Based on 1 normalized pattern(s): license terms gnu general public license v2 extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 37 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Steve Winslow <swinslow@gmail.com> Reviewed-by: Alexios Zavras <alexios.zavras@intel.com> Reviewed-by: Richard Fontana <rfontana@redhat.com> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190528170027.724130665@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
		
			
				
	
	
		
			1076 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1076 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright (C) ST-Ericsson SA 2010
 | |
|  *
 | |
|  * Author: Arun R Murthy <arun.murthy@stericsson.com>
 | |
|  * Author: Daniel Willerud <daniel.willerud@stericsson.com>
 | |
|  * Author: Johan Palsson <johan.palsson@stericsson.com>
 | |
|  * Author: M'boumba Cedric Madianga
 | |
|  */
 | |
| #include <linux/init.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/regulator/consumer.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/mfd/abx500.h>
 | |
| #include <linux/mfd/abx500/ab8500.h>
 | |
| #include <linux/mfd/abx500/ab8500-gpadc.h>
 | |
| 
 | |
| /*
 | |
|  * GPADC register offsets
 | |
|  * Bank : 0x0A
 | |
|  */
 | |
| #define AB8500_GPADC_CTRL1_REG		0x00
 | |
| #define AB8500_GPADC_CTRL2_REG		0x01
 | |
| #define AB8500_GPADC_CTRL3_REG		0x02
 | |
| #define AB8500_GPADC_AUTO_TIMER_REG	0x03
 | |
| #define AB8500_GPADC_STAT_REG		0x04
 | |
| #define AB8500_GPADC_MANDATAL_REG	0x05
 | |
| #define AB8500_GPADC_MANDATAH_REG	0x06
 | |
| #define AB8500_GPADC_AUTODATAL_REG	0x07
 | |
| #define AB8500_GPADC_AUTODATAH_REG	0x08
 | |
| #define AB8500_GPADC_MUX_CTRL_REG	0x09
 | |
| #define AB8540_GPADC_MANDATA2L_REG	0x09
 | |
| #define AB8540_GPADC_MANDATA2H_REG	0x0A
 | |
| #define AB8540_GPADC_APEAAX_REG		0x10
 | |
| #define AB8540_GPADC_APEAAT_REG		0x11
 | |
| #define AB8540_GPADC_APEAAM_REG		0x12
 | |
| #define AB8540_GPADC_APEAAH_REG		0x13
 | |
| #define AB8540_GPADC_APEAAL_REG		0x14
 | |
| 
 | |
| /*
 | |
|  * OTP register offsets
 | |
|  * Bank : 0x15
 | |
|  */
 | |
| #define AB8500_GPADC_CAL_1	0x0F
 | |
| #define AB8500_GPADC_CAL_2	0x10
 | |
| #define AB8500_GPADC_CAL_3	0x11
 | |
| #define AB8500_GPADC_CAL_4	0x12
 | |
| #define AB8500_GPADC_CAL_5	0x13
 | |
| #define AB8500_GPADC_CAL_6	0x14
 | |
| #define AB8500_GPADC_CAL_7	0x15
 | |
| /* New calibration for 8540 */
 | |
| #define AB8540_GPADC_OTP4_REG_7	0x38
 | |
| #define AB8540_GPADC_OTP4_REG_6	0x39
 | |
| #define AB8540_GPADC_OTP4_REG_5	0x3A
 | |
| 
 | |
| /* gpadc constants */
 | |
| #define EN_VINTCORE12		0x04
 | |
| #define EN_VTVOUT		0x02
 | |
| #define EN_GPADC		0x01
 | |
| #define DIS_GPADC		0x00
 | |
| #define AVG_1			0x00
 | |
| #define AVG_4			0x20
 | |
| #define AVG_8			0x40
 | |
| #define AVG_16			0x60
 | |
| #define ADC_SW_CONV		0x04
 | |
| #define EN_ICHAR		0x80
 | |
| #define BTEMP_PULL_UP		0x08
 | |
| #define EN_BUF			0x40
 | |
| #define DIS_ZERO		0x00
 | |
| #define GPADC_BUSY		0x01
 | |
| #define EN_FALLING		0x10
 | |
| #define EN_TRIG_EDGE		0x02
 | |
| #define EN_VBIAS_XTAL_TEMP	0x02
 | |
| 
 | |
| /* GPADC constants from AB8500 spec, UM0836 */
 | |
| #define ADC_RESOLUTION		1024
 | |
| #define ADC_CH_BTEMP_MIN	0
 | |
| #define ADC_CH_BTEMP_MAX	1350
 | |
| #define ADC_CH_DIETEMP_MIN	0
 | |
| #define ADC_CH_DIETEMP_MAX	1350
 | |
| #define ADC_CH_CHG_V_MIN	0
 | |
| #define ADC_CH_CHG_V_MAX	20030
 | |
| #define ADC_CH_ACCDET2_MIN	0
 | |
| #define ADC_CH_ACCDET2_MAX	2500
 | |
| #define ADC_CH_VBAT_MIN		2300
 | |
| #define ADC_CH_VBAT_MAX		4800
 | |
| #define ADC_CH_CHG_I_MIN	0
 | |
| #define ADC_CH_CHG_I_MAX	1500
 | |
| #define ADC_CH_BKBAT_MIN	0
 | |
| #define ADC_CH_BKBAT_MAX	3200
 | |
| 
 | |
| /* GPADC constants from AB8540 spec */
 | |
| #define ADC_CH_IBAT_MIN		(-6000) /* mA range measured by ADC for ibat */
 | |
| #define ADC_CH_IBAT_MAX		6000
 | |
| #define ADC_CH_IBAT_MIN_V	(-60)	/* mV range measured by ADC for ibat */
 | |
| #define ADC_CH_IBAT_MAX_V	60
 | |
| #define IBAT_VDROP_L		(-56)  /* mV */
 | |
| #define IBAT_VDROP_H		56
 | |
| 
 | |
| /* This is used to not lose precision when dividing to get gain and offset */
 | |
| #define CALIB_SCALE		1000
 | |
| /*
 | |
|  * Number of bits shift used to not lose precision
 | |
|  * when dividing to get ibat gain.
