forked from Minki/linux
2286 lines
64 KiB
C
2286 lines
64 KiB
C
/*
|
|
* Copyright 2012 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h> /* printk() */
|
|
#include <linux/slab.h> /* kmalloc() */
|
|
#include <linux/errno.h> /* error codes */
|
|
#include <linux/types.h> /* size_t */
|
|
#include <linux/interrupt.h>
|
|
#include <linux/in.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/netdevice.h> /* struct device, and other headers */
|
|
#include <linux/etherdevice.h> /* eth_type_trans */
|
|
#include <linux/skbuff.h>
|
|
#include <linux/ioctl.h>
|
|
#include <linux/cdev.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/in6.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/net_tstamp.h>
|
|
#include <linux/ptp_clock_kernel.h>
|
|
|
|
#include <asm/checksum.h>
|
|
#include <asm/homecache.h>
|
|
#include <gxio/mpipe.h>
|
|
#include <arch/sim.h>
|
|
|
|
/* Default transmit lockup timeout period, in jiffies. */
|
|
#define TILE_NET_TIMEOUT (5 * HZ)
|
|
|
|
/* The maximum number of distinct channels (idesc.channel is 5 bits). */
|
|
#define TILE_NET_CHANNELS 32
|
|
|
|
/* Maximum number of idescs to handle per "poll". */
|
|
#define TILE_NET_BATCH 128
|
|
|
|
/* Maximum number of packets to handle per "poll". */
|
|
#define TILE_NET_WEIGHT 64
|
|
|
|
/* Number of entries in each iqueue. */
|
|
#define IQUEUE_ENTRIES 512
|
|
|
|
/* Number of entries in each equeue. */
|
|
#define EQUEUE_ENTRIES 2048
|
|
|
|
/* Total header bytes per equeue slot. Must be big enough for 2 bytes
|
|
* of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to
|
|
* 60 bytes of actual TCP header. We round up to align to cache lines.
|
|
*/
|
|
#define HEADER_BYTES 128
|
|
|
|
/* Maximum completions per cpu per device (must be a power of two).
|
|
* ISSUE: What is the right number here? If this is too small, then
|
|
* egress might block waiting for free space in a completions array.
|
|
* ISSUE: At the least, allocate these only for initialized echannels.
|
|
*/
|
|
#define TILE_NET_MAX_COMPS 64
|
|
|
|
#define MAX_FRAGS (MAX_SKB_FRAGS + 1)
|
|
|
|
/* The "kinds" of buffer stacks (small/large/jumbo). */
|
|
#define MAX_KINDS 3
|
|
|
|
/* Size of completions data to allocate.
|
|
* ISSUE: Probably more than needed since we don't use all the channels.
|
|
*/
|
|
#define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps))
|
|
|
|
/* Size of NotifRing data to allocate. */
|
|
#define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t))
|
|
|
|
/* Timeout to wake the per-device TX timer after we stop the queue.
|
|
* We don't want the timeout too short (adds overhead, and might end
|
|
* up causing stop/wake/stop/wake cycles) or too long (affects performance).
|
|
* For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets.
|
|
*/
|
|
#define TX_TIMER_DELAY_USEC 30
|
|
|
|
/* Timeout to wake the per-cpu egress timer to free completions. */
|
|
#define EGRESS_TIMER_DELAY_USEC 1000
|
|
|
|
MODULE_AUTHOR("Tilera Corporation");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/* A "packet fragment" (a chunk of memory). */
|
|
struct frag {
|
|
void *buf;
|
|
size_t length;
|
|
};
|
|
|
|
/* A single completion. */
|
|
struct tile_net_comp {
|
|
/* The "complete_count" when the completion will be complete. */
|
|
s64 when;
|
|
/* The buffer to be freed when the completion is complete. */
|
|
struct sk_buff *skb;
|
|
};
|
|
|
|
/* The completions for a given cpu and echannel. */
|
|
struct tile_net_comps {
|
|
/* The completions. */
|
|
struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS];
|
|
/* The number of completions used. */
|
|
unsigned long comp_next;
|
|
/* The number of completions freed. */
|
|
unsigned long comp_last;
|
|
};
|
|
|
|
/* The transmit wake timer for a given cpu and echannel. */
|
|
struct tile_net_tx_wake {
|
|
int tx_queue_idx;
|
|
struct hrtimer timer;
|
|
struct net_device *dev;
|
|
};
|
|
|
|
/* Info for a specific cpu. */
|
|
struct tile_net_info {
|
|
/* Our cpu. */
|
|
int my_cpu;
|
|
/* A timer for handling egress completions. */
|
|
struct hrtimer egress_timer;
|
|
/* True if "egress_timer" is scheduled. */
|
|
bool egress_timer_scheduled;
|
|
struct info_mpipe {
|
|
/* Packet queue. */
|
|
gxio_mpipe_iqueue_t iqueue;
|
|
/* The NAPI struct. */
|
|
struct napi_struct napi;
|
|
/* Number of buffers (by kind) which must still be provided. */
|
|
