linux/drivers/gpu/drm/i915/i915_gem.c
Keith Packard 646f0f6e43 drm/i915: Move the execbuffer domain computations together
This eliminates the dev_set_domain function and just in-lines it
where its used, with the goal of moving the manipulation and use of
invalidate_domains and flush_domains closer together. This also
avoids calling add_request unless some domain has been flushed.

Signed-off-by: Keith Packard <keithp@keithp.com>
Signed-off-by: Eric Anholt <eric@anholt.net>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2008-12-04 11:22:02 +10:00

2706 lines
71 KiB
C

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include <linux/swap.h>
#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
static void
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
uint32_t read_domains,
uint32_t write_domain);
static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj,
int write);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
uint64_t offset,
uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
static void
i915_gem_cleanup_ringbuffer(struct drm_device *dev);
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_init *args = data;
mutex_lock(&dev->struct_mutex);
if (args->gtt_start >= args->gtt_end ||
(args->gtt_start & (PAGE_SIZE - 1)) != 0 ||
(args->gtt_end & (PAGE_SIZE - 1)) != 0) {
mutex_unlock(&dev->struct_mutex);
return -EINVAL;
}
drm_mm_init(&dev_priv->mm.gtt_space, args->gtt_start,
args->gtt_end - args->gtt_start);
dev->gtt_total = (uint32_t) (args->gtt_end - args->gtt_start);
mutex_unlock(&dev->struct_mutex);
return 0;
}
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_get_aperture *args = data;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
args->aper_size = dev->gtt_total;
args->aper_available_size = (args->aper_size -
atomic_read(&dev->pin_memory));
return 0;
}
/**
* Creates a new mm object and returns a handle to it.
*/
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_create *args = data;
struct drm_gem_object *obj;
int handle, ret;
args->size = roundup(args->size, PAGE_SIZE);
/* Allocate the new object */
obj = drm_gem_object_alloc(dev, args->size);
if (obj == NULL)
return -ENOMEM;
ret = drm_gem_handle_create(file_priv, obj, &handle);
mutex_lock(&dev->struct_mutex);
drm_gem_object_handle_unreference(obj);
mutex_unlock(&dev->struct_mutex);
if (ret)
return ret;
args->handle = handle;
return 0;
}
/**
* Reads data from the object referenced by handle.
*
* On error, the contents of *data are undefined.
*/
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_pread *args = data;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
ssize_t read;
loff_t offset;
int ret;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL)
return -EBADF;
obj_priv = obj->driver_private;
/* Bounds check source.
*
* XXX: This could use review for overflow issues...
*/
if (args->offset > obj->size || args->size > obj->size ||
args->offset + args->size > obj->size) {
drm_gem_object_unreference(obj);
return -EINVAL;
}
mutex_lock(&dev->struct_mutex);
ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
args->size);
if (ret != 0) {
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
return ret;
}
offset = args->offset;
read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
args->size, &offset);
if (read != args->size) {
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
if (read < 0)
return read;
else
return -EINVAL;
}
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
return 0;
}
/* This is the fast write path which cannot handle
* page faults in the source data
*/
static inline int
fast_user_write(struct io_mapping *mapping,
loff_t page_base, int page_offset,
char __user *user_data,
int length)
{
char *vaddr_atomic;
unsigned long unwritten;
vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
user_data, length);
io_mapping_unmap_atomic(vaddr_atomic);
if (unwritten)
return -EFAULT;
return 0;
}
/* Here's the write path which can sleep for
* page faults
*/
static inline int
slow_user_write(struct io_mapping *mapping,
loff_t page_base, int page_offset,
char __user *user_data,
int length)
{
char __iomem *vaddr;
unsigned long unwritten;
vaddr = io_mapping_map_wc(mapping, page_base);
if (vaddr == NULL)
return -EFAULT;
unwritten = __copy_from_user(vaddr + page_offset,
user_data, length);
io_mapping_unmap(vaddr);
if (unwritten)
return -EFAULT;
return 0;
}
static int
i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
drm_i915_private_t *dev_priv = dev->dev_private;
ssize_t remain;
loff_t offset, page_base;
char __user *user_data;
int page_offset, page_length;
int ret;
user_data = (char __user *) (uintptr_t) args->data_ptr;
remain = args->size;
if (!access_ok(VERIFY_READ, user_data, remain))
return -EFAULT;
mutex_lock(&dev->struct_mutex);
ret = i915_gem_object_pin(obj, 0);
if (ret) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
if (ret)
goto fail;
obj_priv = obj->driver_private;
offset = obj_priv->gtt_offset + args->offset;
obj_priv->dirty = 1;
while (remain > 0) {
/* Operation in this page
*
* page_base = page offset within aperture
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
page_base = (offset & ~(PAGE_SIZE-1));
page_offset = offset & (PAGE_SIZE-1);
page_length = remain;
if ((page_offset + remain) > PAGE_SIZE)
page_length = PAGE_SIZE - page_offset;
ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
page_offset, user_data, page_length);
/* If we get a fault while copying data, then (presumably) our
* source page isn't available. In this case, use the
* non-atomic function
*/
if (ret) {
ret = slow_user_write (dev_priv->mm.gtt_mapping,
page_base, page_offset,
user_data, page_length);
if (ret)
goto fail;
}
remain -= page_length;
user_data += page_length;
offset += page_length;
}
fail:
i915_gem_object_unpin(obj);
mutex_unlock(&dev->struct_mutex);
return ret;
}
static int
i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
int ret;
loff_t offset;
ssize_t written;
mutex_lock(&dev->struct_mutex);
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
if (ret) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
offset = args->offset;
written = vfs_write(obj->filp,
(char __user *)(uintptr_t) args->data_ptr,
args->size, &offset);
if (written != args->size) {
mutex_unlock(&dev->struct_mutex);
if (written < 0)
return written;
else
return -EINVAL;
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
/**
* Writes data to the object referenced by handle.
*
* On error, the contents of the buffer that were to be modified are undefined.
*/
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_pwrite *args = data;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret = 0;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL)
return -EBADF;
obj_priv = obj->driver_private;
/* Bounds check destination.
*
* XXX: This could use review for overflow issues...
*/
if (args->offset > obj->size || args->size > obj->size ||
args->offset + args->size > obj->size) {
drm_gem_object_unreference(obj);
return -EINVAL;
}
/* We can only do the GTT pwrite on untiled buffers, as otherwise
* it would end up going through the fenced access, and we'll get
* different detiling behavior between reading and writing.
* pread/pwrite currently are reading and writing from the CPU
* perspective, requiring manual detiling by the client.
*/
if (obj_priv->tiling_mode == I915_TILING_NONE &&
dev->gtt_total != 0)
ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
else
ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
#if WATCH_PWRITE
if (ret)
DRM_INFO("pwrite failed %d\n", ret);
#endif
drm_gem_object_unreference(obj);
return ret;
}
/**
* Called when user space prepares to use an object with the CPU, either
* through the mmap ioctl's mapping or a GTT mapping.
*/
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_set_domain *args = data;
struct drm_gem_object *obj;
uint32_t read_domains = args->read_domains;
uint32_t write_domain = args->write_domain;
int ret;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
/* Only handle setting domains to types used by the CPU. */
if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
return -EINVAL;
if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
return -EINVAL;
/* Having something in the write domain implies it's in the read
* domain, and only that read domain. Enforce that in the request.
