forked from Minki/linux
520bd7a8b4
The mmc workqueue is an ordered workqueue, allowing only one work to execute per given time. As this workqueue is used for card detection, the conseqeunce is that cards will be detected one by one waiting for each other. Moreover, most of the time spent during card initialization is waiting for the card's internal firmware to be ready. From a CPU perspective this typically means waiting for a completion variable to be kicked via an IRQ-handler or waiting for a sleep timer to finish. This behaviour of detecting/initializing cards is sub-optimal, especially for SOCs having several controllers/cards. Let's convert to use the system_freezable_wq for the mmc detect works. This enables several works to be executed simultaneously and thus also cards to be detected like so. Tests on UX500, which holds two eMMC cards and an SD-card (actually also an SDIO card, currently not detected), shows a significant improved behaviour due to this change. Before this change, both the eMMC cards waited for the SD card to be initialized as its detect work entered the workqueue first. In some cases, depending on the characteristic of the SD-card, they got delayed 1-1.5 s. Additionally for the second eMMC, it needed to wait for the first eMMC to be initialized which added another 120-190 ms. Converting to the system_freezable_wq, removed these delays and made both the eMMC cards available far earlier in the boot sequence. Selecting the system_freezable_wq, in favour of for example the system_wq, is because we need card detection mechanism to be disabled once userspace are frozen during system PM. Currently the mmc core deal with this via PM notifiers, but following patches may utilize the behaviour of the system_freezable_wq, to simplify the use of the PM notifiers. Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org> Tested-by: Alan Cooper <alcooperx@gmail.com> Tested-by: Shawn Lin <shawn.lin@rock-chips.com>
2880 lines
71 KiB
C
2880 lines
71 KiB
C
/*
|
|
* linux/drivers/mmc/core/core.c
|
|
*
|
|
* Copyright (C) 2003-2004 Russell King, All Rights Reserved.
|
|
* SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
|
|
* Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
|
|
* MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/device.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/err.h>
|
|
#include <linux/leds.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/pm_wakeup.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/fault-inject.h>
|
|
#include <linux/random.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/of.h>
|
|
|
|
#include <linux/mmc/card.h>
|
|
#include <linux/mmc/host.h>
|
|
#include <linux/mmc/mmc.h>
|
|
#include <linux/mmc/sd.h>
|
|
#include <linux/mmc/slot-gpio.h>
|
|
|
|
#include "core.h"
|
|
#include "bus.h"
|
|
#include "host.h"
|
|
#include "sdio_bus.h"
|
|
#include "pwrseq.h"
|
|
|
|
#include "mmc_ops.h"
|
|
#include "sd_ops.h"
|
|
#include "sdio_ops.h"
|
|
|
|
/* If the device is not responding */
|
|
#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
|
|
|
|
/*
|
|
* Background operations can take a long time, depending on the housekeeping
|
|
* operations the card has to perform.
|
|
*/
|
|
#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
|
|
|
|
static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
|
|
|
|
/*
|
|
* Enabling software CRCs on the data blocks can be a significant (30%)
|
|
* performance cost, and for other reasons may not always be desired.
|
|
* So we allow it it to be disabled.
|
|
*/
|
|
bool use_spi_crc = 1;
|
|
module_param(use_spi_crc, bool, 0);
|
|
|
|
static int mmc_schedule_delayed_work(struct delayed_work *work,
|
|
unsigned long delay)
|
|
{
|
|
/*
|
|
* We use the system_freezable_wq, because of two reasons.
|
|
* First, it allows several works (not the same work item) to be
|
|
* executed simultaneously. Second, the queue becomes frozen when
|
|
* userspace becomes frozen during system PM.
|
|
*/
|
|
return queue_delayed_work(system_freezable_wq, work, delay);
|
|
}
|
|
|
|
#ifdef CONFIG_FAIL_MMC_REQUEST
|
|
|
|
/*
|
|
* Internal function. Inject random data errors.
|
|
* If mmc_data is NULL no errors are injected.
|
|
*/
|
|
static void mmc_should_fail_request(struct mmc_host *host,
|
|
struct mmc_request *mrq)
|
|
{
|
|
struct mmc_command *cmd = mrq->cmd;
|
|
struct mmc_data *data = mrq->data;
|
|
static const int data_errors[] = {
|
|
-ETIMEDOUT,
|
|
-EILSEQ,
|
|
-EIO,
|
|
};
|
|
|
|
if (!data)
|
|
return;
|
|
|
|
if (cmd->error || data->error ||
|
|
!should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
|
|
return;
|
|
|
|
data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
|
|
data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
|
|
}
|
|
|
|
#else /* CONFIG_FAIL_MMC_REQUEST */
|
|
|
|
static inline void mmc_should_fail_request(struct mmc_host *host,
|
|
struct mmc_request *mrq)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_FAIL_MMC_REQUEST */
|
|
|
|
/**
|
|
* mmc_request_done - finish processing an MMC request
|
|
* @host: MMC host which completed request
|
|
* @mrq: MMC request which request
|
|
*
|
|
* MMC drivers should call this function when they have completed
|
|
* their processing of a request.
|
|
*/
|
|
void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
|
|
{
|
|
struct mmc_command *cmd = mrq->cmd;
|
|
int err = cmd->error;
|
|
|
|
/* Flag re-tuning needed on CRC errors */
|
|
if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
|
|
cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
|
|
(err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
|
|
(mrq->data && mrq->data->error == -EILSEQ) ||
|
|
(mrq->stop && mrq->stop->error == -EILSEQ)))
|
|
mmc_retune_needed(host);
|
|
|
|
if (err && cmd->retries && mmc_host_is_spi(host)) {
|
|
if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
|
|
cmd->retries = 0;
|
|
}
|
|
|
|
if (err && cmd->retries && !mmc_card_removed(host->card)) {
|
|
/*
|
|
* Request starter must handle retries - see
|
|
* mmc_wait_for_req_done().
|
|
*/
|
|
if (mrq->done)
|
|
mrq->done(mrq);
|
|
} else {
|
|
mmc_should_fail_request(host, mrq);
|
|
|
|
led_trigger_event(host->led, LED_OFF);
|
|
|
|
if (mrq->sbc) {
|
|
pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
|
|
mmc_hostname(host), mrq->sbc->opcode,
|
|
mrq->sbc->error,
|
|
mrq->sbc->resp[0], mrq->sbc->resp[1],
|
|
mrq->sbc->resp[2], mrq->sbc->resp[3]);
|
|
}
|
|
|
|
pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
|
|
mmc_hostname(host), cmd->opcode, err,
|
|
cmd->resp[0], cmd->resp[1],
|
|
cmd->resp[2], cmd->resp[3]);
|
|
|
|
if (mrq->data) {
|
|
pr_debug("%s: %d bytes transferred: %d\n",
|
|
mmc_hostname(host),
|
|
mrq->data->bytes_xfered, mrq->data->error);
|
|
}
|
|
|
|
if (mrq->stop) {
|
|
pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
|
|
mmc_hostname(host), mrq->stop->opcode,
|
|
mrq->stop->error,
|
|
mrq->stop->resp[0], mrq->stop->resp[1],
|
|
mrq->stop->resp[2], mrq->stop->resp[3]);
|
|
}
|
|
|
|
if (mrq->done)
|
|
mrq->done(mrq);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(mmc_request_done);
|
|
|
|
static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
|
|
{
|
|
int err;
|
|
|
|
/* Assumes host controller has been runtime resumed by mmc_claim_host */
|
|
err = mmc_retune(host);
|
|
if (err) {
|
|
mrq->cmd->error = err;
|
|
mmc_request_done(host, mrq);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* For sdio rw commands we must wait for card busy otherwise some
|
|
* sdio devices won't work properly.
|
|
*/
|
|
if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
|
|
int tries = 500; /* Wait aprox 500ms at maximum */
|
|
|
|
while (host->ops->card_busy(host) && --tries)
|
|
mmc_delay(1);
|
|
|
|
if (tries == 0) {
|
|
mrq->cmd->error = -EBUSY;
|
|
mmc_request_done(host, mrq);
|
|
return;
|
|
}
|
|
}
|
|
|
|
host->ops->request(host, mrq);
|
|
}
|
|
|
|
static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
|
|
{
|
|
#ifdef CONFIG_MMC_DEBUG
|
|
unsigned int i, sz;
|
|
struct scatterlist *sg;
|
|
#endif
|
|
mmc_retune_hold(host);
|
|
|
|
if (mmc_card_removed(host->card))
|
|
return -ENOMEDIUM;
|
|
|
|
if (mrq->sbc) {
|
|
pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
|
|
mmc_hostname(host), mrq->sbc->opcode,
|
|
mrq->sbc->arg, mrq->sbc->flags);
|
|
}
|
|
|
|
pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
|
|
mmc_hostname(host), mrq->cmd->opcode,
|
|
mrq->cmd->arg, mrq->cmd->flags);
|
|
|
|
if (mrq->data) {
|
|
pr_debug("%s: blksz %d blocks %d flags %08x "
|
|
"tsac %d ms nsac %d\n",
|
|
mmc_hostname(host), mrq->data->blksz,
|
|
mrq->data->blocks, mrq->data->flags,
|
|
mrq->data->timeout_ns / 1000000,
|
|
mrq->data->timeout_clks);
|
|
}
|
|
|
|
if (mrq->stop) {
|
|
pr_debug("%s: CMD%u arg %08x flags %08x\n",
|
|
mmc_hostname(host), mrq->stop->opcode,
|
|
mrq->stop->arg, mrq->stop->flags);
|
|
}
|
|
|
|
WARN_ON(!host->claimed);
|
|
|
|
mrq->cmd->error = 0;
|
|
mrq->cmd->mrq = mrq;
|
|
if (mrq->sbc) {
|
|
mrq->sbc->error = 0;
|
|
mrq->sbc->mrq = mrq;
|
|
}
|
|
if (mrq->data) {
|
|
BUG_ON(mrq->data->blksz > host->max_blk_size);
|
|
BUG_ON(mrq->data->blocks > host->max_blk_count);
|
|
BUG_ON(mrq->data->blocks * mrq->data->blksz >
|
|
host->max_req_size);
|
|
|
|
#ifdef CONFIG_MMC_DEBUG
|
|
sz = 0;
|
|
for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
|
|
sz += sg->length;
|
|
BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
|
|
#endif
|
|
|
|
mrq->cmd->data = mrq->data;
|
|
mrq->data->error = 0;
|
|
mrq->data->mrq = mrq;
|
|
if (mrq->stop) {
|
|
mrq->data->stop = mrq->stop;
|
|
mrq->stop->error = 0;
|
|
mrq->stop->mrq = mrq;
|
|
}
|
|
}
|
|
led_trigger_event(host->led, LED_FULL);
|
|
__mmc_start_request(host, mrq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mmc_start_bkops - start BKOPS for supported cards
|
|
* @card: MMC card to start BKOPS
|
|
* @form_exception: A flag to indicate if this function was
|
|
* called due to an exception raised by the card
|
|
*
|
|
* Start background operations whenever requested.
|
|
* When the urgent BKOPS bit is set in a R1 command response
|
|
* then background operations should be started immediately.
