linux/fs/xfs/libxfs/xfs_ialloc_btree.c
Darrick J. Wong 7280fedaf3 xfs: remove xfs_rmap_ag_owner and friends
Owner information for static fs metadata can be defined readonly at
build time because it never changes across filesystems.  This enables us
to reduce stack usage (particularly in scrub) because we can use the
statically defined oinfo structures.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
2018-12-12 08:47:16 -08:00

610 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_alloc.h"
#include "xfs_error.h"
#include "xfs_trace.h"
#include "xfs_cksum.h"
#include "xfs_trans.h"
#include "xfs_rmap.h"
STATIC int
xfs_inobt_get_minrecs(
struct xfs_btree_cur *cur,
int level)
{
return cur->bc_mp->m_inobt_mnr[level != 0];
}
STATIC struct xfs_btree_cur *
xfs_inobt_dup_cursor(
struct xfs_btree_cur *cur)
{
return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
cur->bc_private.a.agbp, cur->bc_private.a.agno,
cur->bc_btnum);
}
STATIC void
xfs_inobt_set_root(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *nptr,
int inc) /* level change */
{
struct xfs_buf *agbp = cur->bc_private.a.agbp;
struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
agi->agi_root = nptr->s;
be32_add_cpu(&agi->agi_level, inc);
xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
}
STATIC void
xfs_finobt_set_root(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *nptr,
int inc) /* level change */
{
struct xfs_buf *agbp = cur->bc_private.a.agbp;
struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
agi->agi_free_root = nptr->s;
be32_add_cpu(&agi->agi_free_level, inc);
xfs_ialloc_log_agi(cur->bc_tp, agbp,
XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
}
STATIC int
__xfs_inobt_alloc_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *start,
union xfs_btree_ptr *new,
int *stat,
enum xfs_ag_resv_type resv)
{
xfs_alloc_arg_t args; /* block allocation args */
int error; /* error return value */
xfs_agblock_t sbno = be32_to_cpu(start->s);
memset(&args, 0, sizeof(args));
args.tp = cur->bc_tp;
args.mp = cur->bc_mp;
args.oinfo = XFS_RMAP_OINFO_INOBT;
args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
args.minlen = 1;
args.maxlen = 1;
args.prod = 1;
args.type = XFS_ALLOCTYPE_NEAR_BNO;
args.resv = resv;
error = xfs_alloc_vextent(&args);
if (error)
return error;
if (args.fsbno == NULLFSBLOCK) {
*stat = 0;
return 0;
}
ASSERT(args.len == 1);
new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
*stat = 1;
return 0;
}
STATIC int
xfs_inobt_alloc_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *start,
union xfs_btree_ptr *new,
int *stat)
{
return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
}
STATIC int
xfs_finobt_alloc_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *start,
union xfs_btree_ptr *new,
int *stat)
{
if (cur->bc_mp->m_inotbt_nores)
return xfs_inobt_alloc_block(cur, start, new, stat);
return __xfs_inobt_alloc_block(cur, start, new, stat,
XFS_AG_RESV_METADATA);
}
STATIC int
__xfs_inobt_free_block(
struct xfs_btree_cur *cur,
struct xfs_buf *bp,
enum xfs_ag_resv_type resv)
{
return xfs_free_extent(cur->bc_tp,
XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1,
&XFS_RMAP_OINFO_INOBT, resv);
}
STATIC int
xfs_inobt_free_block(
struct xfs_btree_cur *cur,
struct xfs_buf *bp)
{
return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
}
STATIC int
xfs_finobt_free_block(
struct xfs_btree_cur *cur,
struct xfs_buf *bp)
{
if (cur->bc_mp->m_inotbt_nores)
return xfs_inobt_free_block(cur, bp);
return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
}
STATIC int
xfs_inobt_get_maxrecs(
struct xfs_btree_cur *cur,
int level)
{
return cur->bc_mp->m_inobt_mxr[level != 0];
}
STATIC void
xfs_inobt_init_key_from_rec(
union xfs_btree_key *key,
union xfs_btree_rec *rec)
{
key->inobt.ir_startino = rec->inobt.ir_startino;
}
STATIC void
xfs_inobt_init_high_key_from_rec(
union xfs_btree_key *key,
union xfs_btree_rec *rec)
{
__u32 x;
x = be32_to_cpu(rec->inobt.ir_startino);
x += XFS_INODES_PER_CHUNK - 1;
key->inobt.ir_startino = cpu_to_be32(x);
}
STATIC void
xfs_inobt_init_rec_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_rec *rec)
{
rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
rec->inobt.ir_u.sp.ir_holemask =
cpu_to_be16(cur->bc_rec.i.ir_holemask);
rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
} else {
/* ir_holemask/ir_count not supported on-disk */
rec->inobt.ir_u.f.ir_freecount =
cpu_to_be32(cur->bc_rec.i.ir_freecount);
}
rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
}
/*
* initial value of ptr for lookup
*/
STATIC void
xfs_inobt_init_ptr_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
ptr->s = agi->agi_root;
}
STATIC void
xfs_finobt_init_ptr_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
ptr->s = agi->agi_free_root;
}
STATIC int64_t
xfs_inobt_key_diff(
struct xfs_btree_cur *cur,
union xfs_btree_key *key)
{
return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
cur->bc_rec.i.ir_startino;
}
STATIC int64_t
xfs_inobt_diff_two_keys(
struct xfs_btree_cur *cur,
union xfs_btree_key *k1,
union xfs_btree_key *k2)
{
return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
be32_to_cpu(k2->inobt.ir_startino);
}
static xfs_failaddr_t
xfs_inobt_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_target->bt_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
xfs_failaddr_t fa;
unsigned int level;
/*
* During growfs operations, we can't verify the exact owner as the
* perag is not fully initialised and hence not attached to the buffer.
