forked from Minki/linux
ab09b0744a
When hardware wants to inform the operating system about updates in the HFI table, it issues a package-level thermal event interrupt. For this, hardware has new interrupt and status bits in the IA32_PACKAGE_THERM_ INTERRUPT and IA32_PACKAGE_THERM_STATUS registers. The existing thermal throttle driver already handles thermal event interrupts: it initializes the thermal vector of the local APIC as well as per-CPU and package-level interrupt reporting. It also provides routines to service such interrupts. Extend its functionality to also handle HFI interrupts. The frequency of the thermal HFI interrupt is specific to each processor model. On some processors, a single interrupt happens as soon as the HFI is enabled and hardware will never update HFI capabilities afterwards. On other processors, thermal and power constraints may cause thermal HFI interrupts every tens of milliseconds. To not overwhelm consumers of the HFI data, use delayed work to throttle the rate at which HFI updates are processed. Use a dedicated workqueue to not overload system_wq if hardware issues many HFI updates. Reviewed-by: Len Brown <len.brown@intel.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
753 lines
21 KiB
C
753 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Thermal throttle event support code (such as syslog messaging and rate
|
|
* limiting) that was factored out from x86_64 (mce_intel.c) and i386 (p4.c).
|
|
*
|
|
* This allows consistent reporting of CPU thermal throttle events.
|
|
*
|
|
* Maintains a counter in /sys that keeps track of the number of thermal
|
|
* events, such that the user knows how bad the thermal problem might be
|
|
* (since the logging to syslog is rate limited).
|
|
*
|
|
* Author: Dmitriy Zavin (dmitriyz@google.com)
|
|
*
|
|
* Credits: Adapted from Zwane Mwaikambo's original code in mce_intel.c.
|
|
* Inspired by Ross Biro's and Al Borchers' counter code.
|
|
*/
|
|
#include <linux/interrupt.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/export.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/cpu.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/thermal.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/msr.h>
|
|
|
|
#include "intel_hfi.h"
|
|
#include "thermal_interrupt.h"
|
|
|
|
/* How long to wait between reporting thermal events */
|
|
#define CHECK_INTERVAL (300 * HZ)
|
|
|
|
#define THERMAL_THROTTLING_EVENT 0
|
|
#define POWER_LIMIT_EVENT 1
|
|
|
|
/**
|
|
* struct _thermal_state - Represent the current thermal event state
|
|
* @next_check: Stores the next timestamp, when it is allowed
|
|
* to log the next warning message.
|
|
* @last_interrupt_time: Stores the timestamp for the last threshold
|
|
* high event.
|
|
* @therm_work: Delayed workqueue structure
|
|
* @count: Stores the current running count for thermal
|
|
* or power threshold interrupts.
|
|
* @last_count: Stores the previous running count for thermal
|
|
* or power threshold interrupts.
|
|
* @max_time_ms: This shows the maximum amount of time CPU was
|
|
* in throttled state for a single thermal
|
|
* threshold high to low state.
|
|
* @total_time_ms: This is a cumulative time during which CPU was
|
|
* in the throttled state.
|
|
* @rate_control_active: Set when a throttling message is logged.
|
|
* This is used for the purpose of rate-control.
|
|
* @new_event: Stores the last high/low status of the
|
|
* THERM_STATUS_PROCHOT or
|
|
* THERM_STATUS_POWER_LIMIT.
|
|
* @level: Stores whether this _thermal_state instance is
|
|
* for a CORE level or for PACKAGE level.
|
|
* @sample_index: Index for storing the next sample in the buffer
|
|
* temp_samples[].
|
|
* @sample_count: Total number of samples collected in the buffer
|
|
* temp_samples[].
|
|
* @average: The last moving average of temperature samples
|
|
* @baseline_temp: Temperature at which thermal threshold high
|
|
* interrupt was generated.
|
|
* @temp_samples: Storage for temperature samples to calculate
|
|
* moving average.
|
|
*
|
|
* This structure is used to represent data related to thermal state for a CPU.
|
|
* There is a separate storage for core and package level for each CPU.