 | |
|  */
 | |
| #define CALIB_SHIFT_IBAT	20
 | |
| 
 | |
| /* Time in ms before disabling regulator */
 | |
| #define GPADC_AUDOSUSPEND_DELAY		1
 | |
| 
 | |
| #define CONVERSION_TIME			500 /* ms */
 | |
| 
 | |
| enum cal_channels {
 | |
| 	ADC_INPUT_VMAIN = 0,
 | |
| 	ADC_INPUT_BTEMP,
 | |
| 	ADC_INPUT_VBAT,
 | |
| 	ADC_INPUT_IBAT,
 | |
| 	NBR_CAL_INPUTS,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct adc_cal_data - Table for storing gain and offset for the calibrated
 | |
|  * ADC channels
 | |
|  * @gain:		Gain of the ADC channel
 | |
|  * @offset:		Offset of the ADC channel
 | |
|  */
 | |
| struct adc_cal_data {
 | |
| 	s64 gain;
 | |
| 	s64 offset;
 | |
| 	u16 otp_calib_hi;
 | |
| 	u16 otp_calib_lo;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct ab8500_gpadc - AB8500 GPADC device information
 | |
|  * @dev:			pointer to the struct device
 | |
|  * @node:			a list of AB8500 GPADCs, hence prepared for
 | |
| 				reentrance
 | |
|  * @parent:			pointer to the struct ab8500
 | |
|  * @ab8500_gpadc_complete:	pointer to the struct completion, to indicate
 | |
|  *				the completion of gpadc conversion
 | |
|  * @ab8500_gpadc_lock:		structure of type mutex
 | |
|  * @regu:			pointer to the struct regulator
 | |
|  * @irq_sw:			interrupt number that is used by gpadc for Sw
 | |
|  *				conversion
 | |
|  * @irq_hw:			interrupt number that is used by gpadc for Hw
 | |
|  *				conversion
 | |
|  * @cal_data			array of ADC calibration data structs
 | |
|  */
 | |
| struct ab8500_gpadc {
 | |
| 	struct device *dev;
 | |
| 	struct list_head node;
 | |
| 	struct ab8500 *parent;
 | |
| 	struct completion ab8500_gpadc_complete;
 | |
| 	struct mutex ab8500_gpadc_lock;
 | |
| 	struct regulator *regu;
 | |
| 	int irq_sw;
 | |
| 	int irq_hw;
 | |
| 	struct adc_cal_data cal_data[NBR_CAL_INPUTS];
 | |
| };
 | |
| 
 | |
| static LIST_HEAD(ab8500_gpadc_list);
 | |
| 
 | |
| /**
 | |
|  * ab8500_gpadc_get() - returns a reference to the primary AB8500 GPADC
 | |
|  * (i.e. the first GPADC in the instance list)
 | |
|  */
 | |
| struct ab8500_gpadc *ab8500_gpadc_get(char *name)
 | |
| {
 | |
| 	struct ab8500_gpadc *gpadc;
 | |
| 
 | |
| 	list_for_each_entry(gpadc, &ab8500_gpadc_list, node) {
 | |
| 		if (!strcmp(name, dev_name(gpadc->dev)))
 | |
| 			return gpadc;
 | |
| 	}
 | |
| 
 | |
| 	return ERR_PTR(-ENOENT);
 | |
| }
 | |
| EXPORT_SYMBOL(ab8500_gpadc_get);
 | |
| 
 | |
| /**
 | |
|  * ab8500_gpadc_ad_to_voltage() - Convert a raw ADC value to a voltage
 | |
|  */
 | |
| int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 channel,
 | |
| 	int ad_value)
 | |
| {
 | |
| 	int res;
 | |
| 
 | |
| 	switch (channel) {
 | |
| 	case MAIN_CHARGER_V:
 | |
| 		/* For some reason we don't have calibrated data */
 | |
| 		if (!gpadc->cal_data[ADC_INPUT_VMAIN].gain) {
 | |
| 			res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX -
 | |
| 				ADC_CH_CHG_V_MIN) * ad_value /
 | |
| 				ADC_RESOLUTION;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Here we can use the calibrated data */
 | |
| 		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VMAIN].gain +
 | |
| 			gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE;
 | |
| 		break;
 | |
| 
 | |
| 	case XTAL_TEMP:
 | |
| 	case BAT_CTRL:
 | |
| 	case BTEMP_BALL:
 | |
| 	case ACC_DETECT1:
 | |
| 	case ADC_AUX1:
 | |
| 	case ADC_AUX2:
 | |
| 		/* For some reason we don't have calibrated data */
 | |
| 		if (!gpadc->cal_data[ADC_INPUT_BTEMP].gain) {
 | |
| 			res = ADC_CH_BTEMP_MIN + (ADC_CH_BTEMP_MAX -
 | |
| 				ADC_CH_BTEMP_MIN) * ad_value /
 | |
| 				ADC_RESOLUTION;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Here we can use the calibrated data */
 | |
| 		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_BTEMP].gain +
 | |
| 			gpadc->cal_data[ADC_INPUT_BTEMP].offset) / CALIB_SCALE;
 | |
| 		break;
 | |
| 
 | |
| 	case MAIN_BAT_V:
 | |
| 	case VBAT_TRUE_MEAS:
 | |
| 		/* For some reason we don't have calibrated data */
 | |
| 		if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) {
 | |
| 			res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX -
 | |
| 				ADC_CH_VBAT_MIN) * ad_value /
 | |
| 				ADC_RESOLUTION;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Here we can use the calibrated data */
 | |
| 		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VBAT].gain +
 | |
| 			gpadc->cal_data[ADC_INPUT_VBAT].offset) / CALIB_SCALE;
 | |
| 		break;
 | |
| 
 | |
| 	case DIE_TEMP:
 | |
| 		res = ADC_CH_DIETEMP_MIN +
 | |
| 			(ADC_CH_DIETEMP_MAX - ADC_CH_DIETEMP_MIN) * ad_value /
 | |
| 			ADC_RESOLUTION;
 | |
| 		break;
 | |
| 
 | |
| 	case ACC_DETECT2:
 | |
| 		res = ADC_CH_ACCDET2_MIN +