|
|
*/
|
|
void mmc_start_bkops(struct mmc_card *card, bool from_exception)
|
|
{
|
|
int err;
|
|
int timeout;
|
|
bool use_busy_signal;
|
|
|
|
BUG_ON(!card);
|
|
|
|
if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
|
|
return;
|
|
|
|
err = mmc_read_bkops_status(card);
|
|
if (err) {
|
|
pr_err("%s: Failed to read bkops status: %d\n",
|
|
mmc_hostname(card->host), err);
|
|
return;
|
|
}
|
|
|
|
if (!card->ext_csd.raw_bkops_status)
|
|
return;
|
|
|
|
if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
|
|
from_exception)
|
|
return;
|
|
|
|
mmc_claim_host(card->host);
|
|
if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
|
|
timeout = MMC_BKOPS_MAX_TIMEOUT;
|
|
use_busy_signal = true;
|
|
} else {
|
|
timeout = 0;
|
|
use_busy_signal = false;
|
|
}
|
|
|
|
mmc_retune_hold(card->host);
|
|
|
|
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
|
|
EXT_CSD_BKOPS_START, 1, timeout,
|
|
use_busy_signal, true, false);
|
|
if (err) {
|
|
pr_warn("%s: Error %d starting bkops\n",
|
|
mmc_hostname(card->host), err);
|
|
mmc_retune_release(card->host);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* For urgent bkops status (LEVEL_2 and more)
|
|
* bkops executed synchronously, otherwise
|
|
* the operation is in progress
|
|
*/
|
|
if (!use_busy_signal)
|
|
mmc_card_set_doing_bkops(card);
|
|
else
|
|
mmc_retune_release(card->host);
|
|
out:
|
|
mmc_release_host(card->host);
|
|
}
|
|
EXPORT_SYMBOL(mmc_start_bkops);
|
|
|
|
/*
|
|
* mmc_wait_data_done() - done callback for data request
|
|
* @mrq: done data request
|
|
*
|
|
* Wakes up mmc context, passed as a callback to host controller driver
|
|
*/
|
|
static void mmc_wait_data_done(struct mmc_request *mrq)
|
|
{
|
|
struct mmc_context_info *context_info = &mrq->host->context_info;
|
|
|
|
context_info->is_done_rcv = true;
|
|
wake_up_interruptible(&context_info->wait);
|
|
}
|
|
|
|
static void mmc_wait_done(struct mmc_request *mrq)
|
|
{
|
|
complete(&mrq->completion);
|
|
}
|
|
|
|
/*
|
|
*__mmc_start_data_req() - starts data request
|
|
* @host: MMC host to start the request
|
|
* @mrq: data request to start
|
|
*
|
|
* Sets the done callback to be called when request is completed by the card.
|
|
* Starts data mmc request execution
|
|
*/
|
|
static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
|
|
{
|
|
int err;
|
|
|
|
mrq->done = mmc_wait_data_done;
|
|
mrq->host = host;
|
|
|
|
err = mmc_start_request(host, mrq);
|
|
if (err) {
|
|
mrq->cmd->error = err;
|
|
mmc_wait_data_done(mrq);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
|
|
{
|
|
int err;
|
|
|
|
init_completion(&mrq->completion);
|
|
mrq->done = mmc_wait_done;
|
|
|
|
err = mmc_start_request(host, mrq);
|
|
if (err) {
|
|
mrq->cmd->error = err;
|
|
complete(&mrq->completion);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* mmc_wait_for_data_req_done() - wait for request completed
|
|
* @host: MMC host to prepare the command.
|
|
* @mrq: MMC request to wait for
|
|
*
|
|
* Blocks MMC context till host controller will ack end of data request
|
|
* execution or new request notification arrives from the block layer.
|
|
* Handles command retries.
|
|
*
|
|
* Returns enum mmc_blk_status after checking errors.
|
|
*/
|
|
static int mmc_wait_for_data_req_done(struct mmc_host *host,
|
|
struct mmc_request *mrq,
|
|
struct mmc_async_req *next_req)
|
|
{
|
|
struct mmc_command *cmd;
|
|
struct mmc_context_info *context_info = &host->context_info;
|
|
int err;
|
|
unsigned long flags;
|
|
|
|
while (1) {
|
|
wait_event_interruptible(context_info->wait,
|
|
(context_info->is_done_rcv ||
|
|
context_info->is_new_req));
|
|
spin_lock_irqsave(&context_info->lock, flags);
|
|
context_info->is_waiting_last_req = false;
|
|
spin_unlock_irqrestore(&context_info->lock, flags);
|
|
if (context_info->is_done_rcv) {
|
|
context_info->is_done_rcv = false;
|
|
context_info->is_new_req = false;
|
|
cmd = mrq->cmd;
|
|
|
|
if (!cmd->error || !cmd->retries ||
|
|
mmc_card_removed(host->card)) {
|
|
err = host->areq->err_check(host->card,
|
|
host->areq);
|
|
break; /* return err */
|
|
} else {
|
|
mmc_retune_recheck(host);
|
|
pr_info("%s: req failed (CMD%u): %d, retrying...\n",
|
|
mmc_hostname(host),
|
|
cmd->opcode, cmd->error);
|
|
cmd->retries--;
|
|
cmd->error = 0;
|
|
__mmc_start_request(host, mrq);
|
|
continue; /* wait for done/new event again */
|
|
}
|
|
} else if (context_info->is_new_req) {
|
|
context_info->is_new_req = false;
|
|
if (!next_req)
|
|
return MMC_BLK_NEW_REQUEST;
|
|
}
|
|
}
|
|
mmc_retune_release(host);
|
|
return err;
|
|
}
|
|
|
|
static void mmc_wait_for_req_done(struct mmc_host *host,
|
|
struct mmc_request *mrq)
|
|
{
|
|
struct mmc_command *cmd;
|
|
|
|
while (1) {
|
|
wait_for_completion(&mrq->completion);
|
|
|
|
cmd = mrq->cmd;
|
|
|
|
/*
|
|
* If host has timed out waiting for the sanitize
|
|
* to complete, card might be still in programming state
|
|
* so let's try to bring the card out of programming
|
|
* state.
|
|
*/
|
|
if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
|
|
if (!mmc_interrupt_hpi(host->card)) {
|
|
pr_warn("%s: %s: Interrupted sanitize\n",
|
|
mmc_hostname(host), __func__);
|
|
cmd->error = 0;
|
|
break;
|
|
} else {
|
|
pr_err("%s: %s: Failed to interrupt sanitize\n",
|
|
mmc_hostname(host), __func__);
|
|
}
|
|
}
|
|
if (!cmd->error || !cmd->retries ||
|
|
mmc_card_removed(host->card))
|
|
break;
|
|
|
|
mmc_retune_recheck(host);
|
|
|
|
pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
|
|
mmc_hostname(host), cmd->opcode, cmd->error);
|
|
cmd->retries--;
|
|
cmd->error = 0;
|
|
__mmc_start_request(host, mrq);
|
|
}
|
|
|
|
mmc_retune_release(host);
|
|
}
|
|
|
|
/**
|
|
* mmc_pre_req - Prepare for a new request
|
|
* @host: MMC host to prepare command
|
|
* @mrq: MMC request to prepare for
|
|
* @is_first_req: true if there is no previous started request
|
|
* that may run in parellel to this call, otherwise false
|
|
*
|
|
* mmc_pre_req() is called in prior to mmc_start_req() to let
|
|
* host prepare for the new request. Preparation of a request may be
|
|
* performed while another request is running on the host.
|
|
*/
|
|
static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
|
|
bool is_first_req)
|
|
{
|
|
if (host->ops->pre_req)
|
|
host->ops->pre_req(host, mrq, is_first_req);
|
|
}
|
|
|
|
/**
|
|
* mmc_post_req - Post process a completed request
|
|
* @host: MMC host to post process command
|
|
* @mrq: MMC request to post process for
|
|
* @err: Error, if non zero, clean up any resources made in pre_req
|
|
*
|
|
* Let the host post process a completed request. Post processing of
|
|
* a request may be performed while another reuqest is running.
|
|
*/
|
|
static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
|
|
int err)
|
|
{
|
|
if (host->ops->post_req)
|
|
host->ops->post_req(host, mrq, err);
|
|
}
|
|
|
|
/**
|
|
* mmc_start_req - start a non-blocking request
|
|
* @host: MMC host to start command
|
|
* @areq: async request to start
|
|
* @error: out parameter returns 0 for success, otherwise non zero
|
|
*
|
|
* Start a new MMC custom command request for a host.
|
|
* If there is on ongoing async request wait for completion
|
|
* of that request and start the new one and return.
|
|
* Does not wait for the new request to complete.
|
|
*
|
|
* Returns the completed request, NULL in case of none completed.
|
|
* Wait for the an ongoing request (previoulsy started) to complete and
|
|
* return the completed request. If there is no ongoing request, NULL
|
|
* is returned without waiting. NULL is not an error condition.
|
|
*/
|
|
struct mmc_async_req *mmc_start_req(struct mmc_host *host,
|
|
struct mmc_async_req *areq, int *error)
|
|
{
|
|
int err = 0;
|
|
int start_err = 0;
|
|
struct mmc_async_req *data = host->areq;
|
|
|
|
/* Prepare a new request */
|
|
if (areq)
|
|
mmc_pre_req(host, areq->mrq, !host->areq);
|
|
|
|
if (host->areq) {
|
|
err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
|
|
if (err == MMC_BLK_NEW_REQUEST) {
|
|
if (error)
|
|
*error = err;
|
|
/*
|
|
* The previous request was not completed,
|
|
* nothing to return
|
|
*/
|
|
return NULL;
|
|
}
|
|
/*
|
|
* Check BKOPS urgency for each R1 response
|
|
*/
|
|
if (host->card && mmc_card_mmc(host->card) &&
|
|
((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
|
|
(mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
|
|
(host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
|
|
|
|
/* Cancel the prepared request */
|
|
if (areq)
|
|
mmc_post_req(host, areq->mrq, -EINVAL);
|
|
|
|
mmc_start_bkops(host->card, true);
|
|
|
|
/* prepare the request again */
|
|
if (areq)
|
|
mmc_pre_req(host, areq->mrq, !host->areq);
|
|
}
|
|
}
|
|
|
|
if (!err && areq)
|
|
start_err = __mmc_start_data_req(host, areq->mrq);
|
|
|
|
if (host->areq)
|
|
mmc_post_req(host, host->areq->mrq, 0);
|
|
|
|
/* Cancel a prepared request if it was not started. */
|
|
if ((err || start_err) && areq)
|
|
mmc_post_req(host, areq->mrq, -EINVAL);
|
|
|
|
if (err)
|
|
host->areq = NULL;
|
|
else
|
|
host->areq = areq;
|
|
|
|
if (error)
|
|
*error = err;
|
|
return data;
|
|
}
|
|
EXPORT_SYMBOL(mmc_start_req);
|
|
|
|
/**
|
|
* mmc_wait_for_req - start a request and wait for completion
|
|
* @host: MMC host to start command
|
|
* @mrq: MMC request to start
|
|
*
|
|
* Start a new MMC custom command request for a host, and wait
|
|
* for the command to complete. Does not attempt to parse the
|
|
* response.
|
|
*/
|
|
void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
|
|
{
|
|
__mmc_start_req(host, mrq);
|
|
mmc_wait_for_req_done(host, mrq);
|
|
}
|
|
EXPORT_SYMBOL(mmc_wait_for_req);
|
|
|
|
/**
|
|
* mmc_interrupt_hpi - Issue for High priority Interrupt
|
|
* @card: the MMC card associated with the HPI transfer
|
|
*
|
|
* Issued High Priority Interrupt, and check for card status
|
|
* until out-of prg-state.