*/
if (write_domain != 0 && read_domains != write_domain)
return -EINVAL;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL)
return -EBADF;
mutex_lock(&dev->struct_mutex);
#if WATCH_BUF
DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
obj, obj->size, read_domains, write_domain);
#endif
if (read_domains & I915_GEM_DOMAIN_GTT) {
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
} else {
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
}
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Called when user space has done writes to this buffer
*/
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_sw_finish *args = data;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret = 0;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
mutex_lock(&dev->struct_mutex);
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL) {
mutex_unlock(&dev->struct_mutex);
return -EBADF;
}
#if WATCH_BUF
DRM_INFO("%s: sw_finish %d (%p %d)\n",
__func__, args->handle, obj, obj->size);
#endif
obj_priv = obj->driver_private;
/* Pinned buffers may be scanout, so flush the cache */
if (obj_priv->pin_count)
i915_gem_object_flush_cpu_write_domain(obj);
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Maps the contents of an object, returning the address it is mapped
* into.
*
* While the mapping holds a reference on the contents of the object, it doesn't
* imply a ref on the object itself.
*/
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_mmap *args = data;
struct drm_gem_object *obj;
loff_t offset;
unsigned long addr;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL)
return -EBADF;
offset = args->offset;
down_write(&current->mm->mmap_sem);
addr = do_mmap(obj->filp, 0, args->size,
PROT_READ | PROT_WRITE, MAP_SHARED,
args->offset);
up_write(&current->mm->mmap_sem);
mutex_lock(&dev->struct_mutex);
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
if (IS_ERR((void *)addr))
return addr;
args->addr_ptr = (uint64_t) addr;
return 0;
}
static void
i915_gem_object_free_page_list(struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int page_count = obj->size / PAGE_SIZE;
int i;
if (obj_priv->page_list == NULL)
return;
for (i = 0; i < page_count; i++)
if (obj_priv->page_list[i] != NULL) {
if (obj_priv->dirty)
set_page_dirty(obj_priv->page_list[i]);
mark_page_accessed(obj_priv->page_list[i]);
page_cache_release(obj_priv->page_list[i]);
}
obj_priv->dirty = 0;
drm_free(obj_priv->page_list,
page_count * sizeof(struct page *),
DRM_MEM_DRIVER);
obj_priv->page_list = NULL;
}
static void
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
/* Add a reference if we're newly entering the active list. */
if (!obj_priv->active) {
drm_gem_object_reference(obj);
obj_priv->active = 1;
}
/* Move from whatever list we were on to the tail of execution. */
list_move_tail(&obj_priv->list,
&dev_priv->mm.active_list);
obj_priv->last_rendering_seqno = seqno;
}
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
BUG_ON(!obj_priv->active);
list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
obj_priv->last_rendering_seqno = 0;
}
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
i915_verify_inactive(dev, __FILE__, __LINE__);
if (obj_priv->pin_count != 0)
list_del_init(&obj_priv->list);
else
list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
obj_priv->last_rendering_seqno = 0;
if (obj_priv->active) {
obj_priv->active = 0;
drm_gem_object_unreference(obj);
}
i915_verify_inactive(dev, __FILE__, __LINE__);
}
/**
* Creates a new sequence number, emitting a write of it to the status page
* plus an interrupt, which will trigger i915_user_interrupt_handler.
*
* Must be called with struct_lock held.
*
* Returned sequence numbers are nonzero on success.
*/
static uint32_t
i915_add_request(struct drm_device *dev, uint32_t flush_domains)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_request *request;
uint32_t seqno;
int was_empty;
RING_LOCALS;
request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
if (request == NULL)
return 0;
/* Grab the seqno we're going to make this request be, and bump the
* next (skipping 0 so it can be the reserved no-seqno value).
*/
seqno = dev_priv->mm.next_gem_seqno;
dev_priv->mm.next_gem_seqno++;
if (dev_priv->mm.next_gem_seqno == 0)
dev_priv->mm.next_gem_seqno++;
BEGIN_LP_RING(4);
OUT_RING(MI_STORE_DWORD_INDEX);
OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
OUT_RING(seqno);
OUT_RING(MI_USER_INTERRUPT);
ADVANCE_LP_RING();
DRM_DEBUG("%d\n", seqno);
request->seqno = seqno;
request->emitted_jiffies = jiffies;
was_empty = list_empty(&dev_priv->mm.request_list);
list_add_tail(&request->list, &dev_priv->mm.request_list);
/* Associate any objects on the flushing list matching the write
* domain we're flushing with our flush.
*/
if (flush_domains != 0) {
struct drm_i915_gem_object *obj_priv, *next;
list_for_each_entry_safe(obj_priv, next,
&dev_priv->mm.flushing_list, list) {
struct drm_gem_object *obj = obj_priv->obj;
if ((obj->write_domain & flush_domains) ==
obj->write_domain) {
obj->write_domain = 0;
i915_gem_object_move_to_active(obj, seqno);
}
}
}
if (was_empty && !dev_priv->mm.suspended)
schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
return seqno;
}
/**
* Command execution barrier
*
* Ensures that all commands in the ring are finished
* before signalling the CPU
*/
static uint32_t
i915_retire_commands(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
uint32_t flush_domains = 0;
RING_LOCALS;
/* The sampler always gets flushed on i965 (sigh) */
if (IS_I965G(dev))
flush_domains |= I915_GEM_DOMAIN_SAMPLER;
BEGIN_LP_RING(2);
OUT_RING(cmd);
OUT_RING(0); /* noop */
ADVANCE_LP_RING();
return flush_domains;
}
/**
* Moves buffers associated only with the given active seqno from the active
* to inactive list, potentially freeing them.
*/
static void
i915_gem_retire_request(struct drm_device *dev,
struct drm_i915_gem_request *request)
{
drm_i915_private_t *dev_priv = dev->dev_private;
/* Move any buffers on the active list that are no longer referenced
* by the ringbuffer to the flushing/inactive lists as appropriate.
*/
while (!list_empty(&dev_priv->mm.active_list)) {
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
obj_priv = list_first_entry(&dev_priv->mm.active_list,
struct drm_i915_gem_object,
list);
obj = obj_priv->obj;
/* If the seqno being retired doesn't match the oldest in the
* list, then the oldest in the list must still be newer than
* this seqno.
*/
if (obj_priv->last_rendering_seqno != request->seqno)
return;
#if WATCH_LRU
DRM_INFO("%s: retire %d moves to inactive list %p\n",
__func__, request->seqno, obj);
#endif
if (obj->write_domain != 0)
i915_gem_object_move_to_flushing(obj);
else
i915_gem_object_move_to_inactive(obj);
}
}
/**
* Returns true if seq1 is later than seq2.
*/
static int
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
return (int32_t)(seq1 - seq2) >= 0;
}
uint32_t
i915_get_gem_seqno(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
}
/**
* This function clears the request list as sequence numbers are passed.
*/
void
i915_gem_retire_requests(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t seqno;
seqno = i915_get_gem_seqno(dev);
while (!list_empty(&dev_priv->mm.request_list)) {
struct drm_i915_gem_request *request;
uint32_t retiring_seqno;
request = list_first_entry(&dev_priv->mm.request_list,
struct drm_i915_gem_request,
list);
retiring_seqno = request->seqno;
if (i915_seqno_passed(seqno, retiring_seqno) ||
dev_priv->mm.wedged) {
i915_gem_retire_request(dev, request);
list_del(&request->list);
drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
} else
break;
}
}
void
i915_gem_retire_work_handler(struct work_struct *work)
{
drm_i915_private_t *dev_priv;
struct drm_device *dev;
dev_priv = container_of(work, drm_i915_private_t,
mm.retire_work.work);
dev = dev_priv->dev;
mutex_lock(&dev->struct_mutex);
i915_gem_retire_requests(dev);
if (!dev_priv->mm.suspended &&
!list_empty(&dev_priv->mm.request_list))
schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
mutex_unlock(&dev->struct_mutex);
}
/**
* Waits for a sequence number to be signaled, and cleans up the
* request and object lists appropriately for that event.
