linux/drivers/gpu/drm/msm/mdp/mdp4/mdp4_lcdc_encoder.c
Rob Clark 6490ad4740 drm/msm: clarify downstream bus scaling
A few spots in the driver have support for downstream android
CONFIG_MSM_BUS_SCALING.  This is mainly to simplify backporting the
driver for various devices which do not have sufficient upstream
kernel support.  But the intentionally dead code seems to cause
some confusion.  Rename the #define to make this more clear.

Signed-off-by: Rob Clark <robdclark@gmail.com>
2015-06-11 13:11:01 -04:00

505 lines
16 KiB
C

/*
* Copyright (C) 2014 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
* Author: Vinay Simha <vinaysimha@inforcecomputing.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "mdp4_kms.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
struct mdp4_lcdc_encoder {
struct drm_encoder base;
struct drm_panel *panel;
struct clk *lcdc_clk;
unsigned long int pixclock;
struct regulator *regs[3];
bool enabled;
uint32_t bsc;
};
#define to_mdp4_lcdc_encoder(x) container_of(x, struct mdp4_lcdc_encoder, base)
static struct mdp4_kms *get_kms(struct drm_encoder *encoder)
{
struct msm_drm_private *priv = encoder->dev->dev_private;
return to_mdp4_kms(to_mdp_kms(priv->kms));
}
#ifdef DOWNSTREAM_CONFIG_MSM_BUS_SCALING
#include <mach/board.h>
static void bs_init(struct mdp4_lcdc_encoder *mdp4_lcdc_encoder)
{
struct drm_device *dev = mdp4_lcdc_encoder->base.dev;
struct lcdc_platform_data *lcdc_pdata = mdp4_find_pdata("lvds.0");
if (!lcdc_pdata) {
dev_err(dev->dev, "could not find lvds pdata\n");
return;
}
if (lcdc_pdata->bus_scale_table) {
mdp4_lcdc_encoder->bsc = msm_bus_scale_register_client(
lcdc_pdata->bus_scale_table);
DBG("lvds : bus scale client: %08x", mdp4_lcdc_encoder->bsc);
}
}
static void bs_fini(struct mdp4_lcdc_encoder *mdp4_lcdc_encoder)
{
if (mdp4_lcdc_encoder->bsc) {
msm_bus_scale_unregister_client(mdp4_lcdc_encoder->bsc);
mdp4_lcdc_encoder->bsc = 0;
}
}
static void bs_set(struct mdp4_lcdc_encoder *mdp4_lcdc_encoder, int idx)
{
if (mdp4_lcdc_encoder->bsc) {
DBG("set bus scaling: %d", idx);
msm_bus_scale_client_update_request(mdp4_lcdc_encoder->bsc, idx);
}
}
#else
static void bs_init(struct mdp4_lcdc_encoder *mdp4_lcdc_encoder) {}
static void bs_fini(struct mdp4_lcdc_encoder *mdp4_lcdc_encoder) {}
static void bs_set(struct mdp4_lcdc_encoder *mdp4_lcdc_encoder, int idx) {}
#endif
static void mdp4_lcdc_encoder_destroy(struct drm_encoder *encoder)
{
struct mdp4_lcdc_encoder *mdp4_lcdc_encoder =
to_mdp4_lcdc_encoder(encoder);
bs_fini(mdp4_lcdc_encoder);
drm_encoder_cleanup(encoder);
kfree(mdp4_lcdc_encoder);
}
static const struct drm_encoder_funcs mdp4_lcdc_encoder_funcs = {
.destroy = mdp4_lcdc_encoder_destroy,
};
/* this should probably be a helper: */
struct drm_connector *get_connector(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct drm_connector *connector;
list_for_each_entry(connector, &dev->mode_config.connector_list, head)
if (connector->encoder == encoder)
return connector;
return NULL;
}
static void setup_phy(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct drm_connector *connector = get_connector(encoder);
struct mdp4_kms *mdp4_kms = get_kms(encoder);
uint32_t lvds_intf = 0, lvds_phy_cfg0 = 0;
int bpp, nchan, swap;
if (!connector)
return;
bpp = 3 * connector->display_info.bpc;
if (!bpp)
bpp = 18;
/* TODO, these should come from panel somehow: */
nchan = 1;
swap = 0;
switch (bpp) {
case 24:
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(0),
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x08) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x05) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x04) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x03));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(0),
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x02) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x01) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x00));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(1),
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x11) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x10) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x0d) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x0c));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(1),