 | |
| 			(ADC_CH_ACCDET2_MAX - ADC_CH_ACCDET2_MIN) * ad_value /
 | |
| 			ADC_RESOLUTION;
 | |
| 		break;
 | |
| 
 | |
| 	case VBUS_V:
 | |
| 		res = ADC_CH_CHG_V_MIN +
 | |
| 			(ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value /
 | |
| 			ADC_RESOLUTION;
 | |
| 		break;
 | |
| 
 | |
| 	case MAIN_CHARGER_C:
 | |
| 	case USB_CHARGER_C:
 | |
| 		res = ADC_CH_CHG_I_MIN +
 | |
| 			(ADC_CH_CHG_I_MAX - ADC_CH_CHG_I_MIN) * ad_value /
 | |
| 			ADC_RESOLUTION;
 | |
| 		break;
 | |
| 
 | |
| 	case BK_BAT_V:
 | |
| 		res = ADC_CH_BKBAT_MIN +
 | |
| 			(ADC_CH_BKBAT_MAX - ADC_CH_BKBAT_MIN) * ad_value /
 | |
| 			ADC_RESOLUTION;
 | |
| 		break;
 | |
| 
 | |
| 	case IBAT_VIRTUAL_CHANNEL:
 | |
| 		/* For some reason we don't have calibrated data */
 | |
| 		if (!gpadc->cal_data[ADC_INPUT_IBAT].gain) {
 | |
| 			res = ADC_CH_IBAT_MIN + (ADC_CH_IBAT_MAX -
 | |
| 				ADC_CH_IBAT_MIN) * ad_value /
 | |
| 				ADC_RESOLUTION;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Here we can use the calibrated data */
 | |
| 		res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_IBAT].gain +
 | |
| 				gpadc->cal_data[ADC_INPUT_IBAT].offset)
 | |
| 				>> CALIB_SHIFT_IBAT;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		dev_err(gpadc->dev,
 | |
| 			"unknown channel, not possible to convert\n");
 | |
| 		res = -EINVAL;
 | |
| 		break;
 | |
| 
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(ab8500_gpadc_ad_to_voltage);
 | |
| 
 | |
| /**
 | |
|  * ab8500_gpadc_sw_hw_convert() - gpadc conversion
 | |
|  * @channel:	analog channel to be converted to digital data
 | |
|  * @avg_sample:  number of ADC sample to average
 | |
|  * @trig_egde:  selected ADC trig edge
 | |
|  * @trig_timer: selected ADC trigger delay timer
 | |
|  * @conv_type: selected conversion type (HW or SW conversion)
 | |
|  *
 | |
|  * This function converts the selected analog i/p to digital
 | |
|  * data.
 | |
|  */
 | |
| int ab8500_gpadc_sw_hw_convert(struct ab8500_gpadc *gpadc, u8 channel,
 | |
| 		u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type)
 | |
| {
 | |
| 	int ad_value;
 | |
| 	int voltage;
 | |
| 
 | |
| 	ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample,
 | |
| 			trig_edge, trig_timer, conv_type);
 | |
| 
 | |
| 	/* On failure retry a second time */
 | |
| 	if (ad_value < 0)
 | |
| 		ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample,
 | |
| 			trig_edge, trig_timer, conv_type);
 | |
| 	if (ad_value < 0) {
 | |
| 		dev_err(gpadc->dev, "GPADC raw value failed ch: %d\n",
 | |
| 				channel);
 | |
| 		return ad_value;
 | |
| 	}
 | |
| 
 | |
| 	voltage = ab8500_gpadc_ad_to_voltage(gpadc, channel, ad_value);
 | |
| 	if (voltage < 0)
 | |
| 		dev_err(gpadc->dev,
 | |
| 			"GPADC to voltage conversion failed ch: %d AD: 0x%x\n",
 | |
| 			channel, ad_value);
 | |
| 
 | |
| 	return voltage;
 | |
| }
 | |
| EXPORT_SYMBOL(ab8500_gpadc_sw_hw_convert);
 | |
| 
 | |
| /**
 | |
|  * ab8500_gpadc_read_raw() - gpadc read
 | |
|  * @channel:	analog channel to be read
 | |
|  * @avg_sample:  number of ADC sample to average
 | |
|  * @trig_edge:  selected trig edge
 | |
|  * @trig_timer: selected ADC trigger delay timer
 | |
|  * @conv_type: selected conversion type (HW or SW conversion)
 | |
|  *
 | |
|  * This function obtains the raw ADC value for an hardware conversion,
 | |
|  * this then needs to be converted by calling ab8500_gpadc_ad_to_voltage()
 | |
|  */
 | |
| int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
 | |
| 		u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type)
 | |
| {
 | |
| 	return ab8500_gpadc_double_read_raw(gpadc, channel, avg_sample,
 | |
| 					    trig_edge, trig_timer, conv_type,
 | |
| 					    NULL);
 | |
| }
 | |
| 
 | |
| int ab8500_gpadc_double_read_raw(struct ab8500_gpadc *gpadc, u8 channel,
 | |
| 		u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type,
 | |
| 		int *ibat)
 | |
| {
 | |
| 	int ret;
 | |
| 	int looplimit = 0;
 | |
| 	unsigned long completion_timeout;
 | |
| 	u8 val, low_data, high_data, low_data2, high_data2;
 | |
| 	u8 val_reg1 = 0;
 | |
| 	unsigned int delay_min = 0;
 | |
| 	unsigned int delay_max = 0;
 | |
| 	u8 data_low_addr, data_high_addr;
 | |
| 
 | |
| 	if (!gpadc)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* check if convertion is supported */
 | |
| 	if ((gpadc->irq_sw < 0) && (conv_type == ADC_SW))
 | |
| 		return -ENOTSUPP;
 | |
| 	if ((gpadc->irq_hw < 0) && (conv_type == ADC_HW))
 | |
| 		return -ENOTSUPP;
 | |
| 
 | |
| 	mutex_lock(&gpadc->ab8500_gpadc_lock);
 | |
| 	/* Enable VTVout LDO this is required for GPADC */
 | |
| 	pm_runtime_get_sync(gpadc->dev);
 | |
| 
 | |
