_inode_setxattr(), evm_inode_post_setxattr(), and evm_inode_removexattr. To initialize and update the 'security.evm' extended attribute, EVM defines three calls: evm_inode_post_init(), evm_inode_post_setattr() and evm_inode_post_removexattr() hooks. To verify the integrity of a security xattr, EVM exports evm_verifyxattr(). Changelog v7: - Fixed URL in EVM ABI documentation Changelog v6: (based on Serge Hallyn's review) - fix URL in patch description - remove evm_hmac_size definition - use SHA1_DIGEST_SIZE (removed both MAX_DIGEST_SIZE and evm_hmac_size) - moved linux include before other includes - test for crypto_hash_setkey failure - fail earlier for invalid key - clear entire encrypted key, even on failure - check xattr name length before comparing xattr names Changelog: - locking based on i_mutex, remove evm_mutex - using trusted/encrypted keys for storing the EVM key used in the HMAC-sha1 operation. - replaced crypto hash with shash (Dmitry Kasatkin) - support for additional methods of verifying the security xattrs (Dmitry Kasatkin) - iint not allocated for all regular files, but only for those appraised - Use cap_sys_admin in lieu of cap_mac_admin - Use __vfs_setxattr_noperm(), without permission checks, from EVM Signed-off-by: Mimi Zohar <zohar@us.ibm.com> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> |
||
---|---|---|
.. | ||
obsolete | ||
removed | ||
stable | ||
testing | ||
README |
This directory attempts to document the ABI between the Linux kernel and userspace, and the relative stability of these interfaces. Due to the everchanging nature of Linux, and the differing maturity levels, these interfaces should be used by userspace programs in different ways. We have four different levels of ABI stability, as shown by the four different subdirectories in this location. Interfaces may change levels of stability according to the rules described below. The different levels of stability are: stable/ This directory documents the interfaces that the developer has defined to be stable. Userspace programs are free to use these interfaces with no restrictions, and backward compatibility for them will be guaranteed for at least 2 years. Most interfaces (like syscalls) are expected to never change and always be available. testing/ This directory documents interfaces that are felt to be stable, as the main development of this interface has been completed. The interface can be changed to add new features, but the current interface will not break by doing this, unless grave errors or security problems are found in them. Userspace programs can start to rely on these interfaces, but they must be aware of changes that can occur before these interfaces move to be marked stable. Programs that use these interfaces are strongly encouraged to add their name to the description of these interfaces, so that the kernel developers can easily notify them if any changes occur (see the description of the layout of the files below for details on how to do this.) obsolete/ This directory documents interfaces that are still remaining in the kernel, but are marked to be removed at some later point in time. The description of the interface will document the reason why it is obsolete and when it can be expected to be removed. The file Documentation/feature-removal-schedule.txt may describe some of these interfaces, giving a schedule for when they will be removed. removed/ This directory contains a list of the old interfaces that have been removed from the kernel. Every file in these directories will contain the following information: What: Short description of the interface Date: Date created KernelVersion: Kernel version this feature first showed up in. Contact: Primary contact for this interface (may be a mailing list) Description: Long description of the interface and how to use it. Users: All users of this interface who wish to be notified when it changes. This is very important for interfaces in the "testing" stage, so that kernel developers can work with userspace developers to ensure that things do not break in ways that are unacceptable. It is also important to get feedback for these interfaces to make sure they are working in a proper way and do not need to be changed further. How things move between levels: Interfaces in stable may move to obsolete, as long as the proper notification is given. Interfaces may be removed from obsolete and the kernel as long as the documented amount of time has gone by. Interfaces in the testing state can move to the stable state when the developers feel they are finished. They cannot be removed from the kernel tree without going through the obsolete state first. It's up to the developer to place their interfaces in the category they wish for it to start out in.