unsigned int num_needed_buffers[MAX_KINDS];
|
|
/* instance id. */
|
|
int instance;
|
|
/* True if iqueue is valid. */
|
|
bool has_iqueue;
|
|
/* NAPI flags. */
|
|
bool napi_added;
|
|
bool napi_enabled;
|
|
/* Comps for each egress channel. */
|
|
struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS];
|
|
/* Transmit wake timer for each egress channel. */
|
|
struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS];
|
|
} mpipe[NR_MPIPE_MAX];
|
|
};
|
|
|
|
/* Info for egress on a particular egress channel. */
|
|
struct tile_net_egress {
|
|
/* The "equeue". */
|
|
gxio_mpipe_equeue_t *equeue;
|
|
/* The headers for TSO. */
|
|
unsigned char *headers;
|
|
};
|
|
|
|
/* Info for a specific device. */
|
|
struct tile_net_priv {
|
|
/* Our network device. */
|
|
struct net_device *dev;
|
|
/* The primary link. */
|
|
gxio_mpipe_link_t link;
|
|
/* The primary channel, if open, else -1. */
|
|
int channel;
|
|
/* The "loopify" egress link, if needed. */
|
|
gxio_mpipe_link_t loopify_link;
|
|
/* The "loopify" egress channel, if open, else -1. */
|
|
int loopify_channel;
|
|
/* The egress channel (channel or loopify_channel). */
|
|
int echannel;
|
|
/* mPIPE instance, 0 or 1. */
|
|
int instance;
|
|
/* The timestamp config. */
|
|
struct hwtstamp_config stamp_cfg;
|
|
};
|
|
|
|
static struct mpipe_data {
|
|
/* The ingress irq. */
|
|
int ingress_irq;
|
|
|
|
/* The "context" for all devices. */
|
|
gxio_mpipe_context_t context;
|
|
|
|
/* Egress info, indexed by "priv->echannel"
|
|
* (lazily created as needed).
|
|
*/
|
|
struct tile_net_egress
|
|
egress_for_echannel[TILE_NET_CHANNELS];
|
|
|
|
/* Devices currently associated with each channel.
|
|
* NOTE: The array entry can become NULL after ifconfig down, but
|
|
* we do not free the underlying net_device structures, so it is
|
|
* safe to use a pointer after reading it from this array.
|
|
*/
|
|
struct net_device
|
|
*tile_net_devs_for_channel[TILE_NET_CHANNELS];
|
|
|
|
/* The actual memory allocated for the buffer stacks. */
|
|
void *buffer_stack_vas[MAX_KINDS];
|
|
|
|
/* The amount of memory allocated for each buffer stack. */
|
|
size_t buffer_stack_bytes[MAX_KINDS];
|
|
|
|
/* The first buffer stack index
|
|
* (small = +0, large = +1, jumbo = +2).
|
|
*/
|
|
int first_buffer_stack;
|
|
|
|
/* The buckets. */
|
|
int first_bucket;
|
|
int num_buckets;
|
|
|
|
/* PTP-specific data. */
|
|
struct ptp_clock *ptp_clock;
|
|
struct ptp_clock_info caps;
|
|
|
|
/* Lock for ptp accessors. */
|
|
struct mutex ptp_lock;
|
|
|
|
} mpipe_data[NR_MPIPE_MAX] = {
|
|
[0 ... (NR_MPIPE_MAX - 1)] {
|
|
.ingress_irq = -1,
|
|
.first_buffer_stack = -1,
|
|
.first_bucket = -1,
|
|
.num_buckets = 1
|
|
}
|
|
};
|
|
|
|
/* A mutex for "tile_net_devs_for_channel". */
|
|
static DEFINE_MUTEX(tile_net_devs_for_channel_mutex);
|
|
|
|
/* The per-cpu info. */
|
|
static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info);
|
|
|
|
|
|
/* The buffer size enums for each buffer stack.
|
|
* See arch/tile/include/gxio/mpipe.h for the set of possible values.
|
|
* We avoid the "10384" size because it can induce "false chaining"
|
|
* on "cut-through" jumbo packets.
|
|
*/
|
|
static gxio_mpipe_buffer_size_enum_t buffer_size_enums[MAX_KINDS] = {
|
|
GXIO_MPIPE_BUFFER_SIZE_128,
|
|
GXIO_MPIPE_BUFFER_SIZE_1664,
|
|
GXIO_MPIPE_BUFFER_SIZE_16384
|
|
};
|
|
|
|
/* Text value of tile_net.cpus if passed as a module parameter. */
|
|
static char *network_cpus_string;
|
|
|
|
/* The actual cpus in "network_cpus". */
|
|
static struct cpumask network_cpus_map;
|
|
|
|
/* If "tile_net.loopify=LINK" was specified, this is "LINK". */
|
|
static char *loopify_link_name;
|
|
|
|
/* If "tile_net.custom" was specified, this is true. */
|
|
static bool custom_flag;
|
|
|
|
/* If "tile_net.jumbo=NUM" was specified, this is "NUM". */
|
|
static uint jumbo_num;
|
|
|
|
/* Obtain mpipe instance from struct tile_net_priv given struct net_device. */
|
|
static inline int mpipe_instance(struct net_device *dev)
|
|
{
|
|
struct tile_net_priv *priv = netdev_priv(dev);
|
|
return priv->instance;
|
|
}
|
|
|
|
/* The "tile_net.cpus" argument specifies the cpus that are dedicated
|
|
* to handle ingress packets.
|
|
*
|
|
* The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where
|
|
* m, n, x, y are integer numbers that represent the cpus that can be
|
|
* neither a dedicated cpu nor a dataplane cpu.