|
|
*/
|
|
int mmc_interrupt_hpi(struct mmc_card *card)
|
|
{
|
|
int err;
|
|
u32 status;
|
|
unsigned long prg_wait;
|
|
|
|
BUG_ON(!card);
|
|
|
|
if (!card->ext_csd.hpi_en) {
|
|
pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
|
|
return 1;
|
|
}
|
|
|
|
mmc_claim_host(card->host);
|
|
err = mmc_send_status(card, &status);
|
|
if (err) {
|
|
pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
|
|
goto out;
|
|
}
|
|
|
|
switch (R1_CURRENT_STATE(status)) {
|
|
case R1_STATE_IDLE:
|
|
case R1_STATE_READY:
|
|
case R1_STATE_STBY:
|
|
case R1_STATE_TRAN:
|
|
/*
|
|
* In idle and transfer states, HPI is not needed and the caller
|
|
* can issue the next intended command immediately
|
|
*/
|
|
goto out;
|
|
case R1_STATE_PRG:
|
|
break;
|
|
default:
|
|
/* In all other states, it's illegal to issue HPI */
|
|
pr_debug("%s: HPI cannot be sent. Card state=%d\n",
|
|
mmc_hostname(card->host), R1_CURRENT_STATE(status));
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
err = mmc_send_hpi_cmd(card, &status);
|
|
if (err)
|
|
goto out;
|
|
|
|
prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
|
|
do {
|
|
err = mmc_send_status(card, &status);
|
|
|
|
if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
|
|
break;
|
|
if (time_after(jiffies, prg_wait))
|
|
err = -ETIMEDOUT;
|
|
} while (!err);
|
|
|
|
out:
|
|
mmc_release_host(card->host);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(mmc_interrupt_hpi);
|
|
|
|
/**
|
|
* mmc_wait_for_cmd - start a command and wait for completion
|
|
* @host: MMC host to start command
|
|
* @cmd: MMC command to start
|
|
* @retries: maximum number of retries
|
|
*
|
|
* Start a new MMC command for a host, and wait for the command
|
|
* to complete. Return any error that occurred while the command
|
|
* was executing. Do not attempt to parse the response.
|
|
*/
|
|
int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
|
|
{
|
|
struct mmc_request mrq = {NULL};
|
|
|
|
WARN_ON(!host->claimed);
|
|
|
|
memset(cmd->resp, 0, sizeof(cmd->resp));
|
|
cmd->retries = retries;
|
|
|
|
mrq.cmd = cmd;
|
|
cmd->data = NULL;
|
|
|
|
mmc_wait_for_req(host, &mrq);
|
|
|
|
return cmd->error;
|
|
}
|
|
|
|
EXPORT_SYMBOL(mmc_wait_for_cmd);
|
|
|
|
/**
|
|
* mmc_stop_bkops - stop ongoing BKOPS
|
|
* @card: MMC card to check BKOPS
|
|
*
|
|
* Send HPI command to stop ongoing background operations to
|
|
* allow rapid servicing of foreground operations, e.g. read/
|
|
* writes. Wait until the card comes out of the programming state
|
|
* to avoid errors in servicing read/write requests.
|
|
*/
|
|
int mmc_stop_bkops(struct mmc_card *card)
|
|
{
|
|
int err = 0;
|
|
|
|
BUG_ON(!card);
|
|
err = mmc_interrupt_hpi(card);
|
|
|
|
/*
|
|
* If err is EINVAL, we can't issue an HPI.
|
|
* It should complete the BKOPS.
|
|
*/
|
|
if (!err || (err == -EINVAL)) {
|
|
mmc_card_clr_doing_bkops(card);
|
|
mmc_retune_release(card->host);
|
|
err = 0;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(mmc_stop_bkops);
|
|
|
|
int mmc_read_bkops_status(struct mmc_card *card)
|
|
{
|
|
int err;
|
|
u8 *ext_csd;
|
|
|
|
mmc_claim_host(card->host);
|
|
err = mmc_get_ext_csd(card, &ext_csd);
|
|
mmc_release_host(card->host);
|
|
if (err)
|
|
return err;
|
|
|
|
card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
|
|
card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
|
|
kfree(ext_csd);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(mmc_read_bkops_status);
|
|
|
|
/**
|
|
* mmc_set_data_timeout - set the timeout for a data command
|
|
* @data: data phase for command
|
|
* @card: the MMC card associated with the data transfer
|
|
*
|
|
* Computes the data timeout parameters according to the
|
|
* correct algorithm given the card type.
|
|
*/
|
|
void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
|
|
{
|
|
unsigned int mult;
|
|
|
|
/*
|
|
* SDIO cards only define an upper 1 s limit on access.
|
|
*/
|
|
if (mmc_card_sdio(card)) {
|
|
data->timeout_ns = 1000000000;
|
|
data->timeout_clks = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* SD cards use a 100 multiplier rather than 10
|
|
*/
|
|
mult = mmc_card_sd(card) ? 100 : 10;
|
|
|
|
/*
|
|
* Scale up the multiplier (and therefore the timeout) by
|
|
* the r2w factor for writes.
|
|
*/
|
|
if (data->flags & MMC_DATA_WRITE)
|
|
mult <<= card->csd.r2w_factor;
|
|
|
|
data->timeout_ns = card->csd.tacc_ns * mult;
|
|
data->timeout_clks = card->csd.tacc_clks * mult;
|
|
|
|
/*
|
|
* SD cards also have an upper limit on the timeout.
|
|
*/
|
|
if (mmc_card_sd(card)) {
|
|
unsigned int timeout_us, limit_us;
|
|
|
|
timeout_us = data->timeout_ns / 1000;
|
|
if (card->host->ios.clock)
|
|
timeout_us += data->timeout_clks * 1000 /
|
|
(card->host->ios.clock / 1000);
|
|
|
|
if (data->flags & MMC_DATA_WRITE)
|
|
/*
|
|
* The MMC spec "It is strongly recommended
|
|
* for hosts to implement more than 500ms
|
|
* timeout value even if the card indicates
|
|
* the 250ms maximum busy length." Even the
|
|
* previous value of 300ms is known to be
|
|
* insufficient for some cards.
|
|
*/
|
|
limit_us = 3000000;
|
|
else
|
|
limit_us = 100000;
|
|
|
|
/*
|
|
* SDHC cards always use these fixed values.
|
|
*/
|
|
if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
|
|
data->timeout_ns = limit_us * 1000;
|
|
data->timeout_clks = 0;
|
|
}
|
|
|
|
/* assign limit value if invalid */
|
|
if (timeout_us == 0)
|
|
data->timeout_ns = limit_us * 1000;
|
|
}
|
|
|
|
/*
|
|
* Some cards require longer data read timeout than indicated in CSD.
|
|
* Address this by setting the read timeout to a "reasonably high"
|
|
* value. For the cards tested, 300ms has proven enough. If necessary,
|
|
* this value can be increased if other problematic cards require this.
|
|
*/
|
|
if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
|
|
data->timeout_ns = 300000000;
|
|
data->timeout_clks = 0;
|
|
}
|
|
|
|
/*
|
|
* Some cards need very high timeouts if driven in SPI mode.
|
|
* The worst observed timeout was 900ms after writing a
|
|
* continuous stream of data until the internal logic
|
|
* overflowed.
|
|
*/
|
|
if (mmc_host_is_spi(card->host)) {
|
|
if (data->flags & MMC_DATA_WRITE) {
|
|
if (data->timeout_ns < 1000000000)
|
|
data->timeout_ns = 1000000000; /* 1s */
|
|
} else {
|
|
if (data->timeout_ns < 100000000)
|
|
data->timeout_ns = 100000000; /* 100ms */
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(mmc_set_data_timeout);
|
|
|
|
/**
|
|
* mmc_align_data_size - pads a transfer size to a more optimal value
|
|
* @card: the MMC card associated with the data transfer
|
|
* @sz: original transfer size
|
|
*
|
|
* Pads the original data size with a number of extra bytes in
|
|
* order to avoid controller bugs and/or performance hits
|
|
* (e.g. some controllers revert to PIO for certain sizes).
|
|
*
|
|
* Returns the improved size, which might be unmodified.
|
|
*
|
|
* Note that this function is only relevant when issuing a
|
|
* single scatter gather entry.
|
|
*/
|
|
unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
|
|
{
|
|
/*
|
|
* FIXME: We don't have a system for the controller to tell
|
|
* the core about its problems yet, so for now we just 32-bit
|
|
* align the size.
|
|
*/
|
|
sz = ((sz + 3) / 4) * 4;
|
|
|
|
return sz;
|
|
}
|
|
EXPORT_SYMBOL(mmc_align_data_size);
|
|
|
|
/**
|
|
* __mmc_claim_host - exclusively claim a host
|
|
* @host: mmc host to claim
|
|
* @abort: whether or not the operation should be aborted
|
|
*
|
|
* Claim a host for a set of operations. If @abort is non null and
|
|
* dereference a non-zero value then this will return prematurely with
|
|
* that non-zero value without acquiring the lock. Returns zero
|
|
* with the lock held otherwise.
|
|
*/
|
|
int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
unsigned long flags;
|
|
int stop;
|
|
bool pm = false;
|
|
|
|
might_sleep();
|
|
|
|
add_wait_queue(&host->wq, &wait);
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
while (1) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
stop = abort ? atomic_read(abort) : 0;
|
|
if (stop || !host->claimed || host->claimer == current)
|
|
break;
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
schedule();
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
}
|
|
set_current_state(TASK_RUNNING);
|
|
if (!stop) {
|
|
host->claimed = 1;
|
|
host->claimer = current;
|
|
host->claim_cnt += 1;
|
|
if (host->claim_cnt == 1)
|
|
pm = true;
|
|
} else
|
|
wake_up(&host->wq);
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
remove_wait_queue(&host->wq, &wait);
|
|
|
|
if (pm)
|
|
pm_runtime_get_sync(mmc_dev(host));
|
|
|
|
return stop;
|
|
}
|
|
EXPORT_SYMBOL(__mmc_claim_host);
|
|
|
|
/**
|
|
* mmc_release_host - release a host
|
|
* @host: mmc host to release
|
|
*
|
|
* Release a MMC host, allowing others to claim the host
|
|
* for their operations.
|
|
*/
|
|
void mmc_release_host(struct mmc_host *host)
|
|
{
|
|
unsigned long flags;
|
|
|
|
WARN_ON(!host->claimed);
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
if (--host->claim_cnt) {
|
|
/* Release for nested claim */
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
} else {
|
|
host->claimed = 0;
|
|
host->claimer = NULL;
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
wake_up(&host->wq);
|
|
pm_runtime_mark_last_busy(mmc_dev(host));
|
|
pm_runtime_put_autosuspend(mmc_dev(host));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(mmc_release_host);
|
|
|
|
/*
|
|
* This is a helper function, which fetches a runtime pm reference for the
|
|
* card device and also claims the host.
|
|
*/
|
|
void mmc_get_card(struct mmc_card *card)
|
|
{
|
|
pm_runtime_get_sync(&card->dev);
|
|
mmc_claim_host(card->host);
|
|
}
|
|
EXPORT_SYMBOL(mmc_get_card);
|
|
|
|
/*
|
|
* This is a helper function, which releases the host and drops the runtime
|
|
* pm reference for the card device.
|
|
*/
|
|
void mmc_put_card(struct mmc_card *card)
|
|
{
|
|
mmc_release_host(card->host);
|
|
pm_runtime_mark_last_busy(&card->dev);
|
|
pm_runtime_put_autosuspend(&card->dev);
|
|
}
|
|
EXPORT_SYMBOL(mmc_put_card);
|
|
|
|
/*
|
|
* Internal function that does the actual ios call to the host driver,
|
|
* optionally printing some debug output.