|
|
*/
|
|
struct _thermal_state {
|
|
u64 next_check;
|
|
u64 last_interrupt_time;
|
|
struct delayed_work therm_work;
|
|
unsigned long count;
|
|
unsigned long last_count;
|
|
unsigned long max_time_ms;
|
|
unsigned long total_time_ms;
|
|
bool rate_control_active;
|
|
bool new_event;
|
|
u8 level;
|
|
u8 sample_index;
|
|
u8 sample_count;
|
|
u8 average;
|
|
u8 baseline_temp;
|
|
u8 temp_samples[3];
|
|
};
|
|
|
|
struct thermal_state {
|
|
struct _thermal_state core_throttle;
|
|
struct _thermal_state core_power_limit;
|
|
struct _thermal_state package_throttle;
|
|
struct _thermal_state package_power_limit;
|
|
struct _thermal_state core_thresh0;
|
|
struct _thermal_state core_thresh1;
|
|
struct _thermal_state pkg_thresh0;
|
|
struct _thermal_state pkg_thresh1;
|
|
};
|
|
|
|
/* Callback to handle core threshold interrupts */
|
|
int (*platform_thermal_notify)(__u64 msr_val);
|
|
EXPORT_SYMBOL(platform_thermal_notify);
|
|
|
|
/* Callback to handle core package threshold_interrupts */
|
|
int (*platform_thermal_package_notify)(__u64 msr_val);
|
|
EXPORT_SYMBOL_GPL(platform_thermal_package_notify);
|
|
|
|
/* Callback support of rate control, return true, if
|
|
* callback has rate control */
|
|
bool (*platform_thermal_package_rate_control)(void);
|
|
EXPORT_SYMBOL_GPL(platform_thermal_package_rate_control);
|
|
|
|
|
|
static DEFINE_PER_CPU(struct thermal_state, thermal_state);
|
|
|
|
static atomic_t therm_throt_en = ATOMIC_INIT(0);
|
|
|
|
static u32 lvtthmr_init __read_mostly;
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
#define define_therm_throt_device_one_ro(_name) \
|
|
static DEVICE_ATTR(_name, 0444, \
|
|
therm_throt_device_show_##_name, \
|
|
NULL) \
|
|
|
|
#define define_therm_throt_device_show_func(event, name) \
|
|
\
|
|
static ssize_t therm_throt_device_show_##event##_##name( \
|
|
struct device *dev, \
|
|
struct device_attribute *attr, \
|
|
char *buf) \
|
|
{ \
|
|
unsigned int cpu = dev->id; \
|
|
ssize_t ret; \
|
|
\
|
|
preempt_disable(); /* CPU hotplug */ \
|
|
if (cpu_online(cpu)) { \
|
|
ret = sprintf(buf, "%lu\n", \
|
|
per_cpu(thermal_state, cpu).event.name); \
|
|
} else \
|
|
ret = 0; \
|
|
preempt_enable(); \
|
|
\
|
|
return ret; \
|
|
}
|
|
|
|
define_therm_throt_device_show_func(core_throttle, count);
|
|
define_therm_throt_device_one_ro(core_throttle_count);
|
|
|
|
define_therm_throt_device_show_func(core_power_limit, count);
|
|
define_therm_throt_device_one_ro(core_power_limit_count);
|
|
|
|
define_therm_throt_device_show_func(package_throttle, count);
|
|
define_therm_throt_device_one_ro(package_throttle_count);
|
|
|
|
define_therm_throt_device_show_func(package_power_limit, count);
|
|
define_therm_throt_device_one_ro(package_power_limit_count);
|
|
|
|
define_therm_throt_device_show_func(core_throttle, max_time_ms);
|
|
define_therm_throt_device_one_ro(core_throttle_max_time_ms);