| 	/* Check if ADC is not busy, lock and proceed */
 | |
| 	do {
 | |
| 		ret = abx500_get_register_interruptible(gpadc->dev,
 | |
| 			AB8500_GPADC, AB8500_GPADC_STAT_REG, &val);
 | |
| 		if (ret < 0)
 | |
| 			goto out;
 | |
| 		if (!(val & GPADC_BUSY))
 | |
| 			break;
 | |
| 		msleep(20);
 | |
| 	} while (++looplimit < 10);
 | |
| 	if (looplimit >= 10 && (val & GPADC_BUSY)) {
 | |
| 		dev_err(gpadc->dev, "gpadc_conversion: GPADC busy");
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable GPADC */
 | |
| 	val_reg1 |= EN_GPADC;
 | |
| 
 | |
| 	/* Select the channel source and set average samples */
 | |
| 	switch (avg_sample) {
 | |
| 	case SAMPLE_1:
 | |
| 		val = channel | AVG_1;
 | |
| 		break;
 | |
| 	case SAMPLE_4:
 | |
| 		val = channel | AVG_4;
 | |
| 		break;
 | |
| 	case SAMPLE_8:
 | |
| 		val = channel | AVG_8;
 | |
| 		break;
 | |
| 	default:
 | |
| 		val = channel | AVG_16;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (conv_type == ADC_HW) {
 | |
| 		ret = abx500_set_register_interruptible(gpadc->dev,
 | |
| 				AB8500_GPADC, AB8500_GPADC_CTRL3_REG, val);
 | |
| 		val_reg1 |= EN_TRIG_EDGE;
 | |
| 		if (trig_edge)
 | |
| 			val_reg1 |= EN_FALLING;
 | |
| 	} else
 | |
| 		ret = abx500_set_register_interruptible(gpadc->dev,
 | |
| 				AB8500_GPADC, AB8500_GPADC_CTRL2_REG, val);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(gpadc->dev,
 | |
| 			"gpadc_conversion: set avg samples failed\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable ADC, buffering, select rising edge and enable ADC path
 | |
| 	 * charging current sense if it needed, ABB 3.0 needs some special
 | |
| 	 * treatment too.
 | |
| 	 */
 | |
| 	switch (channel) {
 | |
| 	case MAIN_CHARGER_C:
 | |
| 	case USB_CHARGER_C:
 | |
| 		val_reg1 |= EN_BUF | EN_ICHAR;
 | |
| 		break;
 | |
| 	case BTEMP_BALL:
 | |
| 		if (!is_ab8500_2p0_or_earlier(gpadc->parent)) {
 | |
| 			val_reg1 |= EN_BUF | BTEMP_PULL_UP;
 | |
| 			/*
 | |
| 			* Delay might be needed for ABB8500 cut 3.0, if not,
 | |
| 			* remove when hardware will be availible
 | |
| 			*/
 | |
| 			delay_min = 1000; /* Delay in micro seconds */
 | |
| 			delay_max = 10000; /* large range optimises sleepmode */
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Intentional fallthrough */
 | |
| 	default:
 | |
| 		val_reg1 |= EN_BUF;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Write configuration to register */
 | |
| 	ret = abx500_set_register_interruptible(gpadc->dev,
 | |
| 		AB8500_GPADC, AB8500_GPADC_CTRL1_REG, val_reg1);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(gpadc->dev,
 | |
| 			"gpadc_conversion: set Control register failed\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (delay_min != 0)
 | |
| 		usleep_range(delay_min, delay_max);
 | |
| 
 | |
| 	if (conv_type == ADC_HW) {
 | |
| 		/* Set trigger delay timer */
 | |
| 		ret = abx500_set_register_interruptible(gpadc->dev,
 | |
| 			AB8500_GPADC, AB8500_GPADC_AUTO_TIMER_REG, trig_timer);
 | |
| 		if (ret < 0) {
 | |
| 			dev_err(gpadc->dev,
 | |
| 				"gpadc_conversion: trig timer failed\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 		completion_timeout = 2 * HZ;
 | |
| 		data_low_addr = AB8500_GPADC_AUTODATAL_REG;
 | |
| 		data_high_addr = AB8500_GPADC_AUTODATAH_REG;
 | |
| 	} else {
 | |
| 		/* Start SW conversion */
 | |
| 		ret = abx500_mask_and_set_register_interruptible(gpadc->dev,
 | |
| 			AB8500_GPADC, AB8500_GPADC_CTRL1_REG,
 | |
| 			ADC_SW_CONV, ADC_SW_CONV);
 | |
| 		if (ret < 0) {
 | |
| 			dev_err(gpadc->dev,
 | |
| 				"gpadc_conversion: start s/w conv failed\n");
 | |
| 			goto out;
 | |
| 		}
 | |
| 		completion_timeout = msecs_to_jiffies(CONVERSION_TIME);
 | |
| 		data_low_addr = AB8500_GPADC_MANDATAL_REG;
 | |
| 		data_high_addr = AB8500_GPADC_MANDATAH_REG;
 | |
| 	}
 | |
| 
 | |
| 	/* wait for completion of conversion */
 | |
| 	if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete,
 | |
| 			completion_timeout)) {
 | |
| 		dev_err(gpadc->dev,
 | |
| 			"timeout didn't receive GPADC conv interrupt\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Read the converted RAW data */
 | |
| 	ret = abx500_get_register_interruptible(gpadc->dev,
 | |
| 			AB8500_GPADC, data_low_addr, &low_data);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(gpadc->dev, "gpadc_conversion: read low data failed\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = abx500_get_register_interruptible(gpadc->dev,
 | |
| 		AB8500_GPADC, data_high_addr, &high_data);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(gpadc->dev, "gpadc_conversion: read high data failed\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if double convertion is required */