*
* Similarly, during log recovery we will have a perag structure
* attached, but the agi information will not yet have been initialised
* from the on disk AGI. We don't currently use any of this information,
* but beware of the landmine (i.e. need to check pag->pagi_init) if we
* ever do.
*/
switch (block->bb_magic) {
case cpu_to_be32(XFS_IBT_CRC_MAGIC):
case cpu_to_be32(XFS_FIBT_CRC_MAGIC):
fa = xfs_btree_sblock_v5hdr_verify(bp);
if (fa)
return fa;
/* fall through */
case cpu_to_be32(XFS_IBT_MAGIC):
case cpu_to_be32(XFS_FIBT_MAGIC):
break;
default:
return __this_address;
}
/* level verification */
level = be16_to_cpu(block->bb_level);
if (level >= mp->m_in_maxlevels)
return __this_address;
return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
}
static void
xfs_inobt_read_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
if (!xfs_btree_sblock_verify_crc(bp))
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
else {
fa = xfs_inobt_verify(bp);
if (fa)
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
if (bp->b_error)
trace_xfs_btree_corrupt(bp, _RET_IP_);
}
static void
xfs_inobt_write_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
fa = xfs_inobt_verify(bp);
if (fa) {
trace_xfs_btree_corrupt(bp, _RET_IP_);
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
return;
}
xfs_btree_sblock_calc_crc(bp);
}
const struct xfs_buf_ops xfs_inobt_buf_ops = {
.name = "xfs_inobt",
.verify_read = xfs_inobt_read_verify,
.verify_write = xfs_inobt_write_verify,
.verify_struct = xfs_inobt_verify,
};
STATIC int
xfs_inobt_keys_inorder(
struct xfs_btree_cur *cur,
union xfs_btree_key *k1,
union xfs_btree_key *k2)
{
return be32_to_cpu(k1->inobt.ir_startino) <
be32_to_cpu(k2->inobt.ir_startino);
}
STATIC int
xfs_inobt_recs_inorder(
struct xfs_btree_cur *cur,
union xfs_btree_rec *r1,
union xfs_btree_rec *r2)
{
return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
be32_to_cpu(r2->inobt.ir_startino);
}
static const struct xfs_btree_ops xfs_inobt_ops = {
.rec_len = sizeof(xfs_inobt_rec_t),
.key_len = sizeof(xfs_inobt_key_t),
.dup_cursor = xfs_inobt_dup_cursor,
.set_root = xfs_inobt_set_root,
.alloc_block = xfs_inobt_alloc_block,
.free_block = xfs_inobt_free_block,
.get_minrecs = xfs_inobt_get_minrecs,
.get_maxrecs = xfs_inobt_get_maxrecs,
.init_key_from_rec = xfs_inobt_init_key_from_rec,
.init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
.init_rec_from_cur = xfs_inobt_init_rec_from_cur,
.init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
.key_diff = xfs_inobt_key_diff,
.buf_ops = &xfs_inobt_buf_ops,
.diff_two_keys = xfs_inobt_diff_two_keys,
.keys_inorder = xfs_inobt_keys_inorder,
.recs_inorder = xfs_inobt_recs_inorder,
};
static const struct xfs_btree_ops xfs_finobt_ops = {
.rec_len = sizeof(xfs_inobt_rec_t),
.key_len = sizeof(xfs_inobt_key_t),
.dup_cursor = xfs_inobt_dup_cursor,
.set_root = xfs_finobt_set_root,
.alloc_block = xfs_finobt_alloc_block,
.free_block = xfs_finobt_free_block,
.get_minrecs = xfs_inobt_get_minrecs,
.get_maxrecs = xfs_inobt_get_maxrecs,
.init_key_from_rec = xfs_inobt_init_key_from_rec,
.init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
.init_rec_from_cur = xfs_inobt_init_rec_from_cur,
.init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
.key_diff = xfs_inobt_key_diff,
.buf_ops = &xfs_inobt_buf_ops,
.diff_two_keys = xfs_inobt_diff_two_keys,
.keys_inorder = xfs_inobt_keys_inorder,
.recs_inorder = xfs_inobt_recs_inorder,
};
/*
* Allocate a new inode btree cursor.