|
|
|
|
define_therm_throt_device_show_func(package_throttle, max_time_ms);
|
|
define_therm_throt_device_one_ro(package_throttle_max_time_ms);
|
|
|
|
define_therm_throt_device_show_func(core_throttle, total_time_ms);
|
|
define_therm_throt_device_one_ro(core_throttle_total_time_ms);
|
|
|
|
define_therm_throt_device_show_func(package_throttle, total_time_ms);
|
|
define_therm_throt_device_one_ro(package_throttle_total_time_ms);
|
|
|
|
static struct attribute *thermal_throttle_attrs[] = {
|
|
&dev_attr_core_throttle_count.attr,
|
|
&dev_attr_core_throttle_max_time_ms.attr,
|
|
&dev_attr_core_throttle_total_time_ms.attr,
|
|
NULL
|
|
};
|
|
|
|
static const struct attribute_group thermal_attr_group = {
|
|
.attrs = thermal_throttle_attrs,
|
|
.name = "thermal_throttle"
|
|
};
|
|
#endif /* CONFIG_SYSFS */
|
|
|
|
#define CORE_LEVEL 0
|
|
#define PACKAGE_LEVEL 1
|
|
|
|
#define THERM_THROT_POLL_INTERVAL HZ
|
|
#define THERM_STATUS_PROCHOT_LOG BIT(1)
|
|
|
|
#define THERM_STATUS_CLEAR_CORE_MASK (BIT(1) | BIT(3) | BIT(5) | BIT(7) | BIT(9) | BIT(11) | BIT(13) | BIT(15))
|
|
#define THERM_STATUS_CLEAR_PKG_MASK (BIT(1) | BIT(3) | BIT(5) | BIT(7) | BIT(9) | BIT(11))
|
|
|
|
static void clear_therm_status_log(int level)
|
|
{
|
|
int msr;
|
|
u64 mask, msr_val;
|
|
|
|
if (level == CORE_LEVEL) {
|
|
msr = MSR_IA32_THERM_STATUS;
|
|
mask = THERM_STATUS_CLEAR_CORE_MASK;
|
|
} else {
|
|
msr = MSR_IA32_PACKAGE_THERM_STATUS;
|
|
mask = THERM_STATUS_CLEAR_PKG_MASK;
|
|
}
|
|
|
|
rdmsrl(msr, msr_val);
|
|
msr_val &= mask;
|
|
wrmsrl(msr, msr_val & ~THERM_STATUS_PROCHOT_LOG);
|
|
}
|
|
|
|
static void get_therm_status(int level, bool *proc_hot, u8 *temp)
|
|
{
|
|
int msr;
|
|
u64 msr_val;
|
|
|
|
if (level == CORE_LEVEL)
|
|
msr = MSR_IA32_THERM_STATUS;
|
|
else
|
|
msr = MSR_IA32_PACKAGE_THERM_STATUS;
|
|
|
|
rdmsrl(msr, msr_val);
|
|
if (msr_val & THERM_STATUS_PROCHOT_LOG)
|
|
*proc_hot = true;
|
|
else
|
|
*proc_hot = false;
|
|
|
|
*temp = (msr_val >> 16) & 0x7F;
|
|
}
|
|
|
|
static void __maybe_unused throttle_active_work(struct work_struct *work)
|
|
{
|
|
struct _thermal_state *state = container_of(to_delayed_work(work),
|
|
struct _thermal_state, therm_work);
|
|
unsigned int i, avg, this_cpu = smp_processor_id();
|
|
u64 now = get_jiffies_64();
|
|
bool hot;
|
|
u8 temp;
|
|
|
|
get_therm_status(state->level, &hot, &temp);
|
|
/* temperature value is offset from the max so lesser means hotter */
|
|
if (!hot && temp > state->baseline_temp) {
|
|
if (state->rate_control_active)
|
|
pr_info("CPU%d: %s temperature/speed normal (total events = %lu)\n",
|
|
this_cpu,
|
|
state->level == CORE_LEVEL ? "Core" : "Package",
|
|
state->count);
|
|
|
|
state->rate_control_active = false;
|
|
return;
|
|
}
|
|
|
|
if (time_before64(now, state->next_check) &&
|
|
state->rate_control_active)
|
|
goto re_arm;