*/
static int
i915_wait_request(struct drm_device *dev, uint32_t seqno)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret = 0;
BUG_ON(seqno == 0);
if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
dev_priv->mm.waiting_gem_seqno = seqno;
i915_user_irq_get(dev);
ret = wait_event_interruptible(dev_priv->irq_queue,
i915_seqno_passed(i915_get_gem_seqno(dev),
seqno) ||
dev_priv->mm.wedged);
i915_user_irq_put(dev);
dev_priv->mm.waiting_gem_seqno = 0;
}
if (dev_priv->mm.wedged)
ret = -EIO;
if (ret && ret != -ERESTARTSYS)
DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
__func__, ret, seqno, i915_get_gem_seqno(dev));
/* Directly dispatch request retiring. While we have the work queue
* to handle this, the waiter on a request often wants an associated
* buffer to have made it to the inactive list, and we would need
* a separate wait queue to handle that.
*/
if (ret == 0)
i915_gem_retire_requests(dev);
return ret;
}
static void
i915_gem_flush(struct drm_device *dev,
uint32_t invalidate_domains,
uint32_t flush_domains)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t cmd;
RING_LOCALS;
#if WATCH_EXEC
DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
invalidate_domains, flush_domains);
#endif
if (flush_domains & I915_GEM_DOMAIN_CPU)
drm_agp_chipset_flush(dev);
if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
I915_GEM_DOMAIN_GTT)) {
/*
* read/write caches:
*
* I915_GEM_DOMAIN_RENDER is always invalidated, but is
* only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
* also flushed at 2d versus 3d pipeline switches.
*
* read-only caches:
*
* I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
* MI_READ_FLUSH is set, and is always flushed on 965.
*
* I915_GEM_DOMAIN_COMMAND may not exist?
*
* I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
* invalidated when MI_EXE_FLUSH is set.
*
* I915_GEM_DOMAIN_VERTEX, which exists on 965, is
* invalidated with every MI_FLUSH.
*
* TLBs:
*
* On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
* and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
* I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
* are flushed at any MI_FLUSH.
*/
cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
if ((invalidate_domains|flush_domains) &
I915_GEM_DOMAIN_RENDER)
cmd &= ~MI_NO_WRITE_FLUSH;
if (!IS_I965G(dev)) {
/*
* On the 965, the sampler cache always gets flushed
* and this bit is reserved.
*/
if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
cmd |= MI_READ_FLUSH;
}
if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
cmd |= MI_EXE_FLUSH;
#if WATCH_EXEC
DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
#endif
BEGIN_LP_RING(2);
OUT_RING(cmd);
OUT_RING(0); /* noop */
ADVANCE_LP_RING();
}
}
/**
* Ensures that all rendering to the object has completed and the object is
* safe to unbind from the GTT or access from the CPU.
*/
static int
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int ret;
/* This function only exists to support waiting for existing rendering,
* not for emitting required flushes.
*/
BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
/* If there is rendering queued on the buffer being evicted, wait for
* it.
*/
if (obj_priv->active) {
#if WATCH_BUF
DRM_INFO("%s: object %p wait for seqno %08x\n",
__func__, obj, obj_priv->last_rendering_seqno);
#endif
ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
if (ret != 0)
return ret;
}
return 0;
}
/**
* Unbinds an object from the GTT aperture.
*/
static int
i915_gem_object_unbind(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int ret = 0;
#if WATCH_BUF
DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
if (obj_priv->gtt_space == NULL)
return 0;
if (obj_priv->pin_count != 0) {
DRM_ERROR("Attempting to unbind pinned buffer\n");
return -EINVAL;
}
/* Move the object to the CPU domain to ensure that
* any possible CPU writes while it's not in the GTT
* are flushed when we go to remap it. This will
* also ensure that all pending GPU writes are finished
* before we unbind.
*/
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
if (ret) {
if (ret != -ERESTARTSYS)
DRM_ERROR("set_domain failed: %d\n", ret);
return ret;
}
if (obj_priv->agp_mem != NULL) {
drm_unbind_agp(obj_priv->agp_mem);
drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
obj_priv->agp_mem = NULL;
}
BUG_ON(obj_priv->active);
i915_gem_object_free_page_list(obj);
if (obj_priv->gtt_space) {
atomic_dec(&dev->gtt_count);
atomic_sub(obj->size, &dev->gtt_memory);
drm_mm_put_block(obj_priv->gtt_space);
obj_priv->gtt_space = NULL;
}
/* Remove ourselves from the LRU list if present. */
if (!list_empty(&obj_priv->list))
list_del_init(&obj_priv->list);
return 0;
}
static int
i915_gem_evict_something(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret = 0;
for (;;) {
/* If there's an inactive buffer available now, grab it
* and be done.
*/
if (!list_empty(&dev_priv->mm.inactive_list)) {
obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
struct drm_i915_gem_object,
list);
obj = obj_priv->obj;
BUG_ON(obj_priv->pin_count != 0);
#if WATCH_LRU
DRM_INFO("%s: evicting %p\n", __func__, obj);
#endif
BUG_ON(obj_priv->active);
/* Wait on the rendering and unbind the buffer. */
ret = i915_gem_object_unbind(obj);
break;
}
/* If we didn't get anything, but the ring is still processing
* things, wait for one of those things to finish and hopefully
* leave us a buffer to evict.
*/
if (!list_empty(&dev_priv->mm.request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&dev_priv->mm.request_list,
struct drm_i915_gem_request,
list);
ret = i915_wait_request(dev, request->seqno);
if (ret)
break;
/* if waiting caused an object to become inactive,
* then loop around and wait for it. Otherwise, we
* assume that waiting freed and unbound something,
* so there should now be some space in the GTT
*/
if (!list_empty(&dev_priv->mm.inactive_list))
continue;
break;
}
/* If we didn't have anything on the request list but there
* are buffers awaiting a flush, emit one and try again.
* When we wait on it, those buffers waiting for that flush
* will get moved to inactive.
*/
if (!list_empty(&dev_priv->mm.flushing_list)) {
obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
struct drm_i915_gem_object,
list);
obj = obj_priv->obj;
i915_gem_flush(dev,
obj->write_domain,
obj->write_domain);
i915_add_request(dev, obj->write_domain);
obj = NULL;
continue;
}
DRM_ERROR("inactive empty %d request empty %d "
"flushing empty %d\n",
list_empty(&dev_priv->mm.inactive_list),
list_empty(&dev_priv->mm.request_list),
list_empty(&dev_priv->mm.flushing_list));
/* If we didn't do any of the above, there's nothing to be done
* and we just can't fit it in.
*/
return -ENOMEM;
}
return ret;
}
static int
i915_gem_object_get_page_list(struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int page_count, i;
struct address_space *mapping;
struct inode *inode;
struct page *page;
int ret;
if (obj_priv->page_list)
return 0;
/* Get the list of pages out of our struct file. They'll be pinned
* at this point until we release them.
*/
page_count = obj->size / PAGE_SIZE;
BUG_ON(obj_priv->page_list != NULL);
obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
DRM_MEM_DRIVER);
if (obj_priv->page_list == NULL) {
DRM_ERROR("Faled to allocate page list\n");
return -ENOMEM;
}
inode = obj->filp->f_path.dentry->d_inode;
mapping = inode->i_mapping;
for (i = 0; i < page_count; i++) {
page = read_mapping_page(mapping, i, NULL);
if (IS_ERR(page)) {
ret = PTR_ERR(page);
DRM_ERROR("read_mapping_page failed: %d\n", ret);
i915_gem_object_free_page_list(obj);
return ret;
}
obj_priv->page_list[i] = page;
}
return 0;
}
/**
* Finds free space in the GTT aperture and binds the object there.