|
|
*/
|
|
static inline void mmc_set_ios(struct mmc_host *host)
|
|
{
|
|
struct mmc_ios *ios = &host->ios;
|
|
|
|
pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
|
|
"width %u timing %u\n",
|
|
mmc_hostname(host), ios->clock, ios->bus_mode,
|
|
ios->power_mode, ios->chip_select, ios->vdd,
|
|
ios->bus_width, ios->timing);
|
|
|
|
host->ops->set_ios(host, ios);
|
|
}
|
|
|
|
/*
|
|
* Control chip select pin on a host.
|
|
*/
|
|
void mmc_set_chip_select(struct mmc_host *host, int mode)
|
|
{
|
|
host->ios.chip_select = mode;
|
|
mmc_set_ios(host);
|
|
}
|
|
|
|
/*
|
|
* Sets the host clock to the highest possible frequency that
|
|
* is below "hz".
|
|
*/
|
|
void mmc_set_clock(struct mmc_host *host, unsigned int hz)
|
|
{
|
|
WARN_ON(hz && hz < host->f_min);
|
|
|
|
if (hz > host->f_max)
|
|
hz = host->f_max;
|
|
|
|
host->ios.clock = hz;
|
|
mmc_set_ios(host);
|
|
}
|
|
|
|
int mmc_execute_tuning(struct mmc_card *card)
|
|
{
|
|
struct mmc_host *host = card->host;
|
|
u32 opcode;
|
|
int err;
|
|
|
|
if (!host->ops->execute_tuning)
|
|
return 0;
|
|
|
|
if (mmc_card_mmc(card))
|
|
opcode = MMC_SEND_TUNING_BLOCK_HS200;
|
|
else
|
|
opcode = MMC_SEND_TUNING_BLOCK;
|
|
|
|
err = host->ops->execute_tuning(host, opcode);
|
|
|
|
if (err)
|
|
pr_err("%s: tuning execution failed\n", mmc_hostname(host));
|
|
else
|
|
mmc_retune_enable(host);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Change the bus mode (open drain/push-pull) of a host.
|
|
*/
|
|
void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
|
|
{
|
|
host->ios.bus_mode = mode;
|
|
mmc_set_ios(host);
|
|
}
|
|
|
|
/*
|
|
* Change data bus width of a host.
|
|
*/
|
|
void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
|
|
{
|
|
host->ios.bus_width = width;
|
|
mmc_set_ios(host);
|
|
}
|
|
|
|
/*
|
|
* Set initial state after a power cycle or a hw_reset.
|
|
*/
|
|
void mmc_set_initial_state(struct mmc_host *host)
|
|
{
|
|
mmc_retune_disable(host);
|
|
|
|
if (mmc_host_is_spi(host))
|
|
host->ios.chip_select = MMC_CS_HIGH;
|
|
else
|
|
host->ios.chip_select = MMC_CS_DONTCARE;
|
|
host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
|
|
host->ios.bus_width = MMC_BUS_WIDTH_1;
|
|
host->ios.timing = MMC_TIMING_LEGACY;
|
|
host->ios.drv_type = 0;
|
|
|
|
mmc_set_ios(host);
|
|
}
|
|
|
|
/**
|
|
* mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
|
|
* @vdd: voltage (mV)
|
|
* @low_bits: prefer low bits in boundary cases
|
|
*
|
|
* This function returns the OCR bit number according to the provided @vdd
|
|
* value. If conversion is not possible a negative errno value returned.
|
|
*
|
|
* Depending on the @low_bits flag the function prefers low or high OCR bits
|
|
* on boundary voltages. For example,
|
|
* with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
|
|
* with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
|
|
*
|
|
* Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
|
|
*/
|
|
static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
|
|
{
|
|
const int max_bit = ilog2(MMC_VDD_35_36);
|
|
int bit;
|
|
|
|
if (vdd < 1650 || vdd > 3600)
|
|
return -EINVAL;
|
|
|
|
if (vdd >= 1650 && vdd <= 1950)
|
|
return ilog2(MMC_VDD_165_195);
|
|
|
|
if (low_bits)
|
|
vdd -= 1;
|
|
|
|
/* Base 2000 mV, step 100 mV, bit's base 8. */
|
|
bit = (vdd - 2000) / 100 + 8;
|
|
if (bit > max_bit)
|
|
return max_bit;
|
|
return bit;
|
|
}
|
|
|
|
/**
|
|
* mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
|
|
* @vdd_min: minimum voltage value (mV)
|
|
* @vdd_max: maximum voltage value (mV)
|
|
*
|
|
* This function returns the OCR mask bits according to the provided @vdd_min
|
|
* and @vdd_max values. If conversion is not possible the function returns 0.
|
|
*
|
|
* Notes wrt boundary cases:
|
|
* This function sets the OCR bits for all boundary voltages, for example
|
|
* [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
|
|
* MMC_VDD_34_35 mask.
|
|
*/
|
|
u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
|
|
{
|
|
u32 mask = 0;
|
|
|
|
if (vdd_max < vdd_min)
|
|
return 0;
|
|
|
|
/* Prefer high bits for the boundary vdd_max values. */
|
|
vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
|
|
if (vdd_max < 0)
|
|
return 0;
|
|
|
|
/* Prefer low bits for the boundary vdd_min values. */
|
|
vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
|
|
if (vdd_min < 0)
|
|
return 0;
|
|
|
|
/* Fill the mask, from max bit to min bit. */
|
|
while (vdd_max >= vdd_min)
|
|
mask |= 1 << vdd_max--;
|
|
|
|
return mask;
|
|
}
|
|
EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
|
|
|
|
#ifdef CONFIG_OF
|
|
|
|
/**
|
|
* mmc_of_parse_voltage - return mask of supported voltages
|
|
* @np: The device node need to be parsed.
|
|
* @mask: mask of voltages available for MMC/SD/SDIO
|
|
*
|
|
* 1. Return zero on success.
|
|
* 2. Return negative errno: voltage-range is invalid.
|
|
*/
|
|
int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
|
|
{
|
|
const u32 *voltage_ranges;
|
|
int num_ranges, i;
|
|
|
|
voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
|
|
num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
|
|
if (!voltage_ranges || !num_ranges) {
|
|
pr_info("%s: voltage-ranges unspecified\n", np->full_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < num_ranges; i++) {
|
|
const int j = i * 2;
|
|
u32 ocr_mask;
|
|
|
|
ocr_mask = mmc_vddrange_to_ocrmask(
|
|
be32_to_cpu(voltage_ranges[j]),
|
|
be32_to_cpu(voltage_ranges[j + 1]));
|
|
if (!ocr_mask) {
|
|
pr_err("%s: voltage-range #%d is invalid\n",
|
|
np->full_name, i);
|
|
return -EINVAL;
|
|
}
|
|
*mask |= ocr_mask;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(mmc_of_parse_voltage);
|
|
|
|
#endif /* CONFIG_OF */
|
|
|
|
static int mmc_of_get_func_num(struct device_node *node)
|
|
{
|
|
u32 reg;
|
|
int ret;
|
|
|
|
ret = of_property_read_u32(node, "reg", ®);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return reg;
|
|
}
|
|
|
|
struct device_node *mmc_of_find_child_device(struct mmc_host *host,
|
|
unsigned func_num)
|
|
{
|
|
struct device_node *node;
|
|
|
|
if (!host->parent || !host->parent->of_node)
|
|
return NULL;
|
|
|
|
for_each_child_of_node(host->parent->of_node, node) {
|
|
if (mmc_of_get_func_num(node) == func_num)
|
|
return node;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_REGULATOR
|
|
|
|
/**
|
|
* mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
|
|
* @vdd_bit: OCR bit number
|
|
* @min_uV: minimum voltage value (mV)
|
|
* @max_uV: maximum voltage value (mV)
|
|
*
|
|
* This function returns the voltage range according to the provided OCR
|
|
* bit number. If conversion is not possible a negative errno value returned.
|
|
*/
|
|
static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
|
|
{
|
|
int tmp;
|
|
|
|
if (!vdd_bit)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* REVISIT mmc_vddrange_to_ocrmask() may have set some
|
|
* bits this regulator doesn't quite support ... don't
|
|
* be too picky, most cards and regulators are OK with
|
|
* a 0.1V range goof (it's a small error percentage).
|
|
*/
|
|
tmp = vdd_bit - ilog2(MMC_VDD_165_195);
|
|
if (tmp == 0) {
|
|
*min_uV = 1650 * 1000;
|
|
*max_uV = 1950 * 1000;
|
|
} else {
|
|
*min_uV = 1900 * 1000 + tmp * 100 * 1000;
|
|
*max_uV = *min_uV + 100 * 1000;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mmc_regulator_get_ocrmask - return mask of supported voltages
|
|
* @supply: regulator to use
|
|
*
|
|
* This returns either a negative errno, or a mask of voltages that
|
|
* can be provided to MMC/SD/SDIO devices using the specified voltage
|
|
* regulator. This would normally be called before registering the
|
|
* MMC host adapter.
|
|
*/
|
|
int mmc_regulator_get_ocrmask(struct regulator *supply)
|
|
{
|
|
int result = 0;
|
|
int count;
|
|
int i;
|
|
int vdd_uV;
|
|
int vdd_mV;
|
|
|
|
count = regulator_count_voltages(supply);
|
|
if (count < 0)
|
|
return count;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
vdd_uV = regulator_list_voltage(supply, i);
|
|
if (vdd_uV <= 0)
|
|
continue;
|
|
|
|
vdd_mV = vdd_uV / 1000;
|
|
result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
|
|
}
|
|
|
|
if (!result) {
|
|
vdd_uV = regulator_get_voltage(supply);
|
|
if (vdd_uV <= 0)
|
|
return vdd_uV;
|
|
|
|
vdd_mV = vdd_uV / 1000;
|
|
result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
|
|
|
|
/**
|
|
* mmc_regulator_set_ocr - set regulator to match host->ios voltage
|
|
* @mmc: the host to regulate
|
|
* @supply: regulator to use
|
|
* @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
|
|
*
|
|
* Returns zero on success, else negative errno.
|
|
*
|
|
* MMC host drivers may use this to enable or disable a regulator using
|
|
* a particular supply voltage. This would normally be called from the
|
|
* set_ios() method.
|
|
*/
|
|
int mmc_regulator_set_ocr(struct mmc_host *mmc,
|
|
struct regulator *supply,
|
|
unsigned short vdd_bit)
|
|
{
|
|
int result = 0;
|
|
int min_uV, max_uV;
|
|
|
|
if (vdd_bit) {
|
|
mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
|
|
|
|
result = regulator_set_voltage(supply, min_uV, max_uV);
|
|
if (result == 0 && !mmc->regulator_enabled) {
|
|
result = regulator_enable(supply);
|
|
if (!result)
|
|
mmc->regulator_enabled = true;
|
|
}
|
|
} else if (mmc->regulator_enabled) {
|
|
result = regulator_disable(supply);
|
|
if (result == 0)
|
|
mmc->regulator_enabled = false;
|
|
}
|
|
|
|
if (result)
|
|
dev_err(mmc_dev(mmc),
|
|
"could not set regulator OCR (%d)\n", result);
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
|
|
|
|
static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
|
|
int min_uV, int target_uV,
|
|
int max_uV)
|
|
{
|
|
/*
|
|
* Check if supported first to avoid errors since we may try several
|
|
* signal levels during power up and don't want to show errors.