|
|
*/
|
|
static bool network_cpus_init(void)
|
|
{
|
|
char buf[1024];
|
|
int rc;
|
|
|
|
if (network_cpus_string == NULL)
|
|
return false;
|
|
|
|
rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map);
|
|
if (rc != 0) {
|
|
pr_warn("tile_net.cpus=%s: malformed cpu list\n",
|
|
network_cpus_string);
|
|
return false;
|
|
}
|
|
|
|
/* Remove dedicated cpus. */
|
|
cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask);
|
|
|
|
if (cpumask_empty(&network_cpus_map)) {
|
|
pr_warn("Ignoring empty tile_net.cpus='%s'.\n",
|
|
network_cpus_string);
|
|
return false;
|
|
}
|
|
|
|
cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map);
|
|
pr_info("Linux network CPUs: %s\n", buf);
|
|
return true;
|
|
}
|
|
|
|
module_param_named(cpus, network_cpus_string, charp, 0444);
|
|
MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts");
|
|
|
|
/* The "tile_net.loopify=LINK" argument causes the named device to
|
|
* actually use "loop0" for ingress, and "loop1" for egress. This
|
|
* allows an app to sit between the actual link and linux, passing
|
|
* (some) packets along to linux, and forwarding (some) packets sent
|
|
* out by linux.
|
|
*/
|
|
module_param_named(loopify, loopify_link_name, charp, 0444);
|
|
MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress");
|
|
|
|
/* The "tile_net.custom" argument causes us to ignore the "conventional"
|
|
* classifier metadata, in particular, the "l2_offset".
|
|
*/
|
|
module_param_named(custom, custom_flag, bool, 0444);
|
|
MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier");
|
|
|
|
/* The "tile_net.jumbo" argument causes us to support "jumbo" packets,
|
|
* and to allocate the given number of "jumbo" buffers.
|
|
*/
|
|
module_param_named(jumbo, jumbo_num, uint, 0444);
|
|
MODULE_PARM_DESC(jumbo, "the number of buffers to support jumbo packets");
|
|
|
|
/* Atomically update a statistics field.
|
|
* Note that on TILE-Gx, this operation is fire-and-forget on the
|
|
* issuing core (single-cycle dispatch) and takes only a few cycles
|
|
* longer than a regular store when the request reaches the home cache.
|
|
* No expensive bus management overhead is required.
|
|
*/
|
|
static void tile_net_stats_add(unsigned long value, unsigned long *field)
|
|
{
|
|
BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long));
|
|
atomic_long_add(value, (atomic_long_t *)field);
|
|
}
|
|
|
|
/* Allocate and push a buffer. */
|
|
static bool tile_net_provide_buffer(int instance, int kind)
|
|
{
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
gxio_mpipe_buffer_size_enum_t bse = buffer_size_enums[kind];
|
|
size_t bs = gxio_mpipe_buffer_size_enum_to_buffer_size(bse);
|
|
const unsigned long buffer_alignment = 128;
|
|
struct sk_buff *skb;
|
|
int len;
|
|
|
|
len = sizeof(struct sk_buff **) + buffer_alignment + bs;
|
|
skb = dev_alloc_skb(len);
|
|
if (skb == NULL)
|
|
return false;
|
|
|
|
/* Make room for a back-pointer to 'skb' and guarantee alignment. */
|
|
skb_reserve(skb, sizeof(struct sk_buff **));
|
|
skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1));
|
|
|
|
/* Save a back-pointer to 'skb'. */
|
|
*(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb;
|
|
|
|
/* Make sure "skb" and the back-pointer have been flushed. */
|
|
wmb();
|
|
|
|
gxio_mpipe_push_buffer(&md->context, md->first_buffer_stack + kind,
|
|
(void *)va_to_tile_io_addr(skb->data));
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Convert a raw mpipe buffer to its matching skb pointer. */
|
|
static struct sk_buff *mpipe_buf_to_skb(void *va)
|
|
{
|
|
/* Acquire the associated "skb". */
|
|
struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
|
|
struct sk_buff *skb = *skb_ptr;
|
|
|
|
/* Paranoia. */
|
|
if (skb->data != va) {
|
|
/* Panic here since there's a reasonable chance
|
|
* that corrupt buffers means generic memory
|
|
* corruption, with unpredictable system effects.
|
|
*/
|
|
panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p",
|
|
va, skb, skb->data);
|
|
}
|
|
|
|
return skb;
|
|
}
|
|
|
|
static void tile_net_pop_all_buffers(int instance, int stack)
|
|
{
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
|
|
for (;;) {
|
|
tile_io_addr_t addr =
|
|
(tile_io_addr_t)gxio_mpipe_pop_buffer(&md->context,
|
|
stack);
|
|
if (addr == 0)
|
|
break;
|
|
dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr)));
|
|
}
|
|
}
|
|
|
|
/* Provide linux buffers to mPIPE. */
|
|
static void tile_net_provide_needed_buffers(void)
|
|
{
|
|
struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
|
|
int instance, kind;
|
|
for (instance = 0; instance < NR_MPIPE_MAX &&
|
|
info->mpipe[instance].has_iqueue; instance++) {
|
|
for (kind = 0; kind < MAX_KINDS; kind++) {
|
|
while (info->mpipe[instance].num_needed_buffers[kind]
|
|
!= 0) {
|
|
if (!tile_net_provide_buffer(instance, kind)) {
|
|
pr_notice("Tile %d still needs"
|
|
" some buffers\n",
|
|
info->my_cpu);
|
|
return;
|
|
}
|
|
info->mpipe[instance].