 | |
| 	if ((channel == BAT_CTRL_AND_IBAT) ||
 | |
| 			(channel == VBAT_MEAS_AND_IBAT) ||
 | |
| 			(channel == VBAT_TRUE_MEAS_AND_IBAT) ||
 | |
| 			(channel == BAT_TEMP_AND_IBAT)) {
 | |
| 
 | |
| 		if (conv_type == ADC_HW) {
 | |
| 			/* not supported */
 | |
| 			ret = -ENOTSUPP;
 | |
| 			dev_err(gpadc->dev,
 | |
| 				"gpadc_conversion: only SW double conversion supported\n");
 | |
| 			goto out;
 | |
| 		} else {
 | |
| 			/* Read the converted RAW data 2 */
 | |
| 			ret = abx500_get_register_interruptible(gpadc->dev,
 | |
| 				AB8500_GPADC, AB8540_GPADC_MANDATA2L_REG,
 | |
| 				&low_data2);
 | |
| 			if (ret < 0) {
 | |
| 				dev_err(gpadc->dev,
 | |
| 					"gpadc_conversion: read sw low data 2 failed\n");
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			ret = abx500_get_register_interruptible(gpadc->dev,
 | |
| 				AB8500_GPADC, AB8540_GPADC_MANDATA2H_REG,
 | |
| 				&high_data2);
 | |
| 			if (ret < 0) {
 | |
| 				dev_err(gpadc->dev,
 | |
| 					"gpadc_conversion: read sw high data 2 failed\n");
 | |
| 				goto out;
 | |
| 			}
 | |
| 			if (ibat != NULL) {
 | |
| 				*ibat = (high_data2 << 8) | low_data2;
 | |
| 			} else {
 | |
| 				dev_warn(gpadc->dev,
 | |
| 					"gpadc_conversion: ibat not stored\n");
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Disable GPADC */
 | |
| 	ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
 | |
| 		AB8500_GPADC_CTRL1_REG, DIS_GPADC);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Disable VTVout LDO this is required for GPADC */
 | |
| 	pm_runtime_mark_last_busy(gpadc->dev);
 | |
| 	pm_runtime_put_autosuspend(gpadc->dev);
 | |
| 
 | |
| 	mutex_unlock(&gpadc->ab8500_gpadc_lock);
 | |
| 
 | |
| 	return (high_data << 8) | low_data;
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * It has shown to be needed to turn off the GPADC if an error occurs,
 | |
| 	 * otherwise we might have problem when waiting for the busy bit in the
 | |
| 	 * GPADC status register to go low. In V1.1 there wait_for_completion
 | |
| 	 * seems to timeout when waiting for an interrupt.. Not seen in V2.0
 | |
| 	 */
 | |
| 	(void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC,
 | |
| 		AB8500_GPADC_CTRL1_REG, DIS_GPADC);
 | |
| 	pm_runtime_put(gpadc->dev);
 | |
| 	mutex_unlock(&gpadc->ab8500_gpadc_lock);
 | |
| 	dev_err(gpadc->dev,
 | |
| 		"gpadc_conversion: Failed to AD convert channel %d\n", channel);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(ab8500_gpadc_read_raw);
 | |
| 
 | |
| /**
 | |
|  * ab8500_bm_gpadcconvend_handler() - isr for gpadc conversion completion
 | |
|  * @irq:	irq number
 | |
|  * @data:	pointer to the data passed during request irq
 | |
|  *
 | |
|  * This is a interrupt service routine for gpadc conversion completion.
 | |
|  * Notifies the gpadc completion is completed and the converted raw value
 | |
|  * can be read from the registers.
 | |
|  * Returns IRQ status(IRQ_HANDLED)
 | |
|  */
 | |
| static irqreturn_t ab8500_bm_gpadcconvend_handler(int irq, void *_gpadc)
 | |
| {
 | |
| 	struct ab8500_gpadc *gpadc = _gpadc;
 | |
| 
 | |
| 	complete(&gpadc->ab8500_gpadc_complete);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int otp_cal_regs[] = {
 | |
| 	AB8500_GPADC_CAL_1,
 | |
| 	AB8500_GPADC_CAL_2,
 | |
| 	AB8500_GPADC_CAL_3,
 | |
| 	AB8500_GPADC_CAL_4,
 | |
| 	AB8500_GPADC_CAL_5,
 | |
| 	AB8500_GPADC_CAL_6,
 | |
| 	AB8500_GPADC_CAL_7,
 | |
| };
 | |
| 
 | |
| static int otp4_cal_regs[] = {
 | |
| 	AB8540_GPADC_OTP4_REG_7,
 | |
| 	AB8540_GPADC_OTP4_REG_6,
 | |
| 	AB8540_GPADC_OTP4_REG_5,
 | |
| };
 | |
| 
 | |
| static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc)
 | |
| {
 | |
| 	int i;
 | |
| 	int ret[ARRAY_SIZE(otp_cal_regs)];
 | |
| 	u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)];
 | |
| 	int ret_otp4[ARRAY_SIZE(otp4_cal_regs)];
 | |
| 	u8 gpadc_otp4[ARRAY_SIZE(otp4_cal_regs)];
 | |
| 	int vmain_high, vmain_low;
 | |
| 	int btemp_high, btemp_low;
 | |
| 	int vbat_high, vbat_low;
 | |
| 	int ibat_high, ibat_low;
 | |
| 	s64 V_gain, V_offset, V2A_gain, V2A_offset;
 | |
| 	struct ab8500 *ab8500;
 | |
| 
 | |
| 	ab8500 = gpadc->parent;
 | |
| 
 | |
| 	/* First we read all OTP registers and store the error code */
 | |
| 	for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) {
 | |
| 		ret[i] = abx500_get_register_interruptible(gpadc->dev,
 | |
| 			AB8500_OTP_EMUL, otp_cal_regs[i],  &gpadc_cal[i]);
 | |
| 		if (ret[i] < 0)
 | |
| 			dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n",
 | |
| 				__func__, otp_cal_regs[i]);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The ADC calibration data is stored in OTP registers.