*/
struct xfs_btree_cur * /* new inode btree cursor */
xfs_inobt_init_cursor(
struct xfs_mount *mp, /* file system mount point */
struct xfs_trans *tp, /* transaction pointer */
struct xfs_buf *agbp, /* buffer for agi structure */
xfs_agnumber_t agno, /* allocation group number */
xfs_btnum_t btnum) /* ialloc or free ino btree */
{
struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
struct xfs_btree_cur *cur;
cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
cur->bc_tp = tp;
cur->bc_mp = mp;
cur->bc_btnum = btnum;
if (btnum == XFS_BTNUM_INO) {
cur->bc_nlevels = be32_to_cpu(agi->agi_level);
cur->bc_ops = &xfs_inobt_ops;
cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
} else {
cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
cur->bc_ops = &xfs_finobt_ops;
cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
}
cur->bc_blocklog = mp->m_sb.sb_blocklog;
if (xfs_sb_version_hascrc(&mp->m_sb))
cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
cur->bc_private.a.agbp = agbp;
cur->bc_private.a.agno = agno;
return cur;
}
/*
* Calculate number of records in an inobt btree block.
*/
int
xfs_inobt_maxrecs(
struct xfs_mount *mp,
int blocklen,
int leaf)
{
blocklen -= XFS_INOBT_BLOCK_LEN(mp);
if (leaf)
return blocklen / sizeof(xfs_inobt_rec_t);
return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
}
/*
* Convert the inode record holemask to an inode allocation bitmap. The inode
* allocation bitmap is inode granularity and specifies whether an inode is
* physically allocated on disk (not whether the inode is considered allocated
* or free by the fs).
*
* A bit value of 1 means the inode is allocated, a value of 0 means it is free.
*/
uint64_t
xfs_inobt_irec_to_allocmask(
struct xfs_inobt_rec_incore *rec)
{
uint64_t bitmap = 0;
uint64_t inodespbit;
int nextbit;
uint allocbitmap;
/*
* The holemask has 16-bits for a 64 inode record. Therefore each
* holemask bit represents multiple inodes. Create a mask of bits to set
* in the allocmask for each holemask bit.
*/
inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
/*
* Allocated inodes are represented by 0 bits in holemask. Invert the 0
* bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
* anything beyond the 16 holemask bits since this casts to a larger
* type.
*/
allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
/*
* allocbitmap is the inverted holemask so every set bit represents
* allocated inodes. To expand from 16-bit holemask granularity to
* 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
* bitmap for every holemask bit.
*/
nextbit = xfs_next_bit(&allocbitmap, 1, 0);
while (nextbit != -1) {
ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
bitmap |= (inodespbit <<
(nextbit * XFS_INODES_PER_HOLEMASK_BIT));
nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
}
return bitmap;
}
#if defined(DEBUG) || defined(XFS_WARN)
/*
* Verify that an in-core inode record has a valid inode count.
*/
int
xfs_inobt_rec_check_count(
struct xfs_mount *mp,
struct xfs_inobt_rec_incore *rec)
{
int inocount = 0;
int nextbit = 0;
uint64_t allocbmap;
int wordsz;
wordsz = sizeof(allocbmap) / sizeof(unsigned int);
allocbmap = xfs_inobt_irec_to_allocmask(rec);
nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
while (nextbit != -1) {
inocount++;
nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
nextbit + 1);
}
if (inocount != rec->ir_count)
return -EFSCORRUPTED;
return 0;
}
#endif /* DEBUG */
static xfs_extlen_t
xfs_inobt_max_size(
struct xfs_mount *mp,
xfs_agnumber_t agno)
{
xfs_agblock_t agblocks = xfs_ag_block_count(mp, agno);
/* Bail out if we're uninitialized, which can happen in mkfs. */
if (mp->m_inobt_mxr[0] == 0)
return 0;
return xfs_btree_calc_size(mp->m_inobt_mnr,
(uint64_t)agblocks * mp->m_sb.sb_inopblock /
XFS_INODES_PER_CHUNK);
}
static int
xfs_inobt_count_blocks(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_agnumber_t agno,
xfs_btnum_t btnum,
xfs_extlen_t *tree_blocks)
{
struct xfs_buf *agbp;
struct xfs_btree_cur *cur;
int error;
error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
if (error)
return error;
cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
error = xfs_btree_count_blocks(cur, tree_blocks);
xfs_btree_del_cursor(cur, error);
xfs_trans_brelse(tp, agbp);
return error;
}
/*
* Figure out how many blocks to reserve and how many are used by this btree.
*/
int
xfs_finobt_calc_reserves(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_agnumber_t agno,
xfs_extlen_t *ask,
xfs_extlen_t *used)
{
xfs_extlen_t tree_len = 0;
int error;
if (!xfs_sb_version_hasfinobt(&mp->m_sb))
return 0;
error = xfs_inobt_count_blocks(mp, tp, agno, XFS_BTNUM_FINO, &tree_len);
if (error)
return error;
*ask += xfs_inobt_max_size(mp, agno);
*used += tree_len;
return 0;
}
/* Calculate the inobt btree size for some records. */
xfs_extlen_t
xfs_iallocbt_calc_size(
struct xfs_mount *mp,
unsigned long long len)
{
return xfs_btree_calc_size(mp->m_inobt_mnr, len);
}