|
|
num_needed_buffers[kind]--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Get RX timestamp, and store it in the skb. */
|
|
static void tile_rx_timestamp(struct tile_net_priv *priv, struct sk_buff *skb,
|
|
gxio_mpipe_idesc_t *idesc)
|
|
{
|
|
if (unlikely(priv->stamp_cfg.rx_filter != HWTSTAMP_FILTER_NONE)) {
|
|
struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
|
|
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
|
|
shhwtstamps->hwtstamp = ktime_set(idesc->time_stamp_sec,
|
|
idesc->time_stamp_ns);
|
|
}
|
|
}
|
|
|
|
/* Get TX timestamp, and store it in the skb. */
|
|
static void tile_tx_timestamp(struct sk_buff *skb, int instance)
|
|
{
|
|
struct skb_shared_info *shtx = skb_shinfo(skb);
|
|
if (unlikely((shtx->tx_flags & SKBTX_HW_TSTAMP) != 0)) {
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
struct skb_shared_hwtstamps shhwtstamps;
|
|
struct timespec ts;
|
|
|
|
shtx->tx_flags |= SKBTX_IN_PROGRESS;
|
|
gxio_mpipe_get_timestamp(&md->context, &ts);
|
|
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
|
|
shhwtstamps.hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
|
|
skb_tstamp_tx(skb, &shhwtstamps);
|
|
}
|
|
}
|
|
|
|
/* Use ioctl() to enable or disable TX or RX timestamping. */
|
|
static int tile_hwtstamp_set(struct net_device *dev, struct ifreq *rq)
|
|
{
|
|
struct hwtstamp_config config;
|
|
struct tile_net_priv *priv = netdev_priv(dev);
|
|
|
|
if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
|
|
return -EFAULT;
|
|
|
|
if (config.flags) /* reserved for future extensions */
|
|
return -EINVAL;
|
|
|
|
switch (config.tx_type) {
|
|
case HWTSTAMP_TX_OFF:
|
|
case HWTSTAMP_TX_ON:
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
switch (config.rx_filter) {
|
|
case HWTSTAMP_FILTER_NONE:
|
|
break;
|
|
case HWTSTAMP_FILTER_ALL:
|
|
case HWTSTAMP_FILTER_SOME:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
|
|
config.rx_filter = HWTSTAMP_FILTER_ALL;
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
|
|
return -EFAULT;
|
|
|
|
priv->stamp_cfg = config;
|
|
return 0;
|
|
}
|
|
|
|
static int tile_hwtstamp_get(struct net_device *dev, struct ifreq *rq)
|
|
{
|
|
struct tile_net_priv *priv = netdev_priv(dev);
|
|
|
|
if (copy_to_user(rq->ifr_data, &priv->stamp_cfg,
|
|
sizeof(priv->stamp_cfg)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool filter_packet(struct net_device *dev, void *buf)
|
|
{
|
|
/* Filter packets received before we're up. */
|
|
if (dev == NULL || !(dev->flags & IFF_UP))
|
|
return true;
|
|
|
|
/* Filter out packets that aren't for us. */
|
|
if (!(dev->flags & IFF_PROMISC) &&
|
|
!is_multicast_ether_addr(buf) &&
|
|
!ether_addr_equal(dev->dev_addr, buf))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb,
|
|
gxio_mpipe_idesc_t *idesc, unsigned long len)
|
|
{
|
|
struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
|
|
struct tile_net_priv *priv = netdev_priv(dev);
|
|
int instance = priv->instance;
|
|
|
|
/* Encode the actual packet length. */
|
|
skb_put(skb, len);
|
|
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
|
|
/* Acknowledge "good" hardware checksums. */
|
|
if (idesc->cs && idesc->csum_seed_val == 0xFFFF)
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
/* Get RX timestamp from idesc. */
|
|
tile_rx_timestamp(priv, skb, idesc);
|
|
|
|
napi_gro_receive(&info->mpipe[instance].napi, skb);
|
|
|
|
/* Update stats. */
|
|
tile_net_stats_add(1, &dev->stats.rx_packets);
|
|
tile_net_stats_add(len, &dev->stats.rx_bytes);
|
|
|
|
/* Need a new buffer. */
|
|
if (idesc->size == buffer_size_enums[0])
|
|
info->mpipe[instance].num_needed_buffers[0]++;
|
|
else if (idesc->size == buffer_size_enums[1])
|
|
info->mpipe[instance].num_needed_buffers[1]++;
|
|
else
|
|
info->mpipe[instance].num_needed_buffers[2]++;
|
|
}
|
|
|
|
/* Handle a packet. Return true if "processed", false if "filtered". */
|
|
static bool tile_net_handle_packet(int instance, gxio_mpipe_idesc_t *idesc)
|
|
{
|
|
struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
struct net_device *dev = md->tile_net_devs_for_channel[idesc->channel];
|
|
uint8_t l2_offset;
|
|
void *va;
|
|
void *buf;
|
|
unsigned long len;
|
|
bool filter;
|
|
|
|
/* Drop packets for which no buffer was available (which can
|
|
* happen under heavy load), or for which the me/tr/ce flags
|
|
* are set (which can happen for jumbo cut-through packets,
|
|
* or with a customized classifier).