*/
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
struct drm_mm_node *free_space;
int page_count, ret;
if (alignment == 0)
alignment = PAGE_SIZE;
if (alignment & (PAGE_SIZE - 1)) {
DRM_ERROR("Invalid object alignment requested %u\n", alignment);
return -EINVAL;
}
search_free:
free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
obj->size, alignment, 0);
if (free_space != NULL) {
obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
alignment);
if (obj_priv->gtt_space != NULL) {
obj_priv->gtt_space->private = obj;
obj_priv->gtt_offset = obj_priv->gtt_space->start;
}
}
if (obj_priv->gtt_space == NULL) {
/* If the gtt is empty and we're still having trouble
* fitting our object in, we're out of memory.
*/
#if WATCH_LRU
DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
if (list_empty(&dev_priv->mm.inactive_list) &&
list_empty(&dev_priv->mm.flushing_list) &&
list_empty(&dev_priv->mm.active_list)) {
DRM_ERROR("GTT full, but LRU list empty\n");
return -ENOMEM;
}
ret = i915_gem_evict_something(dev);
if (ret != 0) {
DRM_ERROR("Failed to evict a buffer %d\n", ret);
return ret;
}
goto search_free;
}
#if WATCH_BUF
DRM_INFO("Binding object of size %d at 0x%08x\n",
obj->size, obj_priv->gtt_offset);
#endif
ret = i915_gem_object_get_page_list(obj);
if (ret) {
drm_mm_put_block(obj_priv->gtt_space);
obj_priv->gtt_space = NULL;
return ret;
}
page_count = obj->size / PAGE_SIZE;
/* Create an AGP memory structure pointing at our pages, and bind it
* into the GTT.
*/
obj_priv->agp_mem = drm_agp_bind_pages(dev,
obj_priv->page_list,
page_count,
obj_priv->gtt_offset,
obj_priv->agp_type);
if (obj_priv->agp_mem == NULL) {
i915_gem_object_free_page_list(obj);
drm_mm_put_block(obj_priv->gtt_space);
obj_priv->gtt_space = NULL;
return -ENOMEM;
}
atomic_inc(&dev->gtt_count);
atomic_add(obj->size, &dev->gtt_memory);
/* Assert that the object is not currently in any GPU domain. As it
* wasn't in the GTT, there shouldn't be any way it could have been in
* a GPU cache
*/
BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
return 0;
}
void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
/* If we don't have a page list set up, then we're not pinned
* to GPU, and we can ignore the cache flush because it'll happen
* again at bind time.
*/
if (obj_priv->page_list == NULL)
return;
drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
}
/** Flushes any GPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
uint32_t seqno;
if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
return;
/* Queue the GPU write cache flushing we need. */
i915_gem_flush(dev, 0, obj->write_domain);
seqno = i915_add_request(dev, obj->write_domain);
obj->write_domain = 0;
i915_gem_object_move_to_active(obj, seqno);
}
/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
if (obj->write_domain != I915_GEM_DOMAIN_GTT)
return;
/* No actual flushing is required for the GTT write domain. Writes
* to it immediately go to main memory as far as we know, so there's
* no chipset flush. It also doesn't land in render cache.
*/
obj->write_domain = 0;
}
/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
if (obj->write_domain != I915_GEM_DOMAIN_CPU)
return;
i915_gem_clflush_object(obj);
drm_agp_chipset_flush(dev);
obj->write_domain = 0;
}
/**
* Moves a single object to the GTT read, and possibly write domain.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
static int
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int ret;
i915_gem_object_flush_gpu_write_domain(obj);
/* Wait on any GPU rendering and flushing to occur. */
ret = i915_gem_object_wait_rendering(obj);
if (ret != 0)
return ret;
/* If we're writing through the GTT domain, then CPU and GPU caches
* will need to be invalidated at next use.
*/
if (write)
obj->read_domains &= I915_GEM_DOMAIN_GTT;
i915_gem_object_flush_cpu_write_domain(obj);
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
obj->read_domains |= I915_GEM_DOMAIN_GTT;
if (write) {
obj->write_domain = I915_GEM_DOMAIN_GTT;
obj_priv->dirty = 1;
}
return 0;
}
/**
* Moves a single object to the CPU read, and possibly write domain.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
struct drm_device *dev = obj->dev;
int ret;
i915_gem_object_flush_gpu_write_domain(obj);
/* Wait on any GPU rendering and flushing to occur. */
ret = i915_gem_object_wait_rendering(obj);
if (ret != 0)
return ret;
i915_gem_object_flush_gtt_write_domain(obj);
/* If we have a partially-valid cache of the object in the CPU,
* finish invalidating it and free the per-page flags.
*/
i915_gem_object_set_to_full_cpu_read_domain(obj);
/* Flush the CPU cache if it's still invalid. */
if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
i915_gem_clflush_object(obj);
drm_agp_chipset_flush(dev);
obj->read_domains |= I915_GEM_DOMAIN_CPU;
}
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
/* If we're writing through the CPU, then the GPU read domains will
* need to be invalidated at next use.
*/
if (write) {
obj->read_domains &= I915_GEM_DOMAIN_CPU;
obj->write_domain = I915_GEM_DOMAIN_CPU;
}
return 0;
}
/*
* Set the next domain for the specified object. This
* may not actually perform the necessary flushing/invaliding though,
* as that may want to be batched with other set_domain operations
*
* This is (we hope) the only really tricky part of gem. The goal
* is fairly simple -- track which caches hold bits of the object
* and make sure they remain coherent. A few concrete examples may
* help to explain how it works. For shorthand, we use the notation
* (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
* a pair of read and write domain masks.
*
* Case 1: the batch buffer
*
* 1. Allocated
* 2. Written by CPU
* 3. Mapped to GTT
* 4. Read by GPU
* 5. Unmapped from GTT
* 6. Freed
*
* Let's take these a step at a time
*
* 1. Allocated
* Pages allocated from the kernel may still have
* cache contents, so we set them to (CPU, CPU) always.
* 2. Written by CPU (using pwrite)
* The pwrite function calls set_domain (CPU, CPU) and
* this function does nothing (as nothing changes)
* 3. Mapped by GTT
* This function asserts that the object is not
* currently in any GPU-based read or write domains
* 4. Read by GPU
* i915_gem_execbuffer calls set_domain (COMMAND, 0).
* As write_domain is zero, this function adds in the
* current read domains (CPU+COMMAND, 0).
* flush_domains is set to CPU.
* invalidate_domains is set to COMMAND
* clflush is run to get data out of the CPU caches
* then i915_dev_set_domain calls i915_gem_flush to
* emit an MI_FLUSH and drm_agp_chipset_flush
* 5. Unmapped from GTT
* i915_gem_object_unbind calls set_domain (CPU, CPU)
* flush_domains and invalidate_domains end up both zero
* so no flushing/invalidating happens
* 6. Freed
* yay, done
*
* Case 2: The shared render buffer
*
* 1. Allocated
* 2. Mapped to GTT
* 3. Read/written by GPU
* 4. set_domain to (CPU,CPU)
* 5. Read/written by CPU
* 6. Read/written by GPU
*
* 1. Allocated
* Same as last example, (CPU, CPU)
* 2. Mapped to GTT
* Nothing changes (assertions find that it is not in the GPU)
* 3. Read/written by GPU
* execbuffer calls set_domain (RENDER, RENDER)
* flush_domains gets CPU
* invalidate_domains gets GPU
* clflush (obj)
* MI_FLUSH and drm_agp_chipset_flush
* 4. set_domain (CPU, CPU)
* flush_domains gets GPU
* invalidate_domains gets CPU
* wait_rendering (obj) to make sure all drawing is complete.