|
|
*/
|
|
if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
|
|
return -EINVAL;
|
|
|
|
return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
|
|
max_uV);
|
|
}
|
|
|
|
/**
|
|
* mmc_regulator_set_vqmmc - Set VQMMC as per the ios
|
|
*
|
|
* For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
|
|
* That will match the behavior of old boards where VQMMC and VMMC were supplied
|
|
* by the same supply. The Bus Operating conditions for 3.3V signaling in the
|
|
* SD card spec also define VQMMC in terms of VMMC.
|
|
* If this is not possible we'll try the full 2.7-3.6V of the spec.
|
|
*
|
|
* For 1.2V and 1.8V signaling we'll try to get as close as possible to the
|
|
* requested voltage. This is definitely a good idea for UHS where there's a
|
|
* separate regulator on the card that's trying to make 1.8V and it's best if
|
|
* we match.
|
|
*
|
|
* This function is expected to be used by a controller's
|
|
* start_signal_voltage_switch() function.
|
|
*/
|
|
int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
|
|
{
|
|
struct device *dev = mmc_dev(mmc);
|
|
int ret, volt, min_uV, max_uV;
|
|
|
|
/* If no vqmmc supply then we can't change the voltage */
|
|
if (IS_ERR(mmc->supply.vqmmc))
|
|
return -EINVAL;
|
|
|
|
switch (ios->signal_voltage) {
|
|
case MMC_SIGNAL_VOLTAGE_120:
|
|
return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
|
|
1100000, 1200000, 1300000);
|
|
case MMC_SIGNAL_VOLTAGE_180:
|
|
return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
|
|
1700000, 1800000, 1950000);
|
|
case MMC_SIGNAL_VOLTAGE_330:
|
|
ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
|
|
__func__, volt, max_uV);
|
|
|
|
min_uV = max(volt - 300000, 2700000);
|
|
max_uV = min(max_uV + 200000, 3600000);
|
|
|
|
/*
|
|
* Due to a limitation in the current implementation of
|
|
* regulator_set_voltage_triplet() which is taking the lowest
|
|
* voltage possible if below the target, search for a suitable
|
|
* voltage in two steps and try to stay close to vmmc
|
|
* with a 0.3V tolerance at first.
|
|
*/
|
|
if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
|
|
min_uV, volt, max_uV))
|
|
return 0;
|
|
|
|
return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
|
|
2700000, volt, 3600000);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
|
|
|
|
#endif /* CONFIG_REGULATOR */
|
|
|
|
int mmc_regulator_get_supply(struct mmc_host *mmc)
|
|
{
|
|
struct device *dev = mmc_dev(mmc);
|
|
int ret;
|
|
|
|
mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
|
|
mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
|
|
|
|
if (IS_ERR(mmc->supply.vmmc)) {
|
|
if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
|
|
return -EPROBE_DEFER;
|
|
dev_dbg(dev, "No vmmc regulator found\n");
|
|
} else {
|
|
ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
|
|
if (ret > 0)
|
|
mmc->ocr_avail = ret;
|
|
else
|
|
dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
|
|
}
|
|
|
|
if (IS_ERR(mmc->supply.vqmmc)) {
|
|
if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
|
|
return -EPROBE_DEFER;
|
|
dev_dbg(dev, "No vqmmc regulator found\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
|
|
|
|
/*
|
|
* Mask off any voltages we don't support and select
|
|
* the lowest voltage
|
|
*/
|
|
u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
|
|
{
|
|
int bit;
|
|
|
|
/*
|
|
* Sanity check the voltages that the card claims to
|
|
* support.
|
|
*/
|
|
if (ocr & 0x7F) {
|
|
dev_warn(mmc_dev(host),
|
|
"card claims to support voltages below defined range\n");
|
|
ocr &= ~0x7F;
|
|
}
|
|
|
|
ocr &= host->ocr_avail;
|
|
if (!ocr) {
|
|
dev_warn(mmc_dev(host), "no support for card's volts\n");
|
|
return 0;
|
|
}
|
|
|
|
if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
|
|
bit = ffs(ocr) - 1;
|
|
ocr &= 3 << bit;
|
|
mmc_power_cycle(host, ocr);
|
|
} else {
|
|
bit = fls(ocr) - 1;
|
|
ocr &= 3 << bit;
|
|
if (bit != host->ios.vdd)
|
|
dev_warn(mmc_dev(host), "exceeding card's volts\n");
|
|
}
|
|
|
|
return ocr;
|
|
}
|
|
|
|
int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
|
|
{
|
|
int err = 0;
|
|
int old_signal_voltage = host->ios.signal_voltage;
|
|
|
|
host->ios.signal_voltage = signal_voltage;
|
|
if (host->ops->start_signal_voltage_switch)
|
|
err = host->ops->start_signal_voltage_switch(host, &host->ios);
|
|
|
|
if (err)
|
|
host->ios.signal_voltage = old_signal_voltage;
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
|
|
{
|
|
struct mmc_command cmd = {0};
|
|
int err = 0;
|
|
u32 clock;
|
|
|
|
BUG_ON(!host);
|
|
|
|
/*
|
|
* Send CMD11 only if the request is to switch the card to
|
|
* 1.8V signalling.
|
|
*/
|
|
if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
|
|
return __mmc_set_signal_voltage(host, signal_voltage);
|
|
|
|
/*
|
|
* If we cannot switch voltages, return failure so the caller
|
|
* can continue without UHS mode
|
|
*/
|
|
if (!host->ops->start_signal_voltage_switch)
|
|
return -EPERM;
|
|
if (!host->ops->card_busy)
|
|
pr_warn("%s: cannot verify signal voltage switch\n",
|
|
mmc_hostname(host));
|
|
|
|
cmd.opcode = SD_SWITCH_VOLTAGE;
|
|
cmd.arg = 0;
|
|
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
|
|
|
|
err = mmc_wait_for_cmd(host, &cmd, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
|
|
return -EIO;
|
|
|
|
/*
|
|
* The card should drive cmd and dat[0:3] low immediately
|
|
* after the response of cmd11, but wait 1 ms to be sure
|
|
*/
|
|
mmc_delay(1);
|
|
if (host->ops->card_busy && !host->ops->card_busy(host)) {
|
|
err = -EAGAIN;
|
|
goto power_cycle;
|
|
}
|
|
/*
|
|
* During a signal voltage level switch, the clock must be gated
|
|
* for 5 ms according to the SD spec
|
|
*/
|
|
clock = host->ios.clock;
|
|
host->ios.clock = 0;
|
|
mmc_set_ios(host);
|
|
|
|
if (__mmc_set_signal_voltage(host, signal_voltage)) {
|
|
/*
|
|
* Voltages may not have been switched, but we've already
|
|
* sent CMD11, so a power cycle is required anyway
|
|
*/
|
|
err = -EAGAIN;
|
|
goto power_cycle;
|
|
}
|
|
|
|
/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
|
|
mmc_delay(10);
|
|
host->ios.clock = clock;
|
|
mmc_set_ios(host);
|
|
|
|
/* Wait for at least 1 ms according to spec */
|
|
mmc_delay(1);
|
|
|
|
/*
|
|
* Failure to switch is indicated by the card holding
|
|
* dat[0:3] low
|
|
*/
|
|
if (host->ops->card_busy && host->ops->card_busy(host))
|
|
err = -EAGAIN;
|
|
|
|
power_cycle:
|
|
if (err) {
|
|
pr_debug("%s: Signal voltage switch failed, "
|
|
"power cycling card\n", mmc_hostname(host));
|
|
mmc_power_cycle(host, ocr);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Select timing parameters for host.
|
|
*/
|
|
void mmc_set_timing(struct mmc_host *host, unsigned int timing)
|
|
{
|
|
host->ios.timing = timing;
|
|
mmc_set_ios(host);
|
|
}
|
|
|
|
/*
|
|
* Select appropriate driver type for host.
|
|
*/
|
|
void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
|
|
{
|
|
host->ios.drv_type = drv_type;
|
|
mmc_set_ios(host);
|
|
}
|
|
|
|
int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
|
|
int card_drv_type, int *drv_type)
|
|
{
|
|
struct mmc_host *host = card->host;
|
|
int host_drv_type = SD_DRIVER_TYPE_B;
|
|
|
|
*drv_type = 0;
|
|
|
|
if (!host->ops->select_drive_strength)
|
|
return 0;
|
|
|
|
/* Use SD definition of driver strength for hosts */
|
|
if (host->caps & MMC_CAP_DRIVER_TYPE_A)
|
|
host_drv_type |= SD_DRIVER_TYPE_A;
|
|
|
|
if (host->caps & MMC_CAP_DRIVER_TYPE_C)
|
|
host_drv_type |= SD_DRIVER_TYPE_C;
|
|
|
|
if (host->caps & MMC_CAP_DRIVER_TYPE_D)
|
|
host_drv_type |= SD_DRIVER_TYPE_D;
|
|
|
|
/*
|
|
* The drive strength that the hardware can support
|
|
* depends on the board design. Pass the appropriate
|
|
* information and let the hardware specific code
|
|
* return what is possible given the options
|
|
*/
|
|
return host->ops->select_drive_strength(card, max_dtr,
|
|
host_drv_type,
|
|
card_drv_type,
|
|
drv_type);
|
|
}
|
|
|
|
/*
|
|
* Apply power to the MMC stack. This is a two-stage process.
|
|
* First, we enable power to the card without the clock running.
|
|
* We then wait a bit for the power to stabilise. Finally,
|
|
* enable the bus drivers and clock to the card.
|
|
*
|
|
* We must _NOT_ enable the clock prior to power stablising.
|
|
*
|
|
* If a host does all the power sequencing itself, ignore the
|
|
* initial MMC_POWER_UP stage.
|
|
*/
|
|
void mmc_power_up(struct mmc_host *host, u32 ocr)
|
|
{
|
|
if (host->ios.power_mode == MMC_POWER_ON)
|
|
return;
|
|
|
|
mmc_pwrseq_pre_power_on(host);
|
|
|
|
host->ios.vdd = fls(ocr) - 1;
|
|
host->ios.power_mode = MMC_POWER_UP;
|
|
/* Set initial state and call mmc_set_ios */
|
|
mmc_set_initial_state(host);
|
|
|
|
/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
|
|
if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
|
|
dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
|
|
else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
|
|
dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
|
|
else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
|
|
dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
|
|
|
|
/*
|
|
* This delay should be sufficient to allow the power supply
|
|
* to reach the minimum voltage.
|
|
*/
|
|
mmc_delay(10);
|
|
|
|
mmc_pwrseq_post_power_on(host);
|
|
|
|
host->ios.clock = host->f_init;
|
|
|
|
host->ios.power_mode = MMC_POWER_ON;
|
|
mmc_set_ios(host);
|
|
|
|
/*
|
|
* This delay must be at least 74 clock sizes, or 1 ms, or the
|
|
* time required to reach a stable voltage.
|
|
*/
|
|
mmc_delay(10);
|
|
}
|
|
|
|
void mmc_power_off(struct mmc_host *host)
|
|
{
|
|
if (host->ios.power_mode == MMC_POWER_OFF)
|
|
return;
|
|
|
|
mmc_pwrseq_power_off(host);
|
|
|
|
host->ios.clock = 0;
|
|
host->ios.vdd = 0;
|
|
|
|
host->ios.power_mode = MMC_POWER_OFF;
|
|
/* Set initial state and call mmc_set_ios */
|
|
mmc_set_initial_state(host);
|
|
|
|
/*
|
|
* Some configurations, such as the 802.11 SDIO card in the OLPC
|
|
* XO-1.5, require a short delay after poweroff before the card
|
|
* can be successfully turned on again.