|
|
|
|
state->next_check = now + CHECK_INTERVAL;
|
|
|
|
if (state->count != state->last_count) {
|
|
/* There was one new thermal interrupt */
|
|
state->last_count = state->count;
|
|
state->average = 0;
|
|
state->sample_count = 0;
|
|
state->sample_index = 0;
|
|
}
|
|
|
|
state->temp_samples[state->sample_index] = temp;
|
|
state->sample_count++;
|
|
state->sample_index = (state->sample_index + 1) % ARRAY_SIZE(state->temp_samples);
|
|
if (state->sample_count < ARRAY_SIZE(state->temp_samples))
|
|
goto re_arm;
|
|
|
|
avg = 0;
|
|
for (i = 0; i < ARRAY_SIZE(state->temp_samples); ++i)
|
|
avg += state->temp_samples[i];
|
|
|
|
avg /= ARRAY_SIZE(state->temp_samples);
|
|
|
|
if (state->average > avg) {
|
|
pr_warn("CPU%d: %s temperature is above threshold, cpu clock is throttled (total events = %lu)\n",
|
|
this_cpu,
|
|
state->level == CORE_LEVEL ? "Core" : "Package",
|
|
state->count);
|
|
state->rate_control_active = true;
|
|
}
|
|
|
|
state->average = avg;
|
|
|
|
re_arm:
|
|
clear_therm_status_log(state->level);
|
|
schedule_delayed_work_on(this_cpu, &state->therm_work, THERM_THROT_POLL_INTERVAL);
|
|
}
|
|
|
|
/***
|
|
* therm_throt_process - Process thermal throttling event from interrupt
|
|
* @curr: Whether the condition is current or not (boolean), since the
|
|
* thermal interrupt normally gets called both when the thermal
|
|
* event begins and once the event has ended.
|
|
*
|
|
* This function is called by the thermal interrupt after the
|
|
* IRQ has been acknowledged.
|
|
*
|
|
* It will take care of rate limiting and printing messages to the syslog.
|
|
*/
|
|
static void therm_throt_process(bool new_event, int event, int level)
|
|
{
|
|
struct _thermal_state *state;
|
|
unsigned int this_cpu = smp_processor_id();
|
|
bool old_event;
|
|
u64 now;
|
|
struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu);
|
|
|
|
now = get_jiffies_64();
|
|
if (level == CORE_LEVEL) {
|
|
if (event == THERMAL_THROTTLING_EVENT)
|
|
state = &pstate->core_throttle;
|
|
else if (event == POWER_LIMIT_EVENT)
|
|
state = &pstate->core_power_limit;
|
|
else
|
|
return;
|
|
} else if (level == PACKAGE_LEVEL) {
|
|
if (event == THERMAL_THROTTLING_EVENT)
|
|
state = &pstate->package_throttle;
|
|
else if (event == POWER_LIMIT_EVENT)
|
|
state = &pstate->package_power_limit;
|
|
else
|
|
return;
|
|
} else
|
|
return;
|
|
|
|
old_event = state->new_event;
|
|
state->new_event = new_event;
|
|
|
|
if (new_event)
|
|
state->count++;
|
|
|
|
if (event != THERMAL_THROTTLING_EVENT)
|
|
return;
|
|
|
|
if (new_event && !state->last_interrupt_time) {
|
|
bool hot;
|
|
u8 temp;
|
|
|
|
get_therm_status(state->level, &hot, &temp);
|
|
/*
|
|
* Ignore short temperature spike as the system is not close
|
|
* to PROCHOT. 10C offset is large enough to ignore. It is
|
|
* already dropped from the high threshold temperature.