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x0b) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x0a) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x09));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(2),
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x1a) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x19) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x18) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x15));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(2),
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x14) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x13) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x12));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(3),
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x1b) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x17) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x16) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x0f));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(3),
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x0e) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x07) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x06));
if (nchan == 2) {
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE3_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE2_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE1_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE0_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE3_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE2_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE1_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE0_EN;
} else {
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE3_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE2_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE1_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE0_EN;
}
break;
case 18:
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(0),
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x0a) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x07) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x06) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x05));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(0),
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x04) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x03) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x02));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(1),
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x13) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x12) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x0f) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x0e));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(1),
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x0d) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x0c) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x0b));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_3_TO_0(2),
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT0(0x1a) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT1(0x19) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT2(0x18) |
MDP4_LCDC_LVDS_MUX_CTL_3_TO_0_BIT3(0x17));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_MUX_CTL_6_TO_4(2),
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT4(0x16) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT5(0x15) |
MDP4_LCDC_LVDS_MUX_CTL_6_TO_4_BIT6(0x14));
if (nchan == 2) {
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE2_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE1_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH2_DATA_LANE0_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE2_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE1_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE0_EN;
} else {
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE2_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE1_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_DATA_LANE0_EN;
}
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_RGB_OUT;
break;
default:
dev_err(dev->dev, "unknown bpp: %d\n", bpp);
return;
}
switch (nchan) {
case 1:
lvds_phy_cfg0 = MDP4_LVDS_PHY_CFG0_CHANNEL0;
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH1_CLK_LANE_EN |
MDP4_LCDC_LVDS_INTF_CTL_MODE_SEL;
break;
case 2:
lvds_phy_cfg0 = MDP4_LVDS_PHY_CFG0_CHANNEL0 |
MDP4_LVDS_PHY_CFG0_CHANNEL1;
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH2_CLK_LANE_EN |
MDP4_LCDC_LVDS_INTF_CTL_CH1_CLK_LANE_EN;
break;
default:
dev_err(dev->dev, "unknown # of channels: %d\n", nchan);
return;
}
if (swap)
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_CH_SWAP;
lvds_intf |= MDP4_LCDC_LVDS_INTF_CTL_ENABLE;
mdp4_write(mdp4_kms, REG_MDP4_LVDS_PHY_CFG0, lvds_phy_cfg0);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_LVDS_INTF_CTL, lvds_intf);
mdp4_write(mdp4_kms, REG_MDP4_LVDS_PHY_CFG2, 0x30);
mb();
udelay(1);
lvds_phy_cfg0 |= MDP4_LVDS_PHY_CFG0_SERIALIZATION_ENBLE;
mdp4_write(mdp4_kms, REG_MDP4_LVDS_PHY_CFG0, lvds_phy_cfg0);
}
static bool mdp4_lcdc_encoder_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static void mdp4_lcdc_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct mdp4_lcdc_encoder *mdp4_lcdc_encoder =
to_mdp4_lcdc_encoder(encoder);
struct mdp4_kms *mdp4_kms = get_kms(encoder);
uint32_t lcdc_hsync_skew, vsync_period, vsync_len, ctrl_pol;
uint32_t display_v_start, display_v_end;
uint32_t hsync_start_x, hsync_end_x;
mode = adjusted_mode;
DBG("set mode: %d:\"%s\" %d %d %d %d %d %d %d %d %d %d 0x%x 0x%x",
mode->base.id, mode->name,
mode->vrefresh, mode->clock,
mode->hdisplay, mode->hsync_start,
mode->hsync_end, mode->htotal,
mode->vdisplay, mode->vsync_start,
mode->vsync_end, mode->vtotal,
mode->type, mode->flags);
mdp4_lcdc_encoder->pixclock = mode->clock * 1000;
DBG("pixclock=%lu", mdp4_lcdc_encoder->pixclock);
ctrl_pol = 0;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
ctrl_pol |= MDP4_LCDC_CTRL_POLARITY_HSYNC_LOW;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
ctrl_pol |= MDP4_LCDC_CTRL_POLARITY_VSYNC_LOW;
/* probably need to get DATA_EN polarity from panel.. */
lcdc_hsync_skew = 0; /* get this from panel? */
hsync_start_x = (mode->htotal - mode->hsync_start);
hsync_end_x = mode->htotal - (mode->hsync_start - mode->hdisplay) - 1;
vsync_period = mode->vtotal * mode->htotal;
vsync_len = (mode->vsync_end - mode->vsync_start) * mode->htotal;
display_v_start = (mode->vtotal - mode->vsync_start) * mode->htotal + lcdc_hsync_skew;
display_v_end = vsync_period - ((mode->vsync_start - mode->vdisplay) * mode->htotal) + lcdc_hsync_skew - 1;
mdp4_write(mdp4_kms, REG_MDP4_LCDC_HSYNC_CTRL,
MDP4_LCDC_HSYNC_CTRL_PULSEW(mode->hsync_end - mode->hsync_start) |
MDP4_LCDC_HSYNC_CTRL_PERIOD(mode->htotal));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_VSYNC_PERIOD, vsync_period);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_VSYNC_LEN, vsync_len);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_DISPLAY_HCTRL,
MDP4_LCDC_DISPLAY_HCTRL_START(hsync_start_x) |
MDP4_LCDC_DISPLAY_HCTRL_END(hsync_end_x));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_DISPLAY_VSTART, display_v_start);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_DISPLAY_VEND, display_v_end);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_BORDER_CLR, 0);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_UNDERFLOW_CLR,
MDP4_LCDC_UNDERFLOW_CLR_ENABLE_RECOVERY |
MDP4_LCDC_UNDERFLOW_CLR_COLOR(0xff));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_HSYNC_SKEW, lcdc_hsync_skew);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_CTRL_POLARITY, ctrl_pol);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_ACTIVE_HCTL,
MDP4_LCDC_ACTIVE_HCTL_START(0) |
MDP4_LCDC_ACTIVE_HCTL_END(0));
mdp4_write(mdp4_kms, REG_MDP4_LCDC_ACTIVE_VSTART, 0);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_ACTIVE_VEND, 0);
}
static void mdp4_lcdc_encoder_disable(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct mdp4_lcdc_encoder *mdp4_lcdc_encoder =
to_mdp4_lcdc_encoder(encoder);
struct mdp4_kms *mdp4_kms = get_kms(encoder);
struct drm_panel *panel = mdp4_lcdc_encoder->panel;
int i, ret;
if (WARN_ON(!mdp4_lcdc_encoder->enabled))
return;