 | |
| 	 * The layout of the calibration data is outlined below and a more
 | |
| 	 * detailed description can be found in UM0836
 | |
| 	 *
 | |
| 	 * vm_h/l = vmain_high/low
 | |
| 	 * bt_h/l = btemp_high/low
 | |
| 	 * vb_h/l = vbat_high/low
 | |
| 	 *
 | |
| 	 * Data bits 8500/9540:
 | |
| 	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * |						   | vm_h9 | vm_h8
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * |		   | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 *
 | |
| 	 * Data bits 8540:
 | |
| 	 * OTP2
 | |
| 	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * |
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * | vm_h9 | vm_h8 | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 |
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 *
 | |
| 	 * Data bits 8540:
 | |
| 	 * OTP4
 | |
| 	 * | 7	   | 6	   | 5	   | 4	   | 3	   | 2	   | 1	   | 0
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * |					   | ib_h9 | ib_h8 | ib_h7
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * | ib_h6 | ib_h5 | ib_h4 | ib_h3 | ib_h2 | ib_h1 | ib_h0 | ib_l5
 | |
| 	 * |.......|.......|.......|.......|.......|.......|.......|.......
 | |
| 	 * | ib_l4 | ib_l3 | ib_l2 | ib_l1 | ib_l0 |
 | |
| 	 *
 | |
| 	 *
 | |
| 	 * Ideal output ADC codes corresponding to injected input voltages
 | |
| 	 * during manufacturing is:
 | |
| 	 *
 | |
| 	 * vmain_high: Vin = 19500mV / ADC ideal code = 997
 | |
| 	 * vmain_low:  Vin = 315mV   / ADC ideal code = 16
 | |
| 	 * btemp_high: Vin = 1300mV  / ADC ideal code = 985
 | |
| 	 * btemp_low:  Vin = 21mV    / ADC ideal code = 16
 | |
| 	 * vbat_high:  Vin = 4700mV  / ADC ideal code = 982
 | |
| 	 * vbat_low:   Vin = 2380mV  / ADC ideal code = 33
 | |
| 	 */
 | |
| 
 | |
| 	if (is_ab8540(ab8500)) {
 | |
| 		/* Calculate gain and offset for VMAIN if all reads succeeded*/
 | |
| 		if (!(ret[1] < 0 || ret[2] < 0)) {
 | |
| 			vmain_high = (((gpadc_cal[1] & 0xFF) << 2) |
 | |
| 				((gpadc_cal[2] & 0xC0) >> 6));
 | |
| 			vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
 | |
| 
 | |
| 			gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi =
 | |
| 				(u16)vmain_high;
 | |
| 			gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo =
 | |
| 				(u16)vmain_low;
 | |
| 
 | |
| 			gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
 | |
| 				(19500 - 315) / (vmain_high - vmain_low);
 | |
| 			gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE *
 | |
| 				19500 - (CALIB_SCALE * (19500 - 315) /
 | |
| 				(vmain_high - vmain_low)) * vmain_high;
 | |
| 		} else {
 | |
| 		gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* Read IBAT calibration Data */
 | |
| 		for (i = 0; i < ARRAY_SIZE(otp4_cal_regs); i++) {
 | |
| 			ret_otp4[i] = abx500_get_register_interruptible(
 | |
| 					gpadc->dev, AB8500_OTP_EMUL,
 | |
| 					otp4_cal_regs[i],  &gpadc_otp4[i]);
 | |
| 			if (ret_otp4[i] < 0)
 | |
| 				dev_err(gpadc->dev,
 | |
| 					"%s: read otp4 reg 0x%02x failed\n",
 | |
| 					__func__, otp4_cal_regs[i]);
 | |
| 		}
 | |
| 
 | |
| 		/* Calculate gain and offset for IBAT if all reads succeeded */
 | |
| 		if (!(ret_otp4[0] < 0 || ret_otp4[1] < 0 || ret_otp4[2] < 0)) {
 | |
| 			ibat_high = (((gpadc_otp4[0] & 0x07) << 7) |
 | |
| 				((gpadc_otp4[1] & 0xFE) >> 1));
 | |
| 			ibat_low = (((gpadc_otp4[1] & 0x01) << 5) |
 | |
| 				((gpadc_otp4[2] & 0xF8) >> 3));
 | |
| 
 | |
| 			gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi =
 | |
| 				(u16)ibat_high;
 | |
| 			gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo =
 | |
| 				(u16)ibat_low;
 | |
| 
 | |
| 			V_gain = ((IBAT_VDROP_H - IBAT_VDROP_L)
 | |
| 				<< CALIB_SHIFT_IBAT) / (ibat_high - ibat_low);
 | |
| 
 | |
| 			V_offset = (IBAT_VDROP_H << CALIB_SHIFT_IBAT) -
 | |
| 				(((IBAT_VDROP_H - IBAT_VDROP_L) <<
 | |
| 				CALIB_SHIFT_IBAT) / (ibat_high - ibat_low))
 | |
| 				* ibat_high;
 | |
| 			/*
 | |
| 			 * Result obtained is in mV (at a scale factor),
 | |
| 			 * we need to calculate gain and offset to get mA
 | |
| 			 */
 | |
| 			V2A_gain = (ADC_CH_IBAT_MAX - ADC_CH_IBAT_MIN)/
 | |
| 				(ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V);
 | |
| 			V2A_offset = ((ADC_CH_IBAT_MAX_V * ADC_CH_IBAT_MIN -
 | |
| 				ADC_CH_IBAT_MAX * ADC_CH_IBAT_MIN_V)
 | |
| 				<< CALIB_SHIFT_IBAT)
 | |
| 				/ (ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V);
 | |
| 
 | |
| 			gpadc->cal_data[ADC_INPUT_IBAT].gain =
 | |
| 				V_gain * V2A_gain;
 | |
| 			gpadc->cal_data[ADC_INPUT_IBAT].offset =
 | |
| 				V_offset * V2A_gain + V2A_offset;
 | |
| 		} else {
 | |
| 			gpadc->cal_data[ADC_INPUT_IBAT].gain = 0;
 | |
| 		}
 | |
| 
 | |
| 		dev_dbg(gpadc->dev, "IBAT gain %llu offset %llu\n",
 | |
| 			gpadc->cal_data[ADC_INPUT_IBAT].gain,
 | |
| 			gpadc->cal_data[ADC_INPUT_IBAT].offset);
 | |
| 	} else {