|
|
*/
|
|
mmc_delay(1);
|
|
}
|
|
|
|
void mmc_power_cycle(struct mmc_host *host, u32 ocr)
|
|
{
|
|
mmc_power_off(host);
|
|
/* Wait at least 1 ms according to SD spec */
|
|
mmc_delay(1);
|
|
mmc_power_up(host, ocr);
|
|
}
|
|
|
|
/*
|
|
* Cleanup when the last reference to the bus operator is dropped.
|
|
*/
|
|
static void __mmc_release_bus(struct mmc_host *host)
|
|
{
|
|
BUG_ON(!host);
|
|
BUG_ON(host->bus_refs);
|
|
BUG_ON(!host->bus_dead);
|
|
|
|
host->bus_ops = NULL;
|
|
}
|
|
|
|
/*
|
|
* Increase reference count of bus operator
|
|
*/
|
|
static inline void mmc_bus_get(struct mmc_host *host)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
host->bus_refs++;
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Decrease reference count of bus operator and free it if
|
|
* it is the last reference.
|
|
*/
|
|
static inline void mmc_bus_put(struct mmc_host *host)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
host->bus_refs--;
|
|
if ((host->bus_refs == 0) && host->bus_ops)
|
|
__mmc_release_bus(host);
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Assign a mmc bus handler to a host. Only one bus handler may control a
|
|
* host at any given time.
|
|
*/
|
|
void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
|
|
{
|
|
unsigned long flags;
|
|
|
|
BUG_ON(!host);
|
|
BUG_ON(!ops);
|
|
|
|
WARN_ON(!host->claimed);
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
|
|
BUG_ON(host->bus_ops);
|
|
BUG_ON(host->bus_refs);
|
|
|
|
host->bus_ops = ops;
|
|
host->bus_refs = 1;
|
|
host->bus_dead = 0;
|
|
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Remove the current bus handler from a host.
|
|
*/
|
|
void mmc_detach_bus(struct mmc_host *host)
|
|
{
|
|
unsigned long flags;
|
|
|
|
BUG_ON(!host);
|
|
|
|
WARN_ON(!host->claimed);
|
|
WARN_ON(!host->bus_ops);
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
|
|
host->bus_dead = 1;
|
|
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
|
|
mmc_bus_put(host);
|
|
}
|
|
|
|
static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
|
|
bool cd_irq)
|
|
{
|
|
#ifdef CONFIG_MMC_DEBUG
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
WARN_ON(host->removed);
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
#endif
|
|
|
|
/*
|
|
* If the device is configured as wakeup, we prevent a new sleep for
|
|
* 5 s to give provision for user space to consume the event.
|
|
*/
|
|
if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
|
|
device_can_wakeup(mmc_dev(host)))
|
|
pm_wakeup_event(mmc_dev(host), 5000);
|
|
|
|
host->detect_change = 1;
|
|
mmc_schedule_delayed_work(&host->detect, delay);
|
|
}
|
|
|
|
/**
|
|
* mmc_detect_change - process change of state on a MMC socket
|
|
* @host: host which changed state.
|
|
* @delay: optional delay to wait before detection (jiffies)
|
|
*
|
|
* MMC drivers should call this when they detect a card has been
|
|
* inserted or removed. The MMC layer will confirm that any
|
|
* present card is still functional, and initialize any newly
|
|
* inserted.
|
|
*/
|
|
void mmc_detect_change(struct mmc_host *host, unsigned long delay)
|
|
{
|
|
_mmc_detect_change(host, delay, true);
|
|
}
|
|
EXPORT_SYMBOL(mmc_detect_change);
|
|
|
|
void mmc_init_erase(struct mmc_card *card)
|
|
{
|
|
unsigned int sz;
|
|
|
|
if (is_power_of_2(card->erase_size))
|
|
card->erase_shift = ffs(card->erase_size) - 1;
|
|
else
|
|
card->erase_shift = 0;
|
|
|
|
/*
|
|
* It is possible to erase an arbitrarily large area of an SD or MMC
|
|
* card. That is not desirable because it can take a long time
|
|
* (minutes) potentially delaying more important I/O, and also the
|
|
* timeout calculations become increasingly hugely over-estimated.
|
|
* Consequently, 'pref_erase' is defined as a guide to limit erases
|
|
* to that size and alignment.
|
|
*
|
|
* For SD cards that define Allocation Unit size, limit erases to one
|
|
* Allocation Unit at a time. For MMC cards that define High Capacity
|
|
* Erase Size, whether it is switched on or not, limit to that size.
|
|
* Otherwise just have a stab at a good value. For modern cards it
|
|
* will end up being 4MiB. Note that if the value is too small, it
|
|
* can end up taking longer to erase.
|
|
*/
|
|
if (mmc_card_sd(card) && card->ssr.au) {
|
|
card->pref_erase = card->ssr.au;
|
|
card->erase_shift = ffs(card->ssr.au) - 1;
|
|
} else if (card->ext_csd.hc_erase_size) {
|
|
card->pref_erase = card->ext_csd.hc_erase_size;
|
|
} else if (card->erase_size) {
|
|
sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
|
|
if (sz < 128)
|
|
card->pref_erase = 512 * 1024 / 512;
|
|
else if (sz < 512)
|
|
card->pref_erase = 1024 * 1024 / 512;
|
|
else if (sz < 1024)
|
|
card->pref_erase = 2 * 1024 * 1024 / 512;
|
|
else
|
|
card->pref_erase = 4 * 1024 * 1024 / 512;
|
|
if (card->pref_erase < card->erase_size)
|
|
card->pref_erase = card->erase_size;
|
|
else {
|
|
sz = card->pref_erase % card->erase_size;
|
|
if (sz)
|
|
card->pref_erase += card->erase_size - sz;
|
|
}
|
|
} else
|
|
card->pref_erase = 0;
|
|
}
|
|
|
|
static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
|
|
unsigned int arg, unsigned int qty)
|
|
{
|
|
unsigned int erase_timeout;
|
|
|
|
if (arg == MMC_DISCARD_ARG ||
|
|
(arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
|
|
erase_timeout = card->ext_csd.trim_timeout;
|
|
} else if (card->ext_csd.erase_group_def & 1) {
|
|
/* High Capacity Erase Group Size uses HC timeouts */
|
|
if (arg == MMC_TRIM_ARG)
|
|
erase_timeout = card->ext_csd.trim_timeout;
|
|
else
|
|
erase_timeout = card->ext_csd.hc_erase_timeout;
|
|
} else {
|
|
/* CSD Erase Group Size uses write timeout */
|
|
unsigned int mult = (10 << card->csd.r2w_factor);
|
|
unsigned int timeout_clks = card->csd.tacc_clks * mult;
|
|
unsigned int timeout_us;
|
|
|
|
/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
|
|
if (card->csd.tacc_ns < 1000000)
|
|
timeout_us = (card->csd.tacc_ns * mult) / 1000;
|
|
else
|
|
timeout_us = (card->csd.tacc_ns / 1000) * mult;
|
|
|
|
/*
|
|
* ios.clock is only a target. The real clock rate might be
|
|
* less but not that much less, so fudge it by multiplying by 2.
|
|
*/
|
|
timeout_clks <<= 1;
|
|
timeout_us += (timeout_clks * 1000) /
|
|
(card->host->ios.clock / 1000);
|
|
|
|
erase_timeout = timeout_us / 1000;
|
|
|
|
/*
|
|
* Theoretically, the calculation could underflow so round up
|
|
* to 1ms in that case.
|
|
*/
|
|
if (!erase_timeout)
|
|
erase_timeout = 1;
|
|
}
|
|
|
|
/* Multiplier for secure operations */
|
|
if (arg & MMC_SECURE_ARGS) {
|
|
if (arg == MMC_SECURE_ERASE_ARG)
|
|
erase_timeout *= card->ext_csd.sec_erase_mult;
|
|
else
|
|
erase_timeout *= card->ext_csd.sec_trim_mult;
|
|
}
|
|
|
|
erase_timeout *= qty;
|
|
|
|
/*
|
|
* Ensure at least a 1 second timeout for SPI as per
|
|
* 'mmc_set_data_timeout()'
|
|
*/
|
|
if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
|
|
erase_timeout = 1000;
|
|
|
|
return erase_timeout;
|
|
}
|
|
|
|
static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
|
|
unsigned int arg,
|
|
unsigned int qty)
|
|
{
|
|
unsigned int erase_timeout;
|
|
|
|
if (card->ssr.erase_timeout) {
|
|
/* Erase timeout specified in SD Status Register (SSR) */
|
|
erase_timeout = card->ssr.erase_timeout * qty +
|
|
card->ssr.erase_offset;
|
|
} else {
|
|
/*
|
|
* Erase timeout not specified in SD Status Register (SSR) so
|
|
* use 250ms per write block.
|
|
*/
|
|
erase_timeout = 250 * qty;
|
|
}
|
|
|
|
/* Must not be less than 1 second */
|
|
if (erase_timeout < 1000)
|
|
erase_timeout = 1000;
|
|
|
|
return erase_timeout;
|
|
}
|
|
|
|
static unsigned int mmc_erase_timeout(struct mmc_card *card,
|
|
unsigned int arg,
|
|
unsigned int qty)
|
|
{
|
|
if (mmc_card_sd(card))
|
|
return mmc_sd_erase_timeout(card, arg, qty);
|
|
else
|
|
return mmc_mmc_erase_timeout(card, arg, qty);
|
|
}
|
|
|
|
static int mmc_do_erase(struct mmc_card *card, unsigned int from,
|
|
unsigned int to, unsigned int arg)
|
|
{
|
|
struct mmc_command cmd = {0};
|
|
unsigned int qty = 0;
|
|
unsigned long timeout;
|
|
int err;
|
|
|
|
mmc_retune_hold(card->host);
|
|
|
|
/*
|
|
* qty is used to calculate the erase timeout which depends on how many
|
|
* erase groups (or allocation units in SD terminology) are affected.
|
|
* We count erasing part of an erase group as one erase group.
|
|
* For SD, the allocation units are always a power of 2. For MMC, the
|
|
* erase group size is almost certainly also power of 2, but it does not
|
|
* seem to insist on that in the JEDEC standard, so we fall back to
|
|
* division in that case. SD may not specify an allocation unit size,
|
|
* in which case the timeout is based on the number of write blocks.
|
|
*
|
|
* Note that the timeout for secure trim 2 will only be correct if the
|
|
* number of erase groups specified is the same as the total of all
|
|
* preceding secure trim 1 commands. Since the power may have been
|
|
* lost since the secure trim 1 commands occurred, it is generally
|
|
* impossible to calculate the secure trim 2 timeout correctly.
