linux/drivers/gpu/drm/nouveau/nvkm/engine/disp/dport.c
Ben Skeggs f2c906fc0c drm/nouveau/disp: transition outp/conn away from being based on nvkm_object
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2015-08-28 12:40:30 +10:00

399 lines
10 KiB
C

/*
* Copyright 2013 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "dport.h"
#include "outpdp.h"
#include "nv50.h"
#include <subdev/bios.h>
#include <subdev/bios/init.h>
#include <subdev/i2c.h>
#include <nvif/class.h>
/******************************************************************************
* link training
*****************************************************************************/
struct dp_state {
struct nvkm_output_dp *outp;
int link_nr;
u32 link_bw;
u8 stat[6];
u8 conf[4];
bool pc2;
u8 pc2stat;
u8 pc2conf[2];
};
static int
dp_set_link_config(struct dp_state *dp)
{
struct nvkm_output_dp *outp = dp->outp;
struct nvkm_disp *disp = outp->base.disp;
struct nvkm_subdev *subdev = &disp->engine.subdev;
struct nvkm_bios *bios = subdev->device->bios;
struct nvbios_init init = {
.subdev = subdev,
.bios = bios,
.offset = 0x0000,
.outp = &outp->base.info,
.crtc = -1,
.execute = 1,
};
u32 lnkcmp;
u8 sink[2];
int ret;
OUTP_DBG(&outp->base, "%d lanes at %d KB/s", dp->link_nr, dp->link_bw);
/* set desired link configuration on the source */
if ((lnkcmp = dp->outp->info.lnkcmp)) {
if (outp->version < 0x30) {
while ((dp->link_bw / 10) < nvbios_rd16(bios, lnkcmp))
lnkcmp += 4;
init.offset = nvbios_rd16(bios, lnkcmp + 2);
} else {
while ((dp->link_bw / 27000) < nvbios_rd08(bios, lnkcmp))
lnkcmp += 3;
init.offset = nvbios_rd16(bios, lnkcmp + 1);
}
nvbios_exec(&init);
}
ret = outp->func->lnk_ctl(outp, dp->link_nr, dp->link_bw / 27000,
outp->dpcd[DPCD_RC02] &
DPCD_RC02_ENHANCED_FRAME_CAP);
if (ret) {
if (ret < 0)
OUTP_ERR(&outp->base, "lnk_ctl failed with %d", ret);
return ret;
}
outp->func->lnk_pwr(outp, dp->link_nr);
/* set desired link configuration on the sink */
sink[0] = dp->link_bw / 27000;
sink[1] = dp->link_nr;
if (outp->dpcd[DPCD_RC02] & DPCD_RC02_ENHANCED_FRAME_CAP)
sink[1] |= DPCD_LC01_ENHANCED_FRAME_EN;
return nvkm_wraux(outp->aux, DPCD_LC00_LINK_BW_SET, sink, 2);
}
static void
dp_set_training_pattern(struct dp_state *dp, u8 pattern)
{
struct nvkm_output_dp *outp = dp->outp;
u8 sink_tp;
OUTP_DBG(&outp->base, "training pattern %d", pattern);
outp->func->pattern(outp, pattern);
nvkm_rdaux(outp->aux, DPCD_LC02, &sink_tp, 1);
sink_tp &= ~DPCD_LC02_TRAINING_PATTERN_SET;
sink_tp |= pattern;
nvkm_wraux(outp->aux, DPCD_LC02, &sink_tp, 1);
}
static int
dp_link_train_commit(struct dp_state *dp, bool pc)
{
struct nvkm_output_dp *outp = dp->outp;
int ret, i;
for (i = 0; i < dp->link_nr; i++) {
u8 lane = (dp->stat[4 + (i >> 1)] >> ((i & 1) * 4)) & 0xf;
u8 lpc2 = (dp->pc2stat >> (i * 2)) & 0x3;
u8 lpre = (lane & 0x0c) >> 2;
u8 lvsw = (lane & 0x03) >> 0;
u8 hivs = 3 - lpre;
u8 hipe = 3;
u8 hipc = 3;
if (lpc2 >= hipc)
lpc2 = hipc | DPCD_LC0F_LANE0_MAX_POST_CURSOR2_REACHED;
if (lpre >= hipe) {
lpre = hipe | DPCD_LC03_MAX_SWING_REACHED; /* yes. */