|
|
*/
|
|
if (idesc->be || idesc->me || idesc->tr || idesc->ce) {
|
|
if (dev)
|
|
tile_net_stats_add(1, &dev->stats.rx_errors);
|
|
goto drop;
|
|
}
|
|
|
|
/* Get the "l2_offset", if allowed. */
|
|
l2_offset = custom_flag ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc);
|
|
|
|
/* Get the VA (including NET_IP_ALIGN bytes of "headroom"). */
|
|
va = tile_io_addr_to_va((unsigned long)idesc->va);
|
|
|
|
/* Get the actual packet start/length. */
|
|
buf = va + l2_offset;
|
|
len = idesc->l2_size - l2_offset;
|
|
|
|
/* Point "va" at the raw buffer. */
|
|
va -= NET_IP_ALIGN;
|
|
|
|
filter = filter_packet(dev, buf);
|
|
if (filter) {
|
|
if (dev)
|
|
tile_net_stats_add(1, &dev->stats.rx_dropped);
|
|
drop:
|
|
gxio_mpipe_iqueue_drop(&info->mpipe[instance].iqueue, idesc);
|
|
} else {
|
|
struct sk_buff *skb = mpipe_buf_to_skb(va);
|
|
|
|
/* Skip headroom, and any custom header. */
|
|
skb_reserve(skb, NET_IP_ALIGN + l2_offset);
|
|
|
|
tile_net_receive_skb(dev, skb, idesc, len);
|
|
}
|
|
|
|
gxio_mpipe_iqueue_consume(&info->mpipe[instance].iqueue, idesc);
|
|
return !filter;
|
|
}
|
|
|
|
/* Handle some packets for the current CPU.
|
|
*
|
|
* This function handles up to TILE_NET_BATCH idescs per call.
|
|
*
|
|
* ISSUE: Since we do not provide new buffers until this function is
|
|
* complete, we must initially provide enough buffers for each network
|
|
* cpu to fill its iqueue and also its batched idescs.
|
|
*
|
|
* ISSUE: The "rotting packet" race condition occurs if a packet
|
|
* arrives after the queue appears to be empty, and before the
|
|
* hypervisor interrupt is re-enabled.
|
|
*/
|
|
static int tile_net_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
|
|
unsigned int work = 0;
|
|
gxio_mpipe_idesc_t *idesc;
|
|
int instance, i, n;
|
|
struct mpipe_data *md;
|
|
struct info_mpipe *info_mpipe =
|
|
container_of(napi, struct info_mpipe, napi);
|
|
|
|
instance = info_mpipe->instance;
|
|
while ((n = gxio_mpipe_iqueue_try_peek(
|
|
&info_mpipe->iqueue,
|
|
&idesc)) > 0) {
|
|
for (i = 0; i < n; i++) {
|
|
if (i == TILE_NET_BATCH)
|
|
goto done;
|
|
if (tile_net_handle_packet(instance,
|
|
idesc + i)) {
|
|
if (++work >= budget)
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* There are no packets left. */
|
|
napi_complete(&info_mpipe->napi);
|
|
|
|
md = &mpipe_data[instance];
|
|
/* Re-enable hypervisor interrupts. */
|
|
gxio_mpipe_enable_notif_ring_interrupt(
|
|
&md->context, info->mpipe[instance].iqueue.ring);
|
|
|
|
/* HACK: Avoid the "rotting packet" problem. */
|
|
if (gxio_mpipe_iqueue_try_peek(&info_mpipe->iqueue, &idesc) > 0)
|
|
napi_schedule(&info_mpipe->napi);
|
|
|
|
/* ISSUE: Handle completions? */
|
|
|
|
done:
|
|
tile_net_provide_needed_buffers();
|
|
|
|
return work;
|
|
}
|
|
|
|
/* Handle an ingress interrupt from an instance on the current cpu. */
|
|
static irqreturn_t tile_net_handle_ingress_irq(int irq, void *id)
|
|
{
|
|
struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
|
|
napi_schedule(&info->mpipe[(uint64_t)id].napi);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Free some completions. This must be called with interrupts blocked. */
|
|
static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue,
|
|
struct tile_net_comps *comps,
|
|
int limit, bool force_update)
|
|
{
|
|
int n = 0;
|
|
while (comps->comp_last < comps->comp_next) {
|
|
unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS;
|
|
struct tile_net_comp *comp = &comps->comp_queue[cid];
|
|
if (!gxio_mpipe_equeue_is_complete(equeue, comp->when,
|
|
force_update || n == 0))
|
|
break;
|
|
dev_kfree_skb_irq(comp->skb);
|
|
comps->comp_last++;
|
|
if (++n == limit)
|
|
break;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/* Add a completion. This must be called with interrupts blocked.
|
|
* tile_net_equeue_try_reserve() will have ensured a free completion entry.