|
|
*/
|
|
if (temp > 10)
|
|
return;
|
|
|
|
state->baseline_temp = temp;
|
|
state->last_interrupt_time = now;
|
|
schedule_delayed_work_on(this_cpu, &state->therm_work, THERM_THROT_POLL_INTERVAL);
|
|
} else if (old_event && state->last_interrupt_time) {
|
|
unsigned long throttle_time;
|
|
|
|
throttle_time = jiffies_delta_to_msecs(now - state->last_interrupt_time);
|
|
if (throttle_time > state->max_time_ms)
|
|
state->max_time_ms = throttle_time;
|
|
state->total_time_ms += throttle_time;
|
|
state->last_interrupt_time = 0;
|
|
}
|
|
}
|
|
|
|
static int thresh_event_valid(int level, int event)
|
|
{
|
|
struct _thermal_state *state;
|
|
unsigned int this_cpu = smp_processor_id();
|
|
struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu);
|
|
u64 now = get_jiffies_64();
|
|
|
|
if (level == PACKAGE_LEVEL)
|
|
state = (event == 0) ? &pstate->pkg_thresh0 :
|
|
&pstate->pkg_thresh1;
|
|
else
|
|
state = (event == 0) ? &pstate->core_thresh0 :
|
|
&pstate->core_thresh1;
|
|
|
|
if (time_before64(now, state->next_check))
|
|
return 0;
|
|
|
|
state->next_check = now + CHECK_INTERVAL;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static bool int_pln_enable;
|
|
static int __init int_pln_enable_setup(char *s)
|
|
{
|
|
int_pln_enable = true;
|
|
|
|
return 1;
|
|
}
|
|
__setup("int_pln_enable", int_pln_enable_setup);
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
/* Add/Remove thermal_throttle interface for CPU device: */
|
|
static int thermal_throttle_add_dev(struct device *dev, unsigned int cpu)
|
|
{
|
|
int err;
|
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
|
|
|
err = sysfs_create_group(&dev->kobj, &thermal_attr_group);
|
|
if (err)
|
|
return err;
|
|
|
|
if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) {
|
|
err = sysfs_add_file_to_group(&dev->kobj,
|
|
&dev_attr_core_power_limit_count.attr,
|
|
thermal_attr_group.name);
|
|
if (err)
|
|
goto del_group;
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_PTS)) {
|
|
err = sysfs_add_file_to_group(&dev->kobj,
|
|
&dev_attr_package_throttle_count.attr,
|
|
thermal_attr_group.name);
|
|
if (err)
|
|
goto del_group;
|
|
|
|
err = sysfs_add_file_to_group(&dev->kobj,
|
|
&dev_attr_package_throttle_max_time_ms.attr,
|
|
thermal_attr_group.name);
|
|
if (err)
|
|
goto del_group;
|
|
|
|
err = sysfs_add_file_to_group(&dev->kobj,
|
|
&dev_attr_package_throttle_total_time_ms.attr,
|
|
thermal_attr_group.name);
|
|
if (err)
|
|
goto del_group;
|
|
|
|
if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) {
|
|
err = sysfs_add_file_to_group(&dev->kobj,
|
|
&dev_attr_package_power_limit_count.attr,
|
|
thermal_attr_group.name);
|
|
if (err)
|
|
goto del_group;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
del_group:
|
|
sysfs_remove_group(&dev->kobj, &thermal_attr_group);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void thermal_throttle_remove_dev(struct device *dev)
|
|
{
|
|
sysfs_remove_group(&dev->kobj, &thermal_attr_group);
|
|
}
|
|
|
|
/* Get notified when a cpu comes on/off. Be hotplug friendly. */
|
|
static int thermal_throttle_online(unsigned int cpu)
|
|
{
|
|
struct thermal_state *state = &per_cpu(thermal_state, cpu);
|
|
struct device *dev = get_cpu_device(cpu);
|
|
u32 l;
|
|
|
|
state->package_throttle.level = PACKAGE_LEVEL;
|
|
state->core_throttle.level = CORE_LEVEL;
|
|
|
|
INIT_DELAYED_WORK(&state->package_throttle.therm_work, throttle_active_work);
|
|
INIT_DELAYED_WORK(&state->core_throttle.therm_work, throttle_active_work);
|
|
|
|
/*
|
|
* The first CPU coming online will enable the HFI. Usually this causes
|
|
* hardware to issue an HFI thermal interrupt. Such interrupt will reach
|
|
* the CPU once we enable the thermal vector in the local APIC.