* This will include an MI_FLUSH to get the data from GPU
* to memory
* clflush (obj) to invalidate the CPU cache
* Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
* 5. Read/written by CPU
* cache lines are loaded and dirtied
* 6. Read written by GPU
* Same as last GPU access
*
* Case 3: The constant buffer
*
* 1. Allocated
* 2. Written by CPU
* 3. Read by GPU
* 4. Updated (written) by CPU again
* 5. Read by GPU
*
* 1. Allocated
* (CPU, CPU)
* 2. Written by CPU
* (CPU, CPU)
* 3. Read by GPU
* (CPU+RENDER, 0)
* flush_domains = CPU
* invalidate_domains = RENDER
* clflush (obj)
* MI_FLUSH
* drm_agp_chipset_flush
* 4. Updated (written) by CPU again
* (CPU, CPU)
* flush_domains = 0 (no previous write domain)
* invalidate_domains = 0 (no new read domains)
* 5. Read by GPU
* (CPU+RENDER, 0)
* flush_domains = CPU
* invalidate_domains = RENDER
* clflush (obj)
* MI_FLUSH
* drm_agp_chipset_flush
*/
static void
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
uint32_t read_domains,
uint32_t write_domain)
{
struct drm_device *dev = obj->dev;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
uint32_t invalidate_domains = 0;
uint32_t flush_domains = 0;
BUG_ON(read_domains & I915_GEM_DOMAIN_CPU);
BUG_ON(write_domain == I915_GEM_DOMAIN_CPU);
#if WATCH_BUF
DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
__func__, obj,
obj->read_domains, read_domains,
obj->write_domain, write_domain);
#endif
/*
* If the object isn't moving to a new write domain,
* let the object stay in multiple read domains
*/
if (write_domain == 0)
read_domains |= obj->read_domains;
else
obj_priv->dirty = 1;
/*
* Flush the current write domain if
* the new read domains don't match. Invalidate
* any read domains which differ from the old
* write domain
*/
if (obj->write_domain && obj->write_domain != read_domains) {
flush_domains |= obj->write_domain;
invalidate_domains |= read_domains & ~obj->write_domain;
}
/*
* Invalidate any read caches which may have
* stale data. That is, any new read domains.
*/
invalidate_domains |= read_domains & ~obj->read_domains;
if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
__func__, flush_domains, invalidate_domains);
#endif
i915_gem_clflush_object(obj);
}
if ((write_domain | flush_domains) != 0)
obj->write_domain = write_domain;
obj->read_domains = read_domains;
dev->invalidate_domains |= invalidate_domains;
dev->flush_domains |= flush_domains;
#if WATCH_BUF
DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
__func__,
obj->read_domains, obj->write_domain,
dev->invalidate_domains, dev->flush_domains);
#endif
}
/**
* Moves the object from a partially CPU read to a full one.
*
* Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
* and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
*/
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
if (!obj_priv->page_cpu_valid)
return;
/* If we're partially in the CPU read domain, finish moving it in.
*/
if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
int i;
for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
if (obj_priv->page_cpu_valid[i])
continue;
drm_clflush_pages(obj_priv->page_list + i, 1);
}
drm_agp_chipset_flush(dev);
}
/* Free the page_cpu_valid mappings which are now stale, whether
* or not we've got I915_GEM_DOMAIN_CPU.
*/
drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
DRM_MEM_DRIVER);
obj_priv->page_cpu_valid = NULL;
}
/**
* Set the CPU read domain on a range of the object.
*
* The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
* not entirely valid. The page_cpu_valid member of the object flags which
* pages have been flushed, and will be respected by
* i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
* of the whole object.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
uint64_t offset, uint64_t size)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int i, ret;
if (offset == 0 && size == obj->size)
return i915_gem_object_set_to_cpu_domain(obj, 0);
i915_gem_object_flush_gpu_write_domain(obj);
/* Wait on any GPU rendering and flushing to occur. */
ret = i915_gem_object_wait_rendering(obj);
if (ret != 0)
return ret;
i915_gem_object_flush_gtt_write_domain(obj);
/* If we're already fully in the CPU read domain, we're done. */
if (obj_priv->page_cpu_valid == NULL &&
(obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
return 0;
/* Otherwise, create/clear the per-page CPU read domain flag if we're
* newly adding I915_GEM_DOMAIN_CPU
*/
if (obj_priv->page_cpu_valid == NULL) {
obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
DRM_MEM_DRIVER);
if (obj_priv->page_cpu_valid == NULL)
return -ENOMEM;
} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
/* Flush the cache on any pages that are still invalid from the CPU's
* perspective.
*/
for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
i++) {
if (obj_priv->page_cpu_valid[i])
continue;
drm_clflush_pages(obj_priv->page_list + i, 1);
obj_priv->page_cpu_valid[i] = 1;
}
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
obj->read_domains |= I915_GEM_DOMAIN_CPU;
return 0;
}
/**
* Pin an object to the GTT and evaluate the relocations landing in it.
*/
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
struct drm_file *file_priv,
struct drm_i915_gem_exec_object *entry)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_relocation_entry reloc;
struct drm_i915_gem_relocation_entry __user *relocs;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int i, ret;
void __iomem *reloc_page;
/* Choose the GTT offset for our buffer and put it there. */
ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
if (ret)
return ret;
entry->offset = obj_priv->gtt_offset;
relocs = (struct drm_i915_gem_relocation_entry __user *)
(uintptr_t) entry->relocs_ptr;
/* Apply the relocations, using the GTT aperture to avoid cache
* flushing requirements.
*/
for (i = 0; i < entry->relocation_count; i++) {
struct drm_gem_object *target_obj;
struct drm_i915_gem_object *target_obj_priv;
uint32_t reloc_val, reloc_offset;
uint32_t __iomem *reloc_entry;
ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
if (ret != 0) {
i915_gem_object_unpin(obj);
return ret;
}
target_obj = drm_gem_object_lookup(obj->dev, file_priv,
reloc.target_handle);
if (target_obj == NULL) {
i915_gem_object_unpin(obj);
return -EBADF;
}
target_obj_priv = target_obj->driver_private;
/* The target buffer should have appeared before us in the
* exec_object list, so it should have a GTT space bound by now.
*/
if (target_obj_priv->gtt_space == NULL) {
DRM_ERROR("No GTT space found for object %d\n",
reloc.target_handle);
drm_gem_object_unreference(target_obj);
i915_gem_object_unpin(obj);
return -EINVAL;
}
if (reloc.offset > obj->size - 4) {
DRM_ERROR("Relocation beyond object bounds: "
"obj %p target %d offset %d size %d.\n",
obj, reloc.target_handle,
(int) reloc.offset, (int) obj->size);
drm_gem_object_unreference(target_obj);
i915_gem_object_unpin(obj);
return -EINVAL;
}
if (reloc.offset & 3) {
DRM_ERROR("Relocation not 4-byte aligned: "
"obj %p target %d offset %d.\n",
obj, reloc.target_handle,
(int) reloc.offset);
drm_gem_object_unreference(target_obj);
i915_gem_object_unpin(obj);
return -EINVAL;
}
if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
reloc.read_domains & I915_GEM_DOMAIN_CPU) {
DRM_ERROR("reloc with read/write CPU domains: "
"obj %p target %d offset %d "
"read %08x write %08x",
obj, reloc.target_handle,
(int) reloc.offset,
reloc.read_domains,
reloc.write_domain);
return -EINVAL;
}
if (reloc.write_domain && target_obj->pending_write_domain &&
reloc.write_domain != target_obj->pending_write_domain) {
DRM_ERROR("Write domain conflict: "
"obj %p target %d offset %d "
"new %08x old %08x\n",
obj, reloc.target_handle,
(int) reloc.offset,
reloc.write_domain,
target_obj->pending_write_domain);
drm_gem_object_unreference(target_obj);
i915_gem_object_unpin(obj);
return -EINVAL;
}
#if WATCH_RELOC
DRM_INFO("%s: obj %p offset %08x target %d "
"read %08x write %08x gtt %08x "
"presumed %08x delta %08x\n",
__func__,
obj,
(int) reloc.offset,
(int) reloc.target_handle,
(int) reloc.read_domains,
(int) reloc.write_domain,
(int) target_obj_priv->gtt_offset,
(int) reloc.presumed_offset,
reloc.delta);
#endif
target_obj->pending_read_domains |= reloc.read_domains;
target_obj->pending_write_domain |= reloc.write_domain;
/* If the relocation already has the right value in it, no
* more work needs to be done.