mdp4_write(mdp4_kms, REG_MDP4_LCDC_ENABLE, 0);
if (panel)
drm_panel_disable(panel);
/*
* Wait for a vsync so we know the ENABLE=0 latched before
* the (connector) source of the vsync's gets disabled,
* otherwise we end up in a funny state if we re-enable
* before the disable latches, which results that some of
* the settings changes for the new modeset (like new
* scanout buffer) don't latch properly..
*/
mdp_irq_wait(&mdp4_kms->base, MDP4_IRQ_PRIMARY_VSYNC);
clk_disable_unprepare(mdp4_lcdc_encoder->lcdc_clk);
for (i = 0; i < ARRAY_SIZE(mdp4_lcdc_encoder->regs); i++) {
ret = regulator_disable(mdp4_lcdc_encoder->regs[i]);
if (ret)
dev_err(dev->dev, "failed to disable regulator: %d\n", ret);
}
bs_set(mdp4_lcdc_encoder, 0);
mdp4_lcdc_encoder->enabled = false;
}
static void mdp4_lcdc_encoder_enable(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct mdp4_lcdc_encoder *mdp4_lcdc_encoder =
to_mdp4_lcdc_encoder(encoder);
unsigned long pc = mdp4_lcdc_encoder->pixclock;
struct mdp4_kms *mdp4_kms = get_kms(encoder);
struct drm_panel *panel = mdp4_lcdc_encoder->panel;
int i, ret;
if (WARN_ON(mdp4_lcdc_encoder->enabled))
return;
/* TODO: hard-coded for 18bpp: */
mdp4_crtc_set_config(encoder->crtc,
MDP4_DMA_CONFIG_R_BPC(BPC6) |
MDP4_DMA_CONFIG_G_BPC(BPC6) |
MDP4_DMA_CONFIG_B_BPC(BPC6) |
MDP4_DMA_CONFIG_PACK_ALIGN_MSB |
MDP4_DMA_CONFIG_PACK(0x21) |
MDP4_DMA_CONFIG_DEFLKR_EN |
MDP4_DMA_CONFIG_DITHER_EN);
mdp4_crtc_set_intf(encoder->crtc, INTF_LCDC_DTV, 0);
bs_set(mdp4_lcdc_encoder, 1);
for (i = 0; i < ARRAY_SIZE(mdp4_lcdc_encoder->regs); i++) {
ret = regulator_enable(mdp4_lcdc_encoder->regs[i]);
if (ret)
dev_err(dev->dev, "failed to enable regulator: %d\n", ret);
}
DBG("setting lcdc_clk=%lu", pc);
ret = clk_set_rate(mdp4_lcdc_encoder->lcdc_clk, pc);
if (ret)
dev_err(dev->dev, "failed to configure lcdc_clk: %d\n", ret);
ret = clk_prepare_enable(mdp4_lcdc_encoder->lcdc_clk);
if (ret)
dev_err(dev->dev, "failed to enable lcdc_clk: %d\n", ret);
if (panel)
drm_panel_enable(panel);
setup_phy(encoder);
mdp4_write(mdp4_kms, REG_MDP4_LCDC_ENABLE, 1);
mdp4_lcdc_encoder->enabled = true;
}
static const struct drm_encoder_helper_funcs mdp4_lcdc_encoder_helper_funcs = {
.mode_fixup = mdp4_lcdc_encoder_mode_fixup,
.mode_set = mdp4_lcdc_encoder_mode_set,
.disable = mdp4_lcdc_encoder_disable,
.enable = mdp4_lcdc_encoder_enable,
};
long mdp4_lcdc_round_pixclk(struct drm_encoder *encoder, unsigned long rate)
{
struct mdp4_lcdc_encoder *mdp4_lcdc_encoder =
to_mdp4_lcdc_encoder(encoder);
return clk_round_rate(mdp4_lcdc_encoder->lcdc_clk, rate);
}
/* initialize encoder */
struct drm_encoder *mdp4_lcdc_encoder_init(struct drm_device *dev,
struct drm_panel *panel)
{
struct drm_encoder *encoder = NULL;
struct mdp4_lcdc_encoder *mdp4_lcdc_encoder;
struct regulator *reg;
int ret;
mdp4_lcdc_encoder = kzalloc(sizeof(*mdp4_lcdc_encoder), GFP_KERNEL);
if (!mdp4_lcdc_encoder) {
ret = -ENOMEM;
goto fail;
}
mdp4_lcdc_encoder->panel = panel;
encoder = &mdp4_lcdc_encoder->base;
drm_encoder_init(dev, encoder, &mdp4_lcdc_encoder_funcs,
DRM_MODE_ENCODER_LVDS);
drm_encoder_helper_add(encoder, &mdp4_lcdc_encoder_helper_funcs);
/* TODO: do we need different pll in other cases? */
mdp4_lcdc_encoder->lcdc_clk = mpd4_lvds_pll_init(dev);
if (IS_ERR(mdp4_lcdc_encoder->lcdc_clk)) {
dev_err(dev->dev, "failed to get lvds_clk\n");
ret = PTR_ERR(mdp4_lcdc_encoder->lcdc_clk);
goto fail;
}
/* TODO: different regulators in other cases? */
reg = devm_regulator_get(dev->dev, "lvds-vccs-3p3v");
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
dev_err(dev->dev, "failed to get lvds-vccs-3p3v: %d\n", ret);
goto fail;
}
mdp4_lcdc_encoder->regs[0] = reg;
reg = devm_regulator_get(dev->dev, "lvds-pll-vdda");
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
dev_err(dev->dev, "failed to get lvds-pll-vdda: %d\n", ret);
goto fail;
}
mdp4_lcdc_encoder->regs[1] = reg;
reg = devm_regulator_get(dev->dev, "lvds-vdda");
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
dev_err(dev->dev, "failed to get lvds-vdda: %d\n", ret);
goto fail;
}
mdp4_lcdc_encoder->regs[2] = reg;
bs_init(mdp4_lcdc_encoder);
return encoder;
fail:
if (encoder)
mdp4_lcdc_encoder_destroy(encoder);
return ERR_PTR(ret);
}