|
|
*/
|
|
intel_hfi_online(cpu);
|
|
|
|
/* Unmask the thermal vector after the above workqueues are initialized. */
|
|
l = apic_read(APIC_LVTTHMR);
|
|
apic_write(APIC_LVTTHMR, l & ~APIC_LVT_MASKED);
|
|
|
|
return thermal_throttle_add_dev(dev, cpu);
|
|
}
|
|
|
|
static int thermal_throttle_offline(unsigned int cpu)
|
|
{
|
|
struct thermal_state *state = &per_cpu(thermal_state, cpu);
|
|
struct device *dev = get_cpu_device(cpu);
|
|
u32 l;
|
|
|
|
/* Mask the thermal vector before draining evtl. pending work */
|
|
l = apic_read(APIC_LVTTHMR);
|
|
apic_write(APIC_LVTTHMR, l | APIC_LVT_MASKED);
|
|
|
|
intel_hfi_offline(cpu);
|
|
|
|
cancel_delayed_work_sync(&state->package_throttle.therm_work);
|
|
cancel_delayed_work_sync(&state->core_throttle.therm_work);
|
|
|
|
state->package_throttle.rate_control_active = false;
|
|
state->core_throttle.rate_control_active = false;
|
|
|
|
thermal_throttle_remove_dev(dev);
|
|
return 0;
|
|
}
|
|
|
|
static __init int thermal_throttle_init_device(void)
|
|
{
|
|
int ret;
|
|
|
|
if (!atomic_read(&therm_throt_en))
|
|
return 0;
|
|
|
|
intel_hfi_init();
|
|
|
|
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/therm:online",
|
|
thermal_throttle_online,
|
|
thermal_throttle_offline);
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
device_initcall(thermal_throttle_init_device);
|
|
|
|
#endif /* CONFIG_SYSFS */
|
|
|
|
static void notify_package_thresholds(__u64 msr_val)
|
|
{
|
|
bool notify_thres_0 = false;
|
|
bool notify_thres_1 = false;
|
|
|
|
if (!platform_thermal_package_notify)
|
|
return;
|
|
|
|
/* lower threshold check */
|
|
if (msr_val & THERM_LOG_THRESHOLD0)
|
|
notify_thres_0 = true;
|
|
/* higher threshold check */
|
|
if (msr_val & THERM_LOG_THRESHOLD1)
|
|
notify_thres_1 = true;
|
|
|
|
if (!notify_thres_0 && !notify_thres_1)
|
|
return;
|
|
|
|
if (platform_thermal_package_rate_control &&
|
|
platform_thermal_package_rate_control()) {
|
|
/* Rate control is implemented in callback */
|
|
platform_thermal_package_notify(msr_val);
|
|
return;
|
|
}
|
|
|
|
/* lower threshold reached */
|
|
if (notify_thres_0 && thresh_event_valid(PACKAGE_LEVEL, 0))
|
|
platform_thermal_package_notify(msr_val);
|
|
/* higher threshold reached */
|
|
if (notify_thres_1 && thresh_event_valid(PACKAGE_LEVEL, 1))
|
|
platform_thermal_package_notify(msr_val);
|
|
}
|
|
|
|
static void notify_thresholds(__u64 msr_val)
|
|
{
|
|
/* check whether the interrupt handler is defined;
|
|
* otherwise simply return
|
|
*/
|
|
if (!platform_thermal_notify)
|
|
return;
|
|
|
|
/* lower threshold reached */
|
|
if ((msr_val & THERM_LOG_THRESHOLD0) &&
|
|
thresh_event_valid(CORE_LEVEL, 0))
|
|
platform_thermal_notify(msr_val);
|
|
/* higher threshold reached */
|
|
if ((msr_val & THERM_LOG_THRESHOLD1) &&
|
|
thresh_event_valid(CORE_LEVEL, 1))
|
|
platform_thermal_notify(msr_val);
|
|
}
|
|
|
|
void __weak notify_hwp_interrupt(void)
|
|
{
|
|
wrmsrl_safe(MSR_HWP_STATUS, 0);
|