lvsw = hivs = 3 - (lpre & 3);
} else
if (lvsw >= hivs) {
lvsw = hivs | DPCD_LC03_MAX_SWING_REACHED;
}
dp->conf[i] = (lpre << 3) | lvsw;
dp->pc2conf[i >> 1] |= lpc2 << ((i & 1) * 4);
OUTP_DBG(&outp->base, "config lane %d %02x %02x",
i, dp->conf[i], lpc2);
outp->func->drv_ctl(outp, i, lvsw & 3, lpre & 3, lpc2 & 3);
}
ret = nvkm_wraux(outp->aux, DPCD_LC03(0), dp->conf, 4);
if (ret)
return ret;
if (pc) {
ret = nvkm_wraux(outp->aux, DPCD_LC0F, dp->pc2conf, 2);
if (ret)
return ret;
}
return 0;
}
static int
dp_link_train_update(struct dp_state *dp, bool pc, u32 delay)
{
struct nvkm_output_dp *outp = dp->outp;
int ret;
if (outp->dpcd[DPCD_RC0E_AUX_RD_INTERVAL])
mdelay(outp->dpcd[DPCD_RC0E_AUX_RD_INTERVAL] * 4);
else
udelay(delay);
ret = nvkm_rdaux(outp->aux, DPCD_LS02, dp->stat, 6);
if (ret)
return ret;
if (pc) {
ret = nvkm_rdaux(outp->aux, DPCD_LS0C, &dp->pc2stat, 1);
if (ret)
dp->pc2stat = 0x00;
OUTP_DBG(&outp->base, "status %6ph pc2 %02x",
dp->stat, dp->pc2stat);
} else {
OUTP_DBG(&outp->base, "status %6ph", dp->stat);
}
return 0;
}
static int
dp_link_train_cr(struct dp_state *dp)
{
bool cr_done = false, abort = false;
int voltage = dp->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET;
int tries = 0, i;
dp_set_training_pattern(dp, 1);
do {
if (dp_link_train_commit(dp, false) ||
dp_link_train_update(dp, false, 100))
break;
cr_done = true;
for (i = 0; i < dp->link_nr; i++) {
u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf;
if (!(lane & DPCD_LS02_LANE0_CR_DONE)) {
cr_done = false;
if (dp->conf[i] & DPCD_LC03_MAX_SWING_REACHED)
abort = true;
break;
}
}
if ((dp->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET) != voltage) {
voltage = dp->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET;
tries = 0;
}
} while (!cr_done && !abort && ++tries < 5);
return cr_done ? 0 : -1;
}
static int
dp_link_train_eq(struct dp_state *dp)
{
struct nvkm_output_dp *outp = dp->outp;
bool eq_done = false, cr_done = true;
int tries = 0, i;
if (outp->dpcd[2] & DPCD_RC02_TPS3_SUPPORTED)
dp_set_training_pattern(dp, 3);
else
dp_set_training_pattern(dp, 2);
do {
if ((tries &&
dp_link_train_commit(dp, dp->pc2)) ||
dp_link_train_update(dp, dp->pc2, 400))
break;
eq_done = !!(dp->stat[2] & DPCD_LS04_INTERLANE_ALIGN_DONE);
for (i = 0; i < dp->link_nr && eq_done; i++) {
u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf;
if (!(lane & DPCD_LS02_LANE0_CR_DONE))
cr_done = false;
if (!(lane & DPCD_LS02_LANE0_CHANNEL_EQ_DONE) ||
!(lane & DPCD_LS02_LANE0_SYMBOL_LOCKED))
eq_done = false;
}
} while (!eq_done && cr_done && ++tries <= 5);
return eq_done ? 0 : -1;
}
static void
dp_link_train_init(struct dp_state *dp, bool spread)
{
struct nvkm_output_dp *outp = dp->outp;
struct nvkm_disp *disp = outp->base.disp;
struct nvkm_subdev *subdev = &disp->engine.subdev;
struct nvbios_init init = {
.subdev = subdev,
.bios = subdev->device->bios,
.outp = &outp->base.info,
.crtc = -1,
.execute = 1,
};
/* set desired spread */
if (spread)
init.offset = outp->info.script[2];
else