|
|
*/
|
|
static void add_comp(gxio_mpipe_equeue_t *equeue,
|
|
struct tile_net_comps *comps,
|
|
uint64_t when, struct sk_buff *skb)
|
|
{
|
|
int cid = comps->comp_next % TILE_NET_MAX_COMPS;
|
|
comps->comp_queue[cid].when = when;
|
|
comps->comp_queue[cid].skb = skb;
|
|
comps->comp_next++;
|
|
}
|
|
|
|
static void tile_net_schedule_tx_wake_timer(struct net_device *dev,
|
|
int tx_queue_idx)
|
|
{
|
|
struct tile_net_info *info = &per_cpu(per_cpu_info, tx_queue_idx);
|
|
struct tile_net_priv *priv = netdev_priv(dev);
|
|
int instance = priv->instance;
|
|
struct tile_net_tx_wake *tx_wake =
|
|
&info->mpipe[instance].tx_wake[priv->echannel];
|
|
|
|
hrtimer_start(&tx_wake->timer,
|
|
ktime_set(0, TX_TIMER_DELAY_USEC * 1000UL),
|
|
HRTIMER_MODE_REL_PINNED);
|
|
}
|
|
|
|
static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t)
|
|
{
|
|
struct tile_net_tx_wake *tx_wake =
|
|
container_of(t, struct tile_net_tx_wake, timer);
|
|
netif_wake_subqueue(tx_wake->dev, tx_wake->tx_queue_idx);
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
/* Make sure the egress timer is scheduled. */
|
|
static void tile_net_schedule_egress_timer(void)
|
|
{
|
|
struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
|
|
|
|
if (!info->egress_timer_scheduled) {
|
|
hrtimer_start(&info->egress_timer,
|
|
ktime_set(0, EGRESS_TIMER_DELAY_USEC * 1000UL),
|
|
HRTIMER_MODE_REL_PINNED);
|
|
info->egress_timer_scheduled = true;
|
|
}
|
|
}
|
|
|
|
/* The "function" for "info->egress_timer".
|
|
*
|
|
* This timer will reschedule itself as long as there are any pending
|
|
* completions expected for this tile.
|
|
*/
|
|
static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t)
|
|
{
|
|
struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
|
|
unsigned long irqflags;
|
|
bool pending = false;
|
|
int i, instance;
|
|
|
|
local_irq_save(irqflags);
|
|
|
|
/* The timer is no longer scheduled. */
|
|
info->egress_timer_scheduled = false;
|
|
|
|
/* Free all possible comps for this tile. */
|
|
for (instance = 0; instance < NR_MPIPE_MAX &&
|
|
info->mpipe[instance].has_iqueue; instance++) {
|
|
for (i = 0; i < TILE_NET_CHANNELS; i++) {
|
|
struct tile_net_egress *egress =
|
|
&mpipe_data[instance].egress_for_echannel[i];
|
|
struct tile_net_comps *comps =
|
|
info->mpipe[instance].comps_for_echannel[i];
|
|
if (!egress || comps->comp_last >= comps->comp_next)
|
|
continue;
|
|
tile_net_free_comps(egress->equeue, comps, -1, true);
|
|
pending = pending ||
|
|
(comps->comp_last < comps->comp_next);
|
|
}
|
|
}
|
|
|
|
/* Reschedule timer if needed. */
|
|
if (pending)
|
|
tile_net_schedule_egress_timer();
|
|
|
|
local_irq_restore(irqflags);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
/* PTP clock operations. */
|
|
|
|
static int ptp_mpipe_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
|
|
{
|
|
int ret = 0;
|
|
struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
|
|
mutex_lock(&md->ptp_lock);
|
|
if (gxio_mpipe_adjust_timestamp_freq(&md->context, ppb))
|
|
ret = -EINVAL;
|
|
mutex_unlock(&md->ptp_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int ptp_mpipe_adjtime(struct ptp_clock_info *ptp, s64 delta)
|
|
{
|
|
int ret = 0;
|
|
struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
|
|
mutex_lock(&md->ptp_lock);
|
|
if (gxio_mpipe_adjust_timestamp(&md->context, delta))
|
|
ret = -EBUSY;
|
|
mutex_unlock(&md->ptp_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int ptp_mpipe_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
|
|
{
|
|
int ret = 0;
|
|
struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
|
|
mutex_lock(&md->ptp_lock);
|
|
if (gxio_mpipe_get_timestamp(&md->context, ts))
|
|
ret = -EBUSY;
|
|
mutex_unlock(&md->ptp_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int ptp_mpipe_settime(struct ptp_clock_info *ptp,
|
|
const struct timespec *ts)
|
|
{
|
|
int ret = 0;
|
|
struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
|
|
mutex_lock(&md->ptp_lock);
|
|
if (gxio_mpipe_set_timestamp(&md->context, ts))
|
|
ret = -EBUSY;
|
|
mutex_unlock(&md->ptp_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int ptp_mpipe_enable(struct ptp_clock_info *ptp,
|
|
struct ptp_clock_request *request, int on)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static struct ptp_clock_info ptp_mpipe_caps = {