|
}
|
|
|
|
/* Thermal transition interrupt handler */
|
|
void intel_thermal_interrupt(void)
|
|
{
|
|
__u64 msr_val;
|
|
|
|
if (static_cpu_has(X86_FEATURE_HWP))
|
|
notify_hwp_interrupt();
|
|
|
|
rdmsrl(MSR_IA32_THERM_STATUS, msr_val);
|
|
|
|
/* Check for violation of core thermal thresholds*/
|
|
notify_thresholds(msr_val);
|
|
|
|
therm_throt_process(msr_val & THERM_STATUS_PROCHOT,
|
|
THERMAL_THROTTLING_EVENT,
|
|
CORE_LEVEL);
|
|
|
|
if (this_cpu_has(X86_FEATURE_PLN) && int_pln_enable)
|
|
therm_throt_process(msr_val & THERM_STATUS_POWER_LIMIT,
|
|
POWER_LIMIT_EVENT,
|
|
CORE_LEVEL);
|
|
|
|
if (this_cpu_has(X86_FEATURE_PTS)) {
|
|
rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr_val);
|
|
/* check violations of package thermal thresholds */
|
|
notify_package_thresholds(msr_val);
|
|
therm_throt_process(msr_val & PACKAGE_THERM_STATUS_PROCHOT,
|
|
THERMAL_THROTTLING_EVENT,
|
|
PACKAGE_LEVEL);
|
|
if (this_cpu_has(X86_FEATURE_PLN) && int_pln_enable)
|
|
therm_throt_process(msr_val &
|
|
PACKAGE_THERM_STATUS_POWER_LIMIT,
|
|
POWER_LIMIT_EVENT,
|
|
PACKAGE_LEVEL);
|
|
|
|
if (this_cpu_has(X86_FEATURE_HFI))
|
|
intel_hfi_process_event(msr_val &
|
|
PACKAGE_THERM_STATUS_HFI_UPDATED);
|
|
}
|
|
}
|
|
|
|
/* Thermal monitoring depends on APIC, ACPI and clock modulation */
|
|
static int intel_thermal_supported(struct cpuinfo_x86 *c)
|
|
{
|
|
if (!boot_cpu_has(X86_FEATURE_APIC))
|
|
return 0;
|
|
if (!cpu_has(c, X86_FEATURE_ACPI) || !cpu_has(c, X86_FEATURE_ACC))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
bool x86_thermal_enabled(void)
|
|
{
|
|
return atomic_read(&therm_throt_en);
|
|
}
|
|
|
|
void __init therm_lvt_init(void)
|
|
{
|
|
/*
|
|
* This function is only called on boot CPU. Save the init thermal
|
|
* LVT value on BSP and use that value to restore APs' thermal LVT
|
|
* entry BIOS programmed later
|
|
*/
|
|
if (intel_thermal_supported(&boot_cpu_data))
|
|
lvtthmr_init = apic_read(APIC_LVTTHMR);
|
|
}
|
|
|
|
void intel_init_thermal(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
int tm2 = 0;
|
|
u32 l, h;
|
|
|
|
if (!intel_thermal_supported(c))
|
|
return;
|
|
|
|
/*
|
|
* First check if its enabled already, in which case there might
|
|
* be some SMM goo which handles it, so we can't even put a handler
|
|
* since it might be delivered via SMI already:
|
|
*/
|
|
rdmsr(MSR_IA32_MISC_ENABLE, l, h);
|
|
|
|
h = lvtthmr_init;
|
|
/*
|
|
* The initial value of thermal LVT entries on all APs always reads
|
|
* 0x10000 because APs are woken up by BSP issuing INIT-SIPI-SIPI
|
|
* sequence to them and LVT registers are reset to 0s except for
|
|
* the mask bits which are set to 1s when APs receive INIT IPI.
|
|
* If BIOS takes over the thermal interrupt and sets its interrupt
|
|
* delivery mode to SMI (not fixed), it restores the value that the
|
|
* BIOS has programmed on AP based on BSP's info we saved since BIOS
|
|
* is always setting the same value for all threads/cores.