init.offset = outp->info.script[3];
nvbios_exec(&init);
/* pre-train script */
init.offset = outp->info.script[0];
nvbios_exec(&init);
}
static void
dp_link_train_fini(struct dp_state *dp)
{
struct nvkm_output_dp *outp = dp->outp;
struct nvkm_disp *disp = outp->base.disp;
struct nvkm_subdev *subdev = &disp->engine.subdev;
struct nvbios_init init = {
.subdev = subdev,
.bios = subdev->device->bios,
.outp = &outp->base.info,
.crtc = -1,
.execute = 1,
};
/* post-train script */
init.offset = outp->info.script[1],
nvbios_exec(&init);
}
static const struct dp_rates {
u32 rate;
u8 bw;
u8 nr;
} nvkm_dp_rates[] = {
{ 2160000, 0x14, 4 },
{ 1080000, 0x0a, 4 },
{ 1080000, 0x14, 2 },
{ 648000, 0x06, 4 },
{ 540000, 0x0a, 2 },
{ 540000, 0x14, 1 },
{ 324000, 0x06, 2 },
{ 270000, 0x0a, 1 },
{ 162000, 0x06, 1 },
{}
};
void
nvkm_dp_train(struct work_struct *w)
{
struct nvkm_output_dp *outp = container_of(w, typeof(*outp), lt.work);
struct nv50_disp *disp = (void *)outp->base.disp;
const struct dp_rates *cfg = nvkm_dp_rates;
struct dp_state _dp = {
.outp = outp,
}, *dp = &_dp;
u32 datarate = 0;
int ret;
if (!outp->base.info.location && disp->sor.magic)
disp->sor.magic(&outp->base);
/* bring capabilities within encoder limits */
if (disp->base.engine.subdev.device->chipset < 0xd0)
outp->dpcd[2] &= ~DPCD_RC02_TPS3_SUPPORTED;
if ((outp->dpcd[2] & 0x1f) > outp->base.info.dpconf.link_nr) {
outp->dpcd[2] &= ~DPCD_RC02_MAX_LANE_COUNT;
outp->dpcd[2] |= outp->base.info.dpconf.link_nr;
}
if (outp->dpcd[1] > outp->base.info.dpconf.link_bw)
outp->dpcd[1] = outp->base.info.dpconf.link_bw;
dp->pc2 = outp->dpcd[2] & DPCD_RC02_TPS3_SUPPORTED;
/* restrict link config to the lowest required rate, if requested */
if (datarate) {
datarate = (datarate / 8) * 10; /* 8B/10B coding overhead */
while (cfg[1].rate >= datarate)
cfg++;
}
cfg--;
/* disable link interrupt handling during link training */
nvkm_notify_put(&outp->irq);
/* enable down-spreading and execute pre-train script from vbios */
dp_link_train_init(dp, outp->dpcd[3] & 0x01);
while (ret = -EIO, (++cfg)->rate) {
/* select next configuration supported by encoder and sink */
while (cfg->nr > (outp->dpcd[2] & DPCD_RC02_MAX_LANE_COUNT) ||
cfg->bw > (outp->dpcd[DPCD_RC01_MAX_LINK_RATE]))
cfg++;
dp->link_bw = cfg->bw * 27000;
dp->link_nr = cfg->nr;
/* program selected link configuration */
ret = dp_set_link_config(dp);
if (ret == 0) {
/* attempt to train the link at this configuration */
memset(dp->stat, 0x00, sizeof(dp->stat));
if (!dp_link_train_cr(dp) &&
!dp_link_train_eq(dp))
break;
} else
if (ret) {
/* dp_set_link_config() handled training, or
* we failed to communicate with the sink.
*/
break;
}
}
/* finish link training and execute post-train script from vbios */
dp_set_training_pattern(dp, 0);
if (ret < 0)
OUTP_ERR(&outp->base, "link training failed");
dp_link_train_fini(dp);
/* signal completion and enable link interrupt handling */
OUTP_DBG(&outp->base, "training complete");
atomic_set(&outp->lt.done, 1);
wake_up(&outp->lt.wait);
nvkm_notify_get(&outp->irq);
}