*/
if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
drm_gem_object_unreference(target_obj);
continue;
}
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
if (ret != 0) {
drm_gem_object_unreference(target_obj);
i915_gem_object_unpin(obj);
return -EINVAL;
}
/* Map the page containing the relocation we're going to
* perform.
*/
reloc_offset = obj_priv->gtt_offset + reloc.offset;
reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
(reloc_offset &
~(PAGE_SIZE - 1)));
reloc_entry = (uint32_t __iomem *)(reloc_page +
(reloc_offset & (PAGE_SIZE - 1)));
reloc_val = target_obj_priv->gtt_offset + reloc.delta;
#if WATCH_BUF
DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
obj, (unsigned int) reloc.offset,
readl(reloc_entry), reloc_val);
#endif
writel(reloc_val, reloc_entry);
io_mapping_unmap_atomic(reloc_page);
/* Write the updated presumed offset for this entry back out
* to the user.
*/
reloc.presumed_offset = target_obj_priv->gtt_offset;
ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
if (ret != 0) {
drm_gem_object_unreference(target_obj);
i915_gem_object_unpin(obj);
return ret;
}
drm_gem_object_unreference(target_obj);
}
#if WATCH_BUF
if (0)
i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
return 0;
}
/** Dispatch a batchbuffer to the ring
*/
static int
i915_dispatch_gem_execbuffer(struct drm_device *dev,
struct drm_i915_gem_execbuffer *exec,
uint64_t exec_offset)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
(uintptr_t) exec->cliprects_ptr;
int nbox = exec->num_cliprects;
int i = 0, count;
uint32_t exec_start, exec_len;
RING_LOCALS;
exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
exec_len = (uint32_t) exec->batch_len;
if ((exec_start | exec_len) & 0x7) {
DRM_ERROR("alignment\n");
return -EINVAL;
}
if (!exec_start)
return -EINVAL;
count = nbox ? nbox : 1;
for (i = 0; i < count; i++) {
if (i < nbox) {
int ret = i915_emit_box(dev, boxes, i,
exec->DR1, exec->DR4);
if (ret)
return ret;
}
if (IS_I830(dev) || IS_845G(dev)) {
BEGIN_LP_RING(4);
OUT_RING(MI_BATCH_BUFFER);
OUT_RING(exec_start | MI_BATCH_NON_SECURE);
OUT_RING(exec_start + exec_len - 4);
OUT_RING(0);
ADVANCE_LP_RING();
} else {
BEGIN_LP_RING(2);
if (IS_I965G(dev)) {
OUT_RING(MI_BATCH_BUFFER_START |
(2 << 6) |
MI_BATCH_NON_SECURE_I965);
OUT_RING(exec_start);
} else {
OUT_RING(MI_BATCH_BUFFER_START |
(2 << 6));
OUT_RING(exec_start | MI_BATCH_NON_SECURE);
}
ADVANCE_LP_RING();
}
}
/* XXX breadcrumb */
return 0;
}
/* Throttle our rendering by waiting until the ring has completed our requests
* emitted over 20 msec ago.
*
* This should get us reasonable parallelism between CPU and GPU but also
* relatively low latency when blocking on a particular request to finish.
*/
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
int ret = 0;
uint32_t seqno;
mutex_lock(&dev->struct_mutex);
seqno = i915_file_priv->mm.last_gem_throttle_seqno;
i915_file_priv->mm.last_gem_throttle_seqno =
i915_file_priv->mm.last_gem_seqno;
if (seqno)
ret = i915_wait_request(dev, seqno);
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
struct drm_i915_gem_execbuffer *args = data;
struct drm_i915_gem_exec_object *exec_list = NULL;
struct drm_gem_object **object_list = NULL;
struct drm_gem_object *batch_obj;
int ret, i, pinned = 0;
uint64_t exec_offset;
uint32_t seqno, flush_domains;
#if WATCH_EXEC
DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
(int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
if (args->buffer_count < 1) {
DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
return -EINVAL;
}
/* Copy in the exec list from userland */
exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
DRM_MEM_DRIVER);
object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
DRM_MEM_DRIVER);
if (exec_list == NULL || object_list == NULL) {
DRM_ERROR("Failed to allocate exec or object list "
"for %d buffers\n",
args->buffer_count);
ret = -ENOMEM;
goto pre_mutex_err;
}
ret = copy_from_user(exec_list,
(struct drm_i915_relocation_entry __user *)
(uintptr_t) args->buffers_ptr,
sizeof(*exec_list) * args->buffer_count);
if (ret != 0) {
DRM_ERROR("copy %d exec entries failed %d\n",
args->buffer_count, ret);
goto pre_mutex_err;
}
mutex_lock(&dev->struct_mutex);
i915_verify_inactive(dev, __FILE__, __LINE__);
if (dev_priv->mm.wedged) {
DRM_ERROR("Execbuf while wedged\n");
mutex_unlock(&dev->struct_mutex);
return -EIO;
}
if (dev_priv->mm.suspended) {
DRM_ERROR("Execbuf while VT-switched.\n");
mutex_unlock(&dev->struct_mutex);
return -EBUSY;
}
/* Look up object handles and perform the relocations */
for (i = 0; i < args->buffer_count; i++) {
object_list[i] = drm_gem_object_lookup(dev, file_priv,
exec_list[i].handle);
if (object_list[i] == NULL) {
DRM_ERROR("Invalid object handle %d at index %d\n",
exec_list[i].handle, i);
ret = -EBADF;
goto err;
}
object_list[i]->pending_read_domains = 0;
object_list[i]->pending_write_domain = 0;
ret = i915_gem_object_pin_and_relocate(object_list[i],
file_priv,
&exec_list[i]);
if (ret) {
DRM_ERROR("object bind and relocate failed %d\n", ret);
goto err;
}
pinned = i + 1;
}
/* Set the pending read domains for the batch buffer to COMMAND */
batch_obj = object_list[args->buffer_count-1];
batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
batch_obj->pending_write_domain = 0;
i915_verify_inactive(dev, __FILE__, __LINE__);
/* Zero the global flush/invalidate flags. These
* will be modified as new domains are computed
* for each object
*/
dev->invalidate_domains = 0;
dev->flush_domains = 0;
for (i = 0; i < args->buffer_count; i++) {
struct drm_gem_object *obj = object_list[i];
/* Compute new gpu domains and update invalidate/flush */
i915_gem_object_set_to_gpu_domain(obj,
obj->pending_read_domains,
obj->pending_write_domain);
}
i915_verify_inactive(dev, __FILE__, __LINE__);
if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
__func__,
dev->invalidate_domains,
dev->flush_domains);
#endif
i915_gem_flush(dev,
dev->invalidate_domains,
dev->flush_domains);
if (dev->flush_domains)
(void)i915_add_request(dev, dev->flush_domains);
}
i915_verify_inactive(dev, __FILE__, __LINE__);
#if WATCH_COHERENCY
for (i = 0; i < args->buffer_count; i++) {
i915_gem_object_check_coherency(object_list[i],
exec_list[i].handle);
}
#endif
exec_offset = exec_list[args->buffer_count - 1].offset;
#if WATCH_EXEC
i915_gem_dump_object(object_list[args->buffer_count - 1],
args->batch_len,
__func__,
~0);
#endif
/* Exec the batchbuffer */
ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
if (ret) {
DRM_ERROR("dispatch failed %d\n", ret);
goto err;
}
/*
* Ensure that the commands in the batch buffer are
* finished before the interrupt fires
*/
flush_domains = i915_retire_commands(dev);
i915_verify_inactive(dev, __FILE__, __LINE__);
/*
* Get a seqno representing the execution of the current buffer,
* which we can wait on. We would like to mitigate these interrupts,
* likely by only creating seqnos occasionally (so that we have
* *some* interrupts representing completion of buffers that we can
* wait on when trying to clear up gtt space).