|
|
.owner = THIS_MODULE,
|
|
.name = "mPIPE clock",
|
|
.max_adj = 999999999,
|
|
.n_ext_ts = 0,
|
|
.pps = 0,
|
|
.adjfreq = ptp_mpipe_adjfreq,
|
|
.adjtime = ptp_mpipe_adjtime,
|
|
.gettime = ptp_mpipe_gettime,
|
|
.settime = ptp_mpipe_settime,
|
|
.enable = ptp_mpipe_enable,
|
|
};
|
|
|
|
/* Sync mPIPE's timestamp up with Linux system time and register PTP clock. */
|
|
static void register_ptp_clock(struct net_device *dev, struct mpipe_data *md)
|
|
{
|
|
struct timespec ts;
|
|
|
|
getnstimeofday(&ts);
|
|
gxio_mpipe_set_timestamp(&md->context, &ts);
|
|
|
|
mutex_init(&md->ptp_lock);
|
|
md->caps = ptp_mpipe_caps;
|
|
md->ptp_clock = ptp_clock_register(&md->caps, NULL);
|
|
if (IS_ERR(md->ptp_clock))
|
|
netdev_err(dev, "ptp_clock_register failed %ld\n",
|
|
PTR_ERR(md->ptp_clock));
|
|
}
|
|
|
|
/* Initialize PTP fields in a new device. */
|
|
static void init_ptp_dev(struct tile_net_priv *priv)
|
|
{
|
|
priv->stamp_cfg.rx_filter = HWTSTAMP_FILTER_NONE;
|
|
priv->stamp_cfg.tx_type = HWTSTAMP_TX_OFF;
|
|
}
|
|
|
|
/* Helper functions for "tile_net_update()". */
|
|
static void enable_ingress_irq(void *irq)
|
|
{
|
|
enable_percpu_irq((long)irq, 0);
|
|
}
|
|
|
|
static void disable_ingress_irq(void *irq)
|
|
{
|
|
disable_percpu_irq((long)irq);
|
|
}
|
|
|
|
/* Helper function for tile_net_open() and tile_net_stop().
|
|
* Always called under tile_net_devs_for_channel_mutex.
|
|
*/
|
|
static int tile_net_update(struct net_device *dev)
|
|
{
|
|
static gxio_mpipe_rules_t rules; /* too big to fit on the stack */
|
|
bool saw_channel = false;
|
|
int instance = mpipe_instance(dev);
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
int channel;
|
|
int rc;
|
|
int cpu;
|
|
|
|
saw_channel = false;
|
|
gxio_mpipe_rules_init(&rules, &md->context);
|
|
|
|
for (channel = 0; channel < TILE_NET_CHANNELS; channel++) {
|
|
if (md->tile_net_devs_for_channel[channel] == NULL)
|
|
continue;
|
|
if (!saw_channel) {
|
|
saw_channel = true;
|
|
gxio_mpipe_rules_begin(&rules, md->first_bucket,
|
|
md->num_buckets, NULL);
|
|
gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN);
|
|
}
|
|
gxio_mpipe_rules_add_channel(&rules, channel);
|
|
}
|
|
|
|
/* NOTE: This can fail if there is no classifier.
|
|
* ISSUE: Can anything else cause it to fail?
|
|
*/
|
|
rc = gxio_mpipe_rules_commit(&rules);
|
|
if (rc != 0) {
|
|
netdev_warn(dev, "gxio_mpipe_rules_commit: mpipe[%d] %d\n",
|
|
instance, rc);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Update all cpus, sequentially (to protect "netif_napi_add()").
|
|
* We use on_each_cpu to handle the IPI mask or unmask.
|
|
*/
|
|
if (!saw_channel)
|
|
on_each_cpu(disable_ingress_irq,
|
|
(void *)(long)(md->ingress_irq), 1);
|
|
for_each_online_cpu(cpu) {
|
|
struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
|
|
|
|
if (!info->mpipe[instance].has_iqueue)
|
|
continue;
|
|
if (saw_channel) {
|
|
if (!info->mpipe[instance].napi_added) {
|
|
netif_napi_add(dev, &info->mpipe[instance].napi,
|
|
tile_net_poll, TILE_NET_WEIGHT);
|
|
info->mpipe[instance].napi_added = true;
|
|
}
|
|
if (!info->mpipe[instance].napi_enabled) {
|
|
napi_enable(&info->mpipe[instance].napi);
|
|
info->mpipe[instance].napi_enabled = true;
|
|
}
|
|
} else {
|
|
if (info->mpipe[instance].napi_enabled) {
|
|
napi_disable(&info->mpipe[instance].napi);
|
|
info->mpipe[instance].napi_enabled = false;
|
|
}
|
|
/* FIXME: Drain the iqueue. */
|
|
}
|
|
}
|
|
if (saw_channel)
|
|
on_each_cpu(enable_ingress_irq,
|
|
(void *)(long)(md->ingress_irq), 1);
|
|
|
|
/* HACK: Allow packets to flow in the simulator. */
|
|
if (saw_channel)
|
|
sim_enable_mpipe_links(instance, -1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize a buffer stack. */
|
|
static int create_buffer_stack(struct net_device *dev,
|
|
int kind, size_t num_buffers)
|
|
{
|
|
pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH);
|
|
int instance = mpipe_instance(dev);
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
size_t needed = gxio_mpipe_calc_buffer_stack_bytes(num_buffers);
|
|
int stack_idx = md->first_buffer_stack + kind;
|
|
void *va;
|
|
int i, rc;
|
|
|
|
/* Round up to 64KB and then use alloc_pages() so we get the
|
|
* required 64KB alignment.