 | |
| 		/* Calculate gain and offset for VMAIN if all reads succeeded */
 | |
| 		if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) {
 | |
| 			vmain_high = (((gpadc_cal[0] & 0x03) << 8) |
 | |
| 				((gpadc_cal[1] & 0x3F) << 2) |
 | |
| 				((gpadc_cal[2] & 0xC0) >> 6));
 | |
| 			vmain_low = ((gpadc_cal[2] & 0x3E) >> 1);
 | |
| 
 | |
| 			gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi =
 | |
| 				(u16)vmain_high;
 | |
| 			gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo =
 | |
| 				(u16)vmain_low;
 | |
| 
 | |
| 			gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE *
 | |
| 				(19500 - 315) / (vmain_high - vmain_low);
 | |
| 
 | |
| 			gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE *
 | |
| 				19500 - (CALIB_SCALE * (19500 - 315) /
 | |
| 				(vmain_high - vmain_low)) * vmain_high;
 | |
| 		} else {
 | |
| 			gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate gain and offset for BTEMP if all reads succeeded */
 | |
| 	if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) {
 | |
| 		btemp_high = (((gpadc_cal[2] & 0x01) << 9) |
 | |
| 			(gpadc_cal[3] << 1) | ((gpadc_cal[4] & 0x80) >> 7));
 | |
| 		btemp_low = ((gpadc_cal[4] & 0x7C) >> 2);
 | |
| 
 | |
| 		gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi = (u16)btemp_high;
 | |
| 		gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo = (u16)btemp_low;
 | |
| 
 | |
| 		gpadc->cal_data[ADC_INPUT_BTEMP].gain =
 | |
| 			CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low);
 | |
| 		gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 -
 | |
| 			(CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low))
 | |
| 			* btemp_high;
 | |
| 	} else {
 | |
| 		gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate gain and offset for VBAT if all reads succeeded */
 | |
| 	if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) {
 | |
| 		vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]);
 | |
| 		vbat_low = ((gpadc_cal[6] & 0xFC) >> 2);
 | |
| 
 | |
| 		gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi = (u16)vbat_high;
 | |
| 		gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo = (u16)vbat_low;
 | |
| 
 | |
| 		gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE *
 | |
| 			(4700 - 2380) /	(vbat_high - vbat_low);
 | |
| 		gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 -
 | |
| 			(CALIB_SCALE * (4700 - 2380) /
 | |
| 			(vbat_high - vbat_low)) * vbat_high;
 | |
| 	} else {
 | |
| 		gpadc->cal_data[ADC_INPUT_VBAT].gain = 0;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(gpadc->dev, "VMAIN gain %llu offset %llu\n",
 | |
| 		gpadc->cal_data[ADC_INPUT_VMAIN].gain,
 | |
| 		gpadc->cal_data[ADC_INPUT_VMAIN].offset);
 | |
| 
 | |
| 	dev_dbg(gpadc->dev, "BTEMP gain %llu offset %llu\n",
 | |
| 		gpadc->cal_data[ADC_INPUT_BTEMP].gain,
 | |
| 		gpadc->cal_data[ADC_INPUT_BTEMP].offset);
 | |
| 
 | |
| 	dev_dbg(gpadc->dev, "VBAT gain %llu offset %llu\n",
 | |
| 		gpadc->cal_data[ADC_INPUT_VBAT].gain,
 | |
| 		gpadc->cal_data[ADC_INPUT_VBAT].offset);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| static int ab8500_gpadc_runtime_suspend(struct device *dev)
 | |
| {
 | |
| 	struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
 | |
| 
 | |
| 	regulator_disable(gpadc->regu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ab8500_gpadc_runtime_resume(struct device *dev)
 | |
| {
 | |
| 	struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regulator_enable(gpadc->regu);
 | |
| 	if (ret)
 | |
| 		dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret);
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int ab8500_gpadc_suspend(struct device *dev)
 | |
| {
 | |
| 	struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
 | |
| 
 | |
| 	mutex_lock(&gpadc->ab8500_gpadc_lock);
 | |
| 
 | |
| 	pm_runtime_get_sync(dev);
 | |
| 
 | |
| 	regulator_disable(gpadc->regu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ab8500_gpadc_resume(struct device *dev)
 | |
| {
 | |
| 	struct ab8500_gpadc *gpadc = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regulator_enable(gpadc->regu);
 | |
| 	if (ret)
 | |
| 		dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret);
 | |
| 
 | |
| 	pm_runtime_mark_last_busy(gpadc->dev);
 | |
| 	pm_runtime_put_autosuspend(gpadc->dev);
 | |
| 
 | |
| 	mutex_unlock(&gpadc->ab8500_gpadc_lock);
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int ab8500_gpadc_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct ab8500_gpadc *gpadc;
 | |
| 
 | |
| 	gpadc = devm_kzalloc(&pdev->dev,
 | |
| 			     sizeof(struct ab8500_gpadc), GFP_KERNEL);
 | |
| 	if (!gpadc)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	gpadc->irq_sw = platform_get_irq_byname(pdev, "SW_CONV_END");
 | |
| 	if (gpadc->irq_sw < 0)
 | |
| 		dev_err(gpadc->dev, "failed to get platform sw_conv_end irq\n");