*/
seqno = i915_add_request(dev, flush_domains);
BUG_ON(seqno == 0);
i915_file_priv->mm.last_gem_seqno = seqno;
for (i = 0; i < args->buffer_count; i++) {
struct drm_gem_object *obj = object_list[i];
i915_gem_object_move_to_active(obj, seqno);
#if WATCH_LRU
DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
}
#if WATCH_LRU
i915_dump_lru(dev, __func__);
#endif
i915_verify_inactive(dev, __FILE__, __LINE__);
/* Copy the new buffer offsets back to the user's exec list. */
ret = copy_to_user((struct drm_i915_relocation_entry __user *)
(uintptr_t) args->buffers_ptr,
exec_list,
sizeof(*exec_list) * args->buffer_count);
if (ret)
DRM_ERROR("failed to copy %d exec entries "
"back to user (%d)\n",
args->buffer_count, ret);
err:
if (object_list != NULL) {
for (i = 0; i < pinned; i++)
i915_gem_object_unpin(object_list[i]);
for (i = 0; i < args->buffer_count; i++)
drm_gem_object_unreference(object_list[i]);
}
mutex_unlock(&dev->struct_mutex);
pre_mutex_err:
drm_free(object_list, sizeof(*object_list) * args->buffer_count,
DRM_MEM_DRIVER);
drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
DRM_MEM_DRIVER);
return ret;
}
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
struct drm_device *dev = obj->dev;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
int ret;
i915_verify_inactive(dev, __FILE__, __LINE__);
if (obj_priv->gtt_space == NULL) {
ret = i915_gem_object_bind_to_gtt(obj, alignment);
if (ret != 0) {
DRM_ERROR("Failure to bind: %d", ret);
return ret;
}
}
obj_priv->pin_count++;
/* If the object is not active and not pending a flush,
* remove it from the inactive list
*/
if (obj_priv->pin_count == 1) {
atomic_inc(&dev->pin_count);
atomic_add(obj->size, &dev->pin_memory);
if (!obj_priv->active &&
(obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
I915_GEM_DOMAIN_GTT)) == 0 &&
!list_empty(&obj_priv->list))
list_del_init(&obj_priv->list);
}
i915_verify_inactive(dev, __FILE__, __LINE__);
return 0;
}
void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
struct drm_device *dev = obj->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
i915_verify_inactive(dev, __FILE__, __LINE__);
obj_priv->pin_count--;
BUG_ON(obj_priv->pin_count < 0);
BUG_ON(obj_priv->gtt_space == NULL);
/* If the object is no longer pinned, and is
* neither active nor being flushed, then stick it on
* the inactive list
*/
if (obj_priv->pin_count == 0) {
if (!obj_priv->active &&
(obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
I915_GEM_DOMAIN_GTT)) == 0)
list_move_tail(&obj_priv->list,
&dev_priv->mm.inactive_list);
atomic_dec(&dev->pin_count);
atomic_sub(obj->size, &dev->pin_memory);
}
i915_verify_inactive(dev, __FILE__, __LINE__);
}
int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_pin *args = data;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
mutex_lock(&dev->struct_mutex);
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL) {
DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
args->handle);
mutex_unlock(&dev->struct_mutex);
return -EBADF;
}
obj_priv = obj->driver_private;
ret = i915_gem_object_pin(obj, args->alignment);
if (ret != 0) {
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
return ret;
}
/* XXX - flush the CPU caches for pinned objects
* as the X server doesn't manage domains yet
*/
i915_gem_object_flush_cpu_write_domain(obj);
args->offset = obj_priv->gtt_offset;
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
return 0;
}
int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_pin *args = data;
struct drm_gem_object *obj;
mutex_lock(&dev->struct_mutex);
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL) {
DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
args->handle);
mutex_unlock(&dev->struct_mutex);
return -EBADF;
}
i915_gem_object_unpin(obj);
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
return 0;
}
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_busy *args = data;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
mutex_lock(&dev->struct_mutex);
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
if (obj == NULL) {
DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
args->handle);
mutex_unlock(&dev->struct_mutex);
return -EBADF;
}
obj_priv = obj->driver_private;
args->busy = obj_priv->active;
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
return 0;
}
int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
return i915_gem_ring_throttle(dev, file_priv);
}
int i915_gem_init_object(struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv;
obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
if (obj_priv == NULL)
return -ENOMEM;
/*
* We've just allocated pages from the kernel,
* so they've just been written by the CPU with
* zeros. They'll need to be clflushed before we
* use them with the GPU.
*/
obj->write_domain = I915_GEM_DOMAIN_CPU;
obj->read_domains = I915_GEM_DOMAIN_CPU;
obj_priv->agp_type = AGP_USER_MEMORY;
obj->driver_private = obj_priv;
obj_priv->obj = obj;
INIT_LIST_HEAD(&obj_priv->list);
return 0;
}
void i915_gem_free_object(struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
while (obj_priv->pin_count > 0)
i915_gem_object_unpin(obj);
i915_gem_object_unbind(obj);
drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
}
/** Unbinds all objects that are on the given buffer list. */
static int
i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
{
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
while (!list_empty(head)) {
obj_priv = list_first_entry(head,
struct drm_i915_gem_object,
list);
obj = obj_priv->obj;
if (obj_priv->pin_count != 0) {
DRM_ERROR("Pinned object in unbind list\n");
mutex_unlock(&dev->struct_mutex);
return -EINVAL;
}
ret = i915_gem_object_unbind(obj);
if (ret != 0) {
DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
ret);
mutex_unlock(&dev->struct_mutex);
return ret;
}
}
return 0;
}
static int
i915_gem_idle(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t seqno, cur_seqno, last_seqno;
int stuck, ret;
mutex_lock(&dev->struct_mutex);
if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
mutex_unlock(&dev->struct_mutex);
return 0;
}
/* Hack! Don't let anybody do execbuf while we don't control the chip.
* We need to replace this with a semaphore, or something.
*/
dev_priv->mm.suspended = 1;
/* Cancel the retire work handler, wait for it to finish if running
*/
mutex_unlock(&dev->struct_mutex);
cancel_delayed_work_sync(&dev_priv->mm.retire_work);
mutex_lock(&dev->struct_mutex);
i915_kernel_lost_context(dev);
/* Flush the GPU along with all non-CPU write domains
*/
i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
seqno = i915_add_request(dev, ~(I915_GEM_DOMAIN_CPU |
I915_GEM_DOMAIN_GTT));
if (seqno == 0) {
mutex_unlock(&dev->struct_mutex);
return -ENOMEM;
}
dev_priv->mm.waiting_gem_seqno = seqno;
last_seqno = 0;
stuck = 0;
for (;;) {
cur_seqno = i915_get_gem_seqno(dev);
if (i915_seqno_passed(cur_seqno, seqno))
break;
if (last_seqno == cur_seqno) {
if (stuck++ > 100) {
DRM_ERROR("hardware wedged\n");
dev_priv->mm.wedged = 1;
DRM_WAKEUP(&dev_priv->irq_queue);
break;
}
}
msleep(10);
last_seqno = cur_seqno;
}
dev_priv->mm.waiting_gem_seqno = 0;
i915_gem_retire_requests(dev);
if (!dev_priv->mm.wedged) {
/* Active and flushing should now be empty as we've
* waited for a sequence higher than any pending execbuffer
*/
WARN_ON(!list_empty(&dev_priv->mm.active_list));
WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
/* Request should now be empty as we've also waited
* for the last request in the list
*/
WARN_ON(!list_empty(&dev_priv->mm.request_list));
}
/* Empty the active and flushing lists to inactive. If there's
* anything left at this point, it means that we're wedged and
* nothing good's going to happen by leaving them there. So strip
* the GPU domains and just stuff them onto inactive.