|
|
*/
|
|
if (card->erase_shift)
|
|
qty += ((to >> card->erase_shift) -
|
|
(from >> card->erase_shift)) + 1;
|
|
else if (mmc_card_sd(card))
|
|
qty += to - from + 1;
|
|
else
|
|
qty += ((to / card->erase_size) -
|
|
(from / card->erase_size)) + 1;
|
|
|
|
if (!mmc_card_blockaddr(card)) {
|
|
from <<= 9;
|
|
to <<= 9;
|
|
}
|
|
|
|
if (mmc_card_sd(card))
|
|
cmd.opcode = SD_ERASE_WR_BLK_START;
|
|
else
|
|
cmd.opcode = MMC_ERASE_GROUP_START;
|
|
cmd.arg = from;
|
|
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
|
|
err = mmc_wait_for_cmd(card->host, &cmd, 0);
|
|
if (err) {
|
|
pr_err("mmc_erase: group start error %d, "
|
|
"status %#x\n", err, cmd.resp[0]);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
memset(&cmd, 0, sizeof(struct mmc_command));
|
|
if (mmc_card_sd(card))
|
|
cmd.opcode = SD_ERASE_WR_BLK_END;
|
|
else
|
|
cmd.opcode = MMC_ERASE_GROUP_END;
|
|
cmd.arg = to;
|
|
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
|
|
err = mmc_wait_for_cmd(card->host, &cmd, 0);
|
|
if (err) {
|
|
pr_err("mmc_erase: group end error %d, status %#x\n",
|
|
err, cmd.resp[0]);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
memset(&cmd, 0, sizeof(struct mmc_command));
|
|
cmd.opcode = MMC_ERASE;
|
|
cmd.arg = arg;
|
|
cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
|
|
cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
|
|
err = mmc_wait_for_cmd(card->host, &cmd, 0);
|
|
if (err) {
|
|
pr_err("mmc_erase: erase error %d, status %#x\n",
|
|
err, cmd.resp[0]);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (mmc_host_is_spi(card->host))
|
|
goto out;
|
|
|
|
timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
|
|
do {
|
|
memset(&cmd, 0, sizeof(struct mmc_command));
|
|
cmd.opcode = MMC_SEND_STATUS;
|
|
cmd.arg = card->rca << 16;
|
|
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
|
|
/* Do not retry else we can't see errors */
|
|
err = mmc_wait_for_cmd(card->host, &cmd, 0);
|
|
if (err || (cmd.resp[0] & 0xFDF92000)) {
|
|
pr_err("error %d requesting status %#x\n",
|
|
err, cmd.resp[0]);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Timeout if the device never becomes ready for data and
|
|
* never leaves the program state.
|
|
*/
|
|
if (time_after(jiffies, timeout)) {
|
|
pr_err("%s: Card stuck in programming state! %s\n",
|
|
mmc_hostname(card->host), __func__);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
|
|
(R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
|
|
out:
|
|
mmc_retune_release(card->host);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* mmc_erase - erase sectors.
|
|
* @card: card to erase
|
|
* @from: first sector to erase
|
|
* @nr: number of sectors to erase
|
|
* @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
|
|
*
|
|
* Caller must claim host before calling this function.
|
|
*/
|
|
int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
|
|
unsigned int arg)
|
|
{
|
|
unsigned int rem, to = from + nr;
|
|
int err;
|
|
|
|
if (!(card->host->caps & MMC_CAP_ERASE) ||
|
|
!(card->csd.cmdclass & CCC_ERASE))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (!card->erase_size)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
|
|
return -EOPNOTSUPP;
|
|
|
|
if ((arg & MMC_SECURE_ARGS) &&
|
|
!(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
|
|
return -EOPNOTSUPP;
|
|
|
|
if ((arg & MMC_TRIM_ARGS) &&
|
|
!(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (arg == MMC_SECURE_ERASE_ARG) {
|
|
if (from % card->erase_size || nr % card->erase_size)
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (arg == MMC_ERASE_ARG) {
|
|
rem = from % card->erase_size;
|
|
if (rem) {
|
|
rem = card->erase_size - rem;
|
|
from += rem;
|
|
if (nr > rem)
|
|
nr -= rem;
|
|
else
|
|
return 0;
|
|
}
|
|
rem = nr % card->erase_size;
|
|
if (rem)
|
|
nr -= rem;
|
|
}
|
|
|
|
if (nr == 0)
|
|
return 0;
|
|
|
|
to = from + nr;
|
|
|
|
if (to <= from)
|
|
return -EINVAL;
|
|
|
|
/* 'from' and 'to' are inclusive */
|
|
to -= 1;
|
|
|
|
/*
|
|
* Special case where only one erase-group fits in the timeout budget:
|
|
* If the region crosses an erase-group boundary on this particular
|
|
* case, we will be trimming more than one erase-group which, does not
|
|
* fit in the timeout budget of the controller, so we need to split it
|
|
* and call mmc_do_erase() twice if necessary. This special case is
|
|
* identified by the card->eg_boundary flag.
|
|
*/
|
|
rem = card->erase_size - (from % card->erase_size);
|
|
if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
|
|
err = mmc_do_erase(card, from, from + rem - 1, arg);
|
|
from += rem;
|
|
if ((err) || (to <= from))
|
|
return err;
|
|
}
|
|
|
|
return mmc_do_erase(card, from, to, arg);
|
|
}
|
|
EXPORT_SYMBOL(mmc_erase);
|
|
|
|
int mmc_can_erase(struct mmc_card *card)
|
|
{
|
|
if ((card->host->caps & MMC_CAP_ERASE) &&
|
|
(card->csd.cmdclass & CCC_ERASE) && card->erase_size)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(mmc_can_erase);
|
|
|
|
int mmc_can_trim(struct mmc_card *card)
|
|
{
|
|
if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
|
|
(!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(mmc_can_trim);
|
|
|
|
int mmc_can_discard(struct mmc_card *card)
|
|
{
|
|
/*
|
|
* As there's no way to detect the discard support bit at v4.5
|
|
* use the s/w feature support filed.
|
|
*/
|
|
if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(mmc_can_discard);
|
|
|
|
int mmc_can_sanitize(struct mmc_card *card)
|
|
{
|
|
if (!mmc_can_trim(card) && !mmc_can_erase(card))
|
|
return 0;
|
|
if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(mmc_can_sanitize);
|
|
|
|
int mmc_can_secure_erase_trim(struct mmc_card *card)
|
|
{
|
|
if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
|
|
!(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(mmc_can_secure_erase_trim);
|
|
|
|
int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
|
|
unsigned int nr)
|
|
{
|
|
if (!card->erase_size)
|
|
return 0;
|
|
if (from % card->erase_size || nr % card->erase_size)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(mmc_erase_group_aligned);
|
|
|
|
static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
|
|
unsigned int arg)
|
|
{
|
|
struct mmc_host *host = card->host;
|
|
unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
|
|
unsigned int last_timeout = 0;
|
|
|
|
if (card->erase_shift)
|
|
max_qty = UINT_MAX >> card->erase_shift;
|
|
else if (mmc_card_sd(card))
|
|
max_qty = UINT_MAX;
|
|
else
|
|
max_qty = UINT_MAX / card->erase_size;
|
|
|
|
/* Find the largest qty with an OK timeout */
|
|
do {
|
|
y = 0;
|
|
for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
|
|
timeout = mmc_erase_timeout(card, arg, qty + x);
|
|
if (timeout > host->max_busy_timeout)
|
|
break;
|
|
if (timeout < last_timeout)
|
|
break;
|
|
last_timeout = timeout;
|
|
y = x;
|
|
}
|
|
qty += y;
|
|
} while (y);
|
|
|
|
if (!qty)
|
|
return 0;
|
|
|
|
/*
|
|
* When specifying a sector range to trim, chances are we might cross
|
|
* an erase-group boundary even if the amount of sectors is less than
|
|
* one erase-group.
|
|
* If we can only fit one erase-group in the controller timeout budget,
|
|
* we have to care that erase-group boundaries are not crossed by a
|
|
* single trim operation. We flag that special case with "eg_boundary".
|
|
* In all other cases we can just decrement qty and pretend that we
|
|
* always touch (qty + 1) erase-groups as a simple optimization.
|
|
*/
|
|
if (qty == 1)
|
|
card->eg_boundary = 1;
|
|
else
|
|
qty--;
|
|
|
|
/* Convert qty to sectors */
|
|
if (card->erase_shift)
|
|
max_discard = qty << card->erase_shift;
|
|
else if (mmc_card_sd(card))
|
|
max_discard = qty + 1;
|
|
else
|
|
max_discard = qty * card->erase_size;
|
|
|
|
return max_discard;
|
|
}
|
|
|
|
unsigned int mmc_calc_max_discard(struct mmc_card *card)
|
|
{
|
|
struct mmc_host *host = card->host;
|
|
unsigned int max_discard, max_trim;
|
|
|
|
if (!host->max_busy_timeout)
|
|
return UINT_MAX;
|
|
|
|
/*
|
|
* Without erase_group_def set, MMC erase timeout depends on clock
|
|
* frequence which can change. In that case, the best choice is
|
|
* just the preferred erase size.
|
|
*/
|
|
if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
|
|
return card->pref_erase;
|
|
|
|
max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
|
|
if (mmc_can_trim(card)) {
|
|
max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
|
|
if (max_trim < max_discard)
|
|
max_discard = max_trim;
|
|
} else if (max_discard < card->erase_size) {
|
|
max_discard = 0;
|
|
}
|
|
pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
|
|
mmc_hostname(host), max_discard, host->max_busy_timeout);
|
|
return max_discard;
|
|
}
|
|
EXPORT_SYMBOL(mmc_calc_max_discard);
|
|
|
|
int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
|
|
{
|
|
struct mmc_command cmd = {0};
|
|
|
|
if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
|
|
return 0;
|
|
|
|
cmd.opcode = MMC_SET_BLOCKLEN;
|
|
cmd.arg = blocklen;
|
|
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
|
|
return mmc_wait_for_cmd(card->host, &cmd, 5);
|
|
}
|
|
EXPORT_SYMBOL(mmc_set_blocklen);
|
|
|
|
int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
|
|
bool is_rel_write)
|
|
{
|
|
struct mmc_command cmd = {0};
|
|
|
|
cmd.opcode = MMC_SET_BLOCK_COUNT;
|
|
cmd.arg = blockcount & 0x0000FFFF;
|
|
if (is_rel_write)
|
|
cmd.arg |= 1 << 31;
|
|
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
|
|
return mmc_wait_for_cmd(card->host, &cmd, 5);
|
|
}
|
|
EXPORT_SYMBOL(mmc_set_blockcount);
|
|
|
|
static void mmc_hw_reset_for_init(struct mmc_host *host)
|
|
{
|
|
if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
|
|
return;
|
|
host->ops->hw_reset(host);
|
|
}
|
|
|
|
int mmc_hw_reset(struct mmc_host *host)
|
|
{
|
|
int ret;
|
|
|
|
if (!host->card)
|
|
return -EINVAL;
|
|
|
|
mmc_bus_get(host);
|
|
if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
|
|
mmc_bus_put(host);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
ret = host->bus_ops->reset(host);
|
|
mmc_bus_put(host);
|
|
|
|
if (ret != -EOPNOTSUPP)
|
|
pr_warn("%s: tried to reset card\n", mmc_hostname(host));
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(mmc_hw_reset);
|
|
|
|
static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
|
|
{
|
|
host->f_init = freq;
|
|
|
|
#ifdef CONFIG_MMC_DEBUG
|
|
pr_info("%s: %s: trying to init card at %u Hz\n",
|
|
mmc_hostname(host), __func__, host->f_init);
|
|
#endif
|
|
mmc_power_up(host, host->ocr_avail);
|
|
|
|
/*
|
|
* Some eMMCs (with VCCQ always on) may not be reset after power up, so
|
|
* do a hardware reset if possible.
|
|
*/
|
|
mmc_hw_reset_for_init(host);
|
|
|
|
/*
|
|
* sdio_reset sends CMD52 to reset card. Since we do not know
|
|
* if the card is being re-initialized, just send it. CMD52
|
|
* should be ignored by SD/eMMC cards.