 | |
| 
 | |
| 	gpadc->irq_hw = platform_get_irq_byname(pdev, "HW_CONV_END");
 | |
| 	if (gpadc->irq_hw < 0)
 | |
| 		dev_err(gpadc->dev, "failed to get platform hw_conv_end irq\n");
 | |
| 
 | |
| 	gpadc->dev = &pdev->dev;
 | |
| 	gpadc->parent = dev_get_drvdata(pdev->dev.parent);
 | |
| 	mutex_init(&gpadc->ab8500_gpadc_lock);
 | |
| 
 | |
| 	/* Initialize completion used to notify completion of conversion */
 | |
| 	init_completion(&gpadc->ab8500_gpadc_complete);
 | |
| 
 | |
| 	/* Register interrupts */
 | |
| 	if (gpadc->irq_sw >= 0) {
 | |
| 		ret = request_threaded_irq(gpadc->irq_sw, NULL,
 | |
| 			ab8500_bm_gpadcconvend_handler,
 | |
| 			IRQF_NO_SUSPEND | IRQF_SHARED | IRQF_ONESHOT,
 | |
| 			"ab8500-gpadc-sw",
 | |
| 			gpadc);
 | |
| 		if (ret < 0) {
 | |
| 			dev_err(gpadc->dev,
 | |
| 				"Failed to register interrupt irq: %d\n",
 | |
| 				gpadc->irq_sw);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (gpadc->irq_hw >= 0) {
 | |
| 		ret = request_threaded_irq(gpadc->irq_hw, NULL,
 | |
| 			ab8500_bm_gpadcconvend_handler,
 | |
| 			IRQF_NO_SUSPEND | IRQF_SHARED | IRQF_ONESHOT,
 | |
| 			"ab8500-gpadc-hw",
 | |
| 			gpadc);
 | |
| 		if (ret < 0) {
 | |
| 			dev_err(gpadc->dev,
 | |
| 				"Failed to register interrupt irq: %d\n",
 | |
| 				gpadc->irq_hw);
 | |
| 			goto fail_irq;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* VTVout LDO used to power up ab8500-GPADC */
 | |
| 	gpadc->regu = devm_regulator_get(&pdev->dev, "vddadc");
 | |
| 	if (IS_ERR(gpadc->regu)) {
 | |
| 		ret = PTR_ERR(gpadc->regu);
 | |
| 		dev_err(gpadc->dev, "failed to get vtvout LDO\n");
 | |
| 		goto fail_irq;
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(pdev, gpadc);
 | |
| 
 | |
| 	ret = regulator_enable(gpadc->regu);
 | |
| 	if (ret) {
 | |
| 		dev_err(gpadc->dev, "Failed to enable vtvout LDO: %d\n", ret);
 | |
| 		goto fail_enable;
 | |
| 	}
 | |
| 
 | |
| 	pm_runtime_set_autosuspend_delay(gpadc->dev, GPADC_AUDOSUSPEND_DELAY);
 | |
| 	pm_runtime_use_autosuspend(gpadc->dev);
 | |
| 	pm_runtime_set_active(gpadc->dev);
 | |
| 	pm_runtime_enable(gpadc->dev);
 | |
| 
 | |
| 	ab8500_gpadc_read_calibration_data(gpadc);
 | |
| 	list_add_tail(&gpadc->node, &ab8500_gpadc_list);
 | |
| 	dev_dbg(gpadc->dev, "probe success\n");
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail_enable:
 | |
| fail_irq:
 | |
| 	free_irq(gpadc->irq_sw, gpadc);
 | |
| 	free_irq(gpadc->irq_hw, gpadc);
 | |
| fail:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ab8500_gpadc_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct ab8500_gpadc *gpadc = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	/* remove this gpadc entry from the list */
 | |
| 	list_del(&gpadc->node);
 | |
| 	/* remove interrupt  - completion of Sw ADC conversion */
 | |
| 	if (gpadc->irq_sw >= 0)
 | |
| 		free_irq(gpadc->irq_sw, gpadc);
 | |
| 	if (gpadc->irq_hw >= 0)
 | |
| 		free_irq(gpadc->irq_hw, gpadc);
 | |
| 
 | |
| 	pm_runtime_get_sync(gpadc->dev);
 | |
| 	pm_runtime_disable(gpadc->dev);
 | |
| 
 | |
| 	regulator_disable(gpadc->regu);
 | |
| 
 | |
| 	pm_runtime_set_suspended(gpadc->dev);
 | |
| 
 | |
| 	pm_runtime_put_noidle(gpadc->dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct dev_pm_ops ab8500_gpadc_pm_ops = {
 | |
| 	SET_RUNTIME_PM_OPS(ab8500_gpadc_runtime_suspend,
 | |
| 			   ab8500_gpadc_runtime_resume,
 | |
| 			   NULL)
 | |
| 	SET_SYSTEM_SLEEP_PM_OPS(ab8500_gpadc_suspend,
 | |
| 				ab8500_gpadc_resume)
 | |
| 
 | |
| };
 | |
| 
 | |
| static struct platform_driver ab8500_gpadc_driver = {
 | |
| 	.probe = ab8500_gpadc_probe,
 | |
| 	.remove = ab8500_gpadc_remove,
 | |
| 	.driver = {
 | |
| 		.name = "ab8500-gpadc",
 | |
| 		.pm = &ab8500_gpadc_pm_ops,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init ab8500_gpadc_init(void)
 | |
| {
 | |
| 	return platform_driver_register(&ab8500_gpadc_driver);
 | |
| }
 | |
| subsys_initcall_sync(ab8500_gpadc_init);
 | |
| 
 | |
| /**
 | |
|  * ab8540_gpadc_get_otp() - returns OTP values
 | |
|  *
 | |
|  */
 | |
| void ab8540_gpadc_get_otp(struct ab8500_gpadc *gpadc,
 | |
| 			u16 *vmain_l, u16 *vmain_h, u16 *btemp_l, u16 *btemp_h,
 | |
| 			u16 *vbat_l, u16 *vbat_h, u16 *ibat_l, u16 *ibat_h)
 | |
| {
 | |
| 	*vmain_l = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo;
 | |
| 	*vmain_h = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi;
 | |
| 	*btemp_l = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo;
 | |
| 	*btemp_h = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi;
 | |
| 	*vbat_l  = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo;
 | |
| 	*vbat_h  = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi;
 | |
| 	*ibat_l  = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo;
 | |
| 	*ibat_h  = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi;
 | |
| }
 |