*/
while (!list_empty(&dev_priv->mm.active_list)) {
struct drm_i915_gem_object *obj_priv;
obj_priv = list_first_entry(&dev_priv->mm.active_list,
struct drm_i915_gem_object,
list);
obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
i915_gem_object_move_to_inactive(obj_priv->obj);
}
while (!list_empty(&dev_priv->mm.flushing_list)) {
struct drm_i915_gem_object *obj_priv;
obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
struct drm_i915_gem_object,
list);
obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
i915_gem_object_move_to_inactive(obj_priv->obj);
}
/* Move all inactive buffers out of the GTT. */
ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
if (ret) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
i915_gem_cleanup_ringbuffer(dev);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int
i915_gem_init_hws(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
/* If we need a physical address for the status page, it's already
* initialized at driver load time.
*/
if (!I915_NEED_GFX_HWS(dev))
return 0;
obj = drm_gem_object_alloc(dev, 4096);
if (obj == NULL) {
DRM_ERROR("Failed to allocate status page\n");
return -ENOMEM;
}
obj_priv = obj->driver_private;
obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
ret = i915_gem_object_pin(obj, 4096);
if (ret != 0) {
drm_gem_object_unreference(obj);
return ret;
}
dev_priv->status_gfx_addr = obj_priv->gtt_offset;
dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
if (dev_priv->hw_status_page == NULL) {
DRM_ERROR("Failed to map status page.\n");
memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
drm_gem_object_unreference(obj);
return -EINVAL;
}
dev_priv->hws_obj = obj;
memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
I915_READ(HWS_PGA); /* posting read */
DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
return 0;
}
static int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_gem_object *obj;
struct drm_i915_gem_object *obj_priv;
int ret;
u32 head;
ret = i915_gem_init_hws(dev);
if (ret != 0)
return ret;
obj = drm_gem_object_alloc(dev, 128 * 1024);
if (obj == NULL) {
DRM_ERROR("Failed to allocate ringbuffer\n");
return -ENOMEM;
}
obj_priv = obj->driver_private;
ret = i915_gem_object_pin(obj, 4096);
if (ret != 0) {
drm_gem_object_unreference(obj);
return ret;
}
/* Set up the kernel mapping for the ring. */
dev_priv->ring.Size = obj->size;
dev_priv->ring.tail_mask = obj->size - 1;
dev_priv->ring.map.offset = dev->agp->base + obj_priv->gtt_offset;
dev_priv->ring.map.size = obj->size;
dev_priv->ring.map.type = 0;
dev_priv->ring.map.flags = 0;
dev_priv->ring.map.mtrr = 0;
drm_core_ioremap_wc(&dev_priv->ring.map, dev);
if (dev_priv->ring.map.handle == NULL) {
DRM_ERROR("Failed to map ringbuffer.\n");
memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
drm_gem_object_unreference(obj);
return -EINVAL;
}
dev_priv->ring.ring_obj = obj;
dev_priv->ring.virtual_start = dev_priv->ring.map.handle;
/* Stop the ring if it's running. */
I915_WRITE(PRB0_CTL, 0);
I915_WRITE(PRB0_TAIL, 0);
I915_WRITE(PRB0_HEAD, 0);
/* Initialize the ring. */
I915_WRITE(PRB0_START, obj_priv->gtt_offset);
head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
/* G45 ring initialization fails to reset head to zero */
if (head != 0) {
DRM_ERROR("Ring head not reset to zero "
"ctl %08x head %08x tail %08x start %08x\n",
I915_READ(PRB0_CTL),
I915_READ(PRB0_HEAD),
I915_READ(PRB0_TAIL),
I915_READ(PRB0_START));
I915_WRITE(PRB0_HEAD, 0);
DRM_ERROR("Ring head forced to zero "
"ctl %08x head %08x tail %08x start %08x\n",
I915_READ(PRB0_CTL),
I915_READ(PRB0_HEAD),
I915_READ(PRB0_TAIL),
I915_READ(PRB0_START));
}
I915_WRITE(PRB0_CTL,
((obj->size - 4096) & RING_NR_PAGES) |
RING_NO_REPORT |
RING_VALID);
head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
/* If the head is still not zero, the ring is dead */
if (head != 0) {
DRM_ERROR("Ring initialization failed "
"ctl %08x head %08x tail %08x start %08x\n",
I915_READ(PRB0_CTL),
I915_READ(PRB0_HEAD),
I915_READ(PRB0_TAIL),
I915_READ(PRB0_START));
return -EIO;
}
/* Update our cache of the ring state */
i915_kernel_lost_context(dev);
return 0;
}
static void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
if (dev_priv->ring.ring_obj == NULL)
return;
drm_core_ioremapfree(&dev_priv->ring.map, dev);
i915_gem_object_unpin(dev_priv->ring.ring_obj);
drm_gem_object_unreference(dev_priv->ring.ring_obj);
dev_priv->ring.ring_obj = NULL;
memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
if (dev_priv->hws_obj != NULL) {
struct drm_gem_object *obj = dev_priv->hws_obj;
struct drm_i915_gem_object *obj_priv = obj->driver_private;
kunmap(obj_priv->page_list[0]);
i915_gem_object_unpin(obj);
drm_gem_object_unreference(obj);
dev_priv->hws_obj = NULL;
memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
dev_priv->hw_status_page = NULL;
/* Write high address into HWS_PGA when disabling. */
I915_WRITE(HWS_PGA, 0x1ffff000);
}
}
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
if (dev_priv->mm.wedged) {
DRM_ERROR("Reenabling wedged hardware, good luck\n");
dev_priv->mm.wedged = 0;
}
ret = i915_gem_init_ringbuffer(dev);
if (ret != 0)
return ret;
dev_priv->mm.gtt_mapping = io_mapping_create_wc(dev->agp->base,
dev->agp->agp_info.aper_size
* 1024 * 1024);
mutex_lock(&dev->struct_mutex);
BUG_ON(!list_empty(&dev_priv->mm.active_list));
BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
BUG_ON(!list_empty(&dev_priv->mm.request_list));
dev_priv->mm.suspended = 0;
mutex_unlock(&dev->struct_mutex);
drm_irq_install(dev);
return 0;
}
int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
ret = i915_gem_idle(dev);
drm_irq_uninstall(dev);
io_mapping_free(dev_priv->mm.gtt_mapping);
return ret;
}
void
i915_gem_lastclose(struct drm_device *dev)
{
int ret;
ret = i915_gem_idle(dev);
if (ret)
DRM_ERROR("failed to idle hardware: %d\n", ret);
}
void
i915_gem_load(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
INIT_LIST_HEAD(&dev_priv->mm.active_list);
INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
INIT_LIST_HEAD(&dev_priv->mm.request_list);
INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
i915_gem_retire_work_handler);
dev_priv->mm.next_gem_seqno = 1;
i915_gem_detect_bit_6_swizzle(dev);
}