|
|
* Skip it if we already know that we do not support SDIO commands
|
|
*/
|
|
if (!(host->caps2 & MMC_CAP2_NO_SDIO))
|
|
sdio_reset(host);
|
|
|
|
mmc_go_idle(host);
|
|
|
|
mmc_send_if_cond(host, host->ocr_avail);
|
|
|
|
/* Order's important: probe SDIO, then SD, then MMC */
|
|
if (!(host->caps2 & MMC_CAP2_NO_SDIO))
|
|
if (!mmc_attach_sdio(host))
|
|
return 0;
|
|
|
|
if (!mmc_attach_sd(host))
|
|
return 0;
|
|
if (!mmc_attach_mmc(host))
|
|
return 0;
|
|
|
|
mmc_power_off(host);
|
|
return -EIO;
|
|
}
|
|
|
|
int _mmc_detect_card_removed(struct mmc_host *host)
|
|
{
|
|
int ret;
|
|
|
|
if (!host->card || mmc_card_removed(host->card))
|
|
return 1;
|
|
|
|
ret = host->bus_ops->alive(host);
|
|
|
|
/*
|
|
* Card detect status and alive check may be out of sync if card is
|
|
* removed slowly, when card detect switch changes while card/slot
|
|
* pads are still contacted in hardware (refer to "SD Card Mechanical
|
|
* Addendum, Appendix C: Card Detection Switch"). So reschedule a
|
|
* detect work 200ms later for this case.
|
|
*/
|
|
if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
|
|
mmc_detect_change(host, msecs_to_jiffies(200));
|
|
pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
|
|
}
|
|
|
|
if (ret) {
|
|
mmc_card_set_removed(host->card);
|
|
pr_debug("%s: card remove detected\n", mmc_hostname(host));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mmc_detect_card_removed(struct mmc_host *host)
|
|
{
|
|
struct mmc_card *card = host->card;
|
|
int ret;
|
|
|
|
WARN_ON(!host->claimed);
|
|
|
|
if (!card)
|
|
return 1;
|
|
|
|
if (host->caps & MMC_CAP_NONREMOVABLE)
|
|
return 0;
|
|
|
|
ret = mmc_card_removed(card);
|
|
/*
|
|
* The card will be considered unchanged unless we have been asked to
|
|
* detect a change or host requires polling to provide card detection.
|
|
*/
|
|
if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
|
|
return ret;
|
|
|
|
host->detect_change = 0;
|
|
if (!ret) {
|
|
ret = _mmc_detect_card_removed(host);
|
|
if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
|
|
/*
|
|
* Schedule a detect work as soon as possible to let a
|
|
* rescan handle the card removal.
|
|
*/
|
|
cancel_delayed_work(&host->detect);
|
|
_mmc_detect_change(host, 0, false);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(mmc_detect_card_removed);
|
|
|
|
void mmc_rescan(struct work_struct *work)
|
|
{
|
|
struct mmc_host *host =
|
|
container_of(work, struct mmc_host, detect.work);
|
|
int i;
|
|
|
|
if (host->rescan_disable)
|
|
return;
|
|
|
|
/* If there is a non-removable card registered, only scan once */
|
|
if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
|
|
return;
|
|
host->rescan_entered = 1;
|
|
|
|
if (host->trigger_card_event && host->ops->card_event) {
|
|
mmc_claim_host(host);
|
|
host->ops->card_event(host);
|
|
mmc_release_host(host);
|
|
host->trigger_card_event = false;
|
|
}
|
|
|
|
mmc_bus_get(host);
|
|
|
|
/*
|
|
* if there is a _removable_ card registered, check whether it is
|
|
* still present
|
|
*/
|
|
if (host->bus_ops && !host->bus_dead
|
|
&& !(host->caps & MMC_CAP_NONREMOVABLE))
|
|
host->bus_ops->detect(host);
|
|
|
|
host->detect_change = 0;
|
|
|
|
/*
|
|
* Let mmc_bus_put() free the bus/bus_ops if we've found that
|
|
* the card is no longer present.
|
|
*/
|
|
mmc_bus_put(host);
|
|
mmc_bus_get(host);
|
|
|
|
/* if there still is a card present, stop here */
|
|
if (host->bus_ops != NULL) {
|
|
mmc_bus_put(host);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Only we can add a new handler, so it's safe to
|
|
* release the lock here.
|
|
*/
|
|
mmc_bus_put(host);
|
|
|
|
mmc_claim_host(host);
|
|
if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
|
|
host->ops->get_cd(host) == 0) {
|
|
mmc_power_off(host);
|
|
mmc_release_host(host);
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(freqs); i++) {
|
|
if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
|
|
break;
|
|
if (freqs[i] <= host->f_min)
|
|
break;
|
|
}
|
|
mmc_release_host(host);
|
|
|
|
out:
|
|
if (host->caps & MMC_CAP_NEEDS_POLL)
|
|
mmc_schedule_delayed_work(&host->detect, HZ);
|
|
}
|
|
|
|
void mmc_start_host(struct mmc_host *host)
|
|
{
|
|
host->f_init = max(freqs[0], host->f_min);
|
|
host->rescan_disable = 0;
|
|
host->ios.power_mode = MMC_POWER_UNDEFINED;
|
|
|
|
mmc_claim_host(host);
|
|
if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
|
|
mmc_power_off(host);
|
|
else
|
|
mmc_power_up(host, host->ocr_avail);
|
|
mmc_release_host(host);
|
|
|
|
mmc_gpiod_request_cd_irq(host);
|
|
_mmc_detect_change(host, 0, false);
|
|
}
|
|
|
|
void mmc_stop_host(struct mmc_host *host)
|
|
{
|
|
#ifdef CONFIG_MMC_DEBUG
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
host->removed = 1;
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
#endif
|
|
if (host->slot.cd_irq >= 0)
|
|
disable_irq(host->slot.cd_irq);
|
|
|
|
host->rescan_disable = 1;
|
|
cancel_delayed_work_sync(&host->detect);
|
|
|
|
/* clear pm flags now and let card drivers set them as needed */
|
|
host->pm_flags = 0;
|
|
|
|
mmc_bus_get(host);
|
|
if (host->bus_ops && !host->bus_dead) {
|
|
/* Calling bus_ops->remove() with a claimed host can deadlock */
|
|
host->bus_ops->remove(host);
|
|
mmc_claim_host(host);
|
|
mmc_detach_bus(host);
|
|
mmc_power_off(host);
|
|
mmc_release_host(host);
|
|
mmc_bus_put(host);
|
|
return;
|
|
}
|
|
mmc_bus_put(host);
|
|
|
|
BUG_ON(host->card);
|
|
|
|
mmc_claim_host(host);
|
|
mmc_power_off(host);
|
|
mmc_release_host(host);
|
|
}
|
|
|
|
int mmc_power_save_host(struct mmc_host *host)
|
|
{
|
|
int ret = 0;
|
|
|
|
#ifdef CONFIG_MMC_DEBUG
|
|
pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
|
|
#endif
|
|
|
|
mmc_bus_get(host);
|
|
|
|
if (!host->bus_ops || host->bus_dead) {
|
|
mmc_bus_put(host);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (host->bus_ops->power_save)
|
|
ret = host->bus_ops->power_save(host);
|
|
|
|
mmc_bus_put(host);
|
|
|
|
mmc_power_off(host);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(mmc_power_save_host);
|
|
|
|
int mmc_power_restore_host(struct mmc_host *host)
|
|
{
|
|
int ret;
|
|
|
|
#ifdef CONFIG_MMC_DEBUG
|
|
pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
|
|
#endif
|
|
|
|
mmc_bus_get(host);
|
|
|
|
if (!host->bus_ops || host->bus_dead) {
|
|
mmc_bus_put(host);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mmc_power_up(host, host->card->ocr);
|
|
ret = host->bus_ops->power_restore(host);
|
|
|
|
mmc_bus_put(host);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(mmc_power_restore_host);
|
|
|
|
/*
|
|
* Flush the cache to the non-volatile storage.
|
|
*/
|
|
int mmc_flush_cache(struct mmc_card *card)
|
|
{
|
|
int err = 0;
|
|
|
|
if (mmc_card_mmc(card) &&
|
|
(card->ext_csd.cache_size > 0) &&
|
|
(card->ext_csd.cache_ctrl & 1)) {
|
|
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
|
|
EXT_CSD_FLUSH_CACHE, 1, 0);
|
|
if (err)
|
|
pr_err("%s: cache flush error %d\n",
|
|
mmc_hostname(card->host), err);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(mmc_flush_cache);
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
/* Do the card removal on suspend if card is assumed removeable
|
|
* Do that in pm notifier while userspace isn't yet frozen, so we will be able
|
|
to sync the card.
|
|
*/
|
|
static int mmc_pm_notify(struct notifier_block *notify_block,
|
|
unsigned long mode, void *unused)
|
|
{
|
|
struct mmc_host *host = container_of(
|
|
notify_block, struct mmc_host, pm_notify);
|
|
unsigned long flags;
|
|
int err = 0;
|
|
|
|
switch (mode) {
|
|
case PM_HIBERNATION_PREPARE:
|
|
case PM_SUSPEND_PREPARE:
|
|
case PM_RESTORE_PREPARE:
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
host->rescan_disable = 1;
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
cancel_delayed_work_sync(&host->detect);
|
|
|
|
if (!host->bus_ops)
|
|
break;
|
|
|
|
/* Validate prerequisites for suspend */
|
|
if (host->bus_ops->pre_suspend)
|
|
err = host->bus_ops->pre_suspend(host);
|
|
if (!err)
|
|
break;
|
|
|
|
/* Calling bus_ops->remove() with a claimed host can deadlock */
|
|
host->bus_ops->remove(host);
|
|
mmc_claim_host(host);
|
|
mmc_detach_bus(host);
|
|
mmc_power_off(host);
|
|
mmc_release_host(host);
|
|
host->pm_flags = 0;
|
|
break;
|
|
|
|
case PM_POST_SUSPEND:
|
|
case PM_POST_HIBERNATION:
|
|
case PM_POST_RESTORE:
|
|
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
host->rescan_disable = 0;
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
_mmc_detect_change(host, 0, false);
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void mmc_register_pm_notifier(struct mmc_host *host)
|
|
{
|
|
host->pm_notify.notifier_call = mmc_pm_notify;
|
|
register_pm_notifier(&host->pm_notify);
|
|
}
|
|
|
|
void mmc_unregister_pm_notifier(struct mmc_host *host)
|
|
{
|
|
unregister_pm_notifier(&host->pm_notify);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* mmc_init_context_info() - init synchronization context
|
|
* @host: mmc host
|
|
*
|
|
* Init struct context_info needed to implement asynchronous
|
|
* request mechanism, used by mmc core, host driver and mmc requests
|
|
* supplier.
|
|
*/
|
|
void mmc_init_context_info(struct mmc_host *host)
|
|
{
|
|
spin_lock_init(&host->context_info.lock);
|
|
host->context_info.is_new_req = false;
|
|
host->context_info.is_done_rcv = false;
|
|
host->context_info.is_waiting_last_req = false;
|
|
init_waitqueue_head(&host->context_info.wait);
|
|
}
|
|
|
|
static int __init mmc_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = mmc_register_bus();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mmc_register_host_class();
|
|
if (ret)
|
|
goto unregister_bus;
|
|
|
|
ret = sdio_register_bus();
|
|
if (ret)
|
|
goto unregister_host_class;
|
|
|
|
return 0;
|
|
|
|
unregister_host_class:
|
|
mmc_unregister_host_class();
|
|
unregister_bus:
|
|
mmc_unregister_bus();
|
|
return ret;
|
|
}
|
|
|
|
static void __exit mmc_exit(void)
|
|
{
|
|
sdio_unregister_bus();
|
|
mmc_unregister_host_class();
|
|
mmc_unregister_bus();
|
|
}
|
|
|
|
subsys_initcall(mmc_init);
|
|
module_exit(mmc_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|