|
|
*/
|
|
if ((h & APIC_DM_FIXED_MASK) != APIC_DM_FIXED)
|
|
apic_write(APIC_LVTTHMR, lvtthmr_init);
|
|
|
|
|
|
if ((l & MSR_IA32_MISC_ENABLE_TM1) && (h & APIC_DM_SMI)) {
|
|
if (system_state == SYSTEM_BOOTING)
|
|
pr_debug("CPU%d: Thermal monitoring handled by SMI\n", cpu);
|
|
return;
|
|
}
|
|
|
|
/* early Pentium M models use different method for enabling TM2 */
|
|
if (cpu_has(c, X86_FEATURE_TM2)) {
|
|
if (c->x86 == 6 && (c->x86_model == 9 || c->x86_model == 13)) {
|
|
rdmsr(MSR_THERM2_CTL, l, h);
|
|
if (l & MSR_THERM2_CTL_TM_SELECT)
|
|
tm2 = 1;
|
|
} else if (l & MSR_IA32_MISC_ENABLE_TM2)
|
|
tm2 = 1;
|
|
}
|
|
|
|
/* We'll mask the thermal vector in the lapic till we're ready: */
|
|
h = THERMAL_APIC_VECTOR | APIC_DM_FIXED | APIC_LVT_MASKED;
|
|
apic_write(APIC_LVTTHMR, h);
|
|
|
|
rdmsr(MSR_IA32_THERM_INTERRUPT, l, h);
|
|
if (cpu_has(c, X86_FEATURE_PLN) && !int_pln_enable)
|
|
wrmsr(MSR_IA32_THERM_INTERRUPT,
|
|
(l | (THERM_INT_LOW_ENABLE
|
|
| THERM_INT_HIGH_ENABLE)) & ~THERM_INT_PLN_ENABLE, h);
|
|
else if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable)
|
|
wrmsr(MSR_IA32_THERM_INTERRUPT,
|
|
l | (THERM_INT_LOW_ENABLE
|
|
| THERM_INT_HIGH_ENABLE | THERM_INT_PLN_ENABLE), h);
|
|
else
|
|
wrmsr(MSR_IA32_THERM_INTERRUPT,
|
|
l | (THERM_INT_LOW_ENABLE | THERM_INT_HIGH_ENABLE), h);
|
|
|
|
if (cpu_has(c, X86_FEATURE_PTS)) {
|
|
rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
|
|
if (cpu_has(c, X86_FEATURE_PLN) && !int_pln_enable)
|
|
wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
|
|
(l | (PACKAGE_THERM_INT_LOW_ENABLE
|
|
| PACKAGE_THERM_INT_HIGH_ENABLE))
|
|
& ~PACKAGE_THERM_INT_PLN_ENABLE, h);
|
|
else if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable)
|
|
wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
|
|
l | (PACKAGE_THERM_INT_LOW_ENABLE
|
|
| PACKAGE_THERM_INT_HIGH_ENABLE
|
|
| PACKAGE_THERM_INT_PLN_ENABLE), h);
|
|
else
|
|
wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
|
|
l | (PACKAGE_THERM_INT_LOW_ENABLE
|
|
| PACKAGE_THERM_INT_HIGH_ENABLE), h);
|
|
|
|
if (cpu_has(c, X86_FEATURE_HFI)) {
|
|
rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
|
|
wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
|
|
l | PACKAGE_THERM_INT_HFI_ENABLE, h);
|
|
}
|
|
}
|
|
|
|
rdmsr(MSR_IA32_MISC_ENABLE, l, h);
|
|
wrmsr(MSR_IA32_MISC_ENABLE, l | MSR_IA32_MISC_ENABLE_TM1, h);
|
|
|
|
pr_info_once("CPU0: Thermal monitoring enabled (%s)\n",
|
|
tm2 ? "TM2" : "TM1");
|
|
|
|
/* enable thermal throttle processing */
|
|
atomic_set(&therm_throt_en, 1);
|
|
}
|