|
|
*/
|
|
md->buffer_stack_bytes[kind] =
|
|
ALIGN(needed, 64 * 1024);
|
|
|
|
va = alloc_pages_exact(md->buffer_stack_bytes[kind], GFP_KERNEL);
|
|
if (va == NULL) {
|
|
netdev_err(dev,
|
|
"Could not alloc %zd bytes for buffer stack %d\n",
|
|
md->buffer_stack_bytes[kind], kind);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Initialize the buffer stack. */
|
|
rc = gxio_mpipe_init_buffer_stack(&md->context, stack_idx,
|
|
buffer_size_enums[kind], va,
|
|
md->buffer_stack_bytes[kind], 0);
|
|
if (rc != 0) {
|
|
netdev_err(dev, "gxio_mpipe_init_buffer_stack: mpipe[%d] %d\n",
|
|
instance, rc);
|
|
free_pages_exact(va, md->buffer_stack_bytes[kind]);
|
|
return rc;
|
|
}
|
|
|
|
md->buffer_stack_vas[kind] = va;
|
|
|
|
rc = gxio_mpipe_register_client_memory(&md->context, stack_idx,
|
|
hash_pte, 0);
|
|
if (rc != 0) {
|
|
netdev_err(dev,
|
|
"gxio_mpipe_register_client_memory: mpipe[%d] %d\n",
|
|
instance, rc);
|
|
return rc;
|
|
}
|
|
|
|
/* Provide initial buffers. */
|
|
for (i = 0; i < num_buffers; i++) {
|
|
if (!tile_net_provide_buffer(instance, kind)) {
|
|
netdev_err(dev, "Cannot allocate initial sk_bufs!\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Allocate and initialize mpipe buffer stacks, and register them in
|
|
* the mPIPE TLBs, for small, large, and (possibly) jumbo packet sizes.
|
|
* This routine supports tile_net_init_mpipe(), below.
|
|
*/
|
|
static int init_buffer_stacks(struct net_device *dev,
|
|
int network_cpus_count)
|
|
{
|
|
int num_kinds = MAX_KINDS - (jumbo_num == 0);
|
|
size_t num_buffers;
|
|
int rc;
|
|
int instance = mpipe_instance(dev);
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
|
|
/* Allocate the buffer stacks. */
|
|
rc = gxio_mpipe_alloc_buffer_stacks(&md->context, num_kinds, 0, 0);
|
|
if (rc < 0) {
|
|
netdev_err(dev,
|
|
"gxio_mpipe_alloc_buffer_stacks: mpipe[%d] %d\n",
|
|
instance, rc);
|
|
return rc;
|
|
}
|
|
md->first_buffer_stack = rc;
|
|
|
|
/* Enough small/large buffers to (normally) avoid buffer errors. */
|
|
num_buffers =
|
|
network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH);
|
|
|
|
/* Allocate the small memory stack. */
|
|
if (rc >= 0)
|
|
rc = create_buffer_stack(dev, 0, num_buffers);
|
|
|
|
/* Allocate the large buffer stack. */
|
|
if (rc >= 0)
|
|
rc = create_buffer_stack(dev, 1, num_buffers);
|
|
|
|
/* Allocate the jumbo buffer stack if needed. */
|
|
if (rc >= 0 && jumbo_num != 0)
|
|
rc = create_buffer_stack(dev, 2, jumbo_num);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Allocate per-cpu resources (memory for completions and idescs).
|
|
* This routine supports tile_net_init_mpipe(), below.
|
|
*/
|
|
static int alloc_percpu_mpipe_resources(struct net_device *dev,
|
|
int cpu, int ring)
|
|
{
|
|
struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
|
|
int order, i, rc;
|
|
int instance = mpipe_instance(dev);
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
struct page *page;
|
|
void *addr;
|
|
|
|
/* Allocate the "comps". */
|
|
order = get_order(COMPS_SIZE);
|
|
page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
|
|
if (page == NULL) {
|
|
netdev_err(dev, "Failed to alloc %zd bytes comps memory\n",
|
|
COMPS_SIZE);
|
|
return -ENOMEM;
|
|
}
|
|
addr = pfn_to_kaddr(page_to_pfn(page));
|
|
memset(addr, 0, COMPS_SIZE);
|
|
for (i = 0; i < TILE_NET_CHANNELS; i++)
|
|
info->mpipe[instance].comps_for_echannel[i] =
|
|
addr + i * sizeof(struct tile_net_comps);
|
|
|
|
/* If this is a network cpu, create an iqueue. */
|
|
if (cpu_isset(cpu, network_cpus_map)) {
|
|
order = get_order(NOTIF_RING_SIZE);
|
|
page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
|
|
if (page == NULL) {
|
|
netdev_err(dev,
|
|
"Failed to alloc %zd bytes iqueue memory\n",
|
|
NOTIF_RING_SIZE);
|
|
return -ENOMEM;
|
|
}
|
|
addr = pfn_to_kaddr(page_to_pfn(page));
|
|
rc = gxio_mpipe_iqueue_init(&info->mpipe[instance].iqueue,
|
|
&md->context, ring++, addr,
|
|
NOTIF_RING_SIZE, 0);
|
|
if (rc < 0) {
|
|
netdev_err(dev,
|
|
"gxio_mpipe_iqueue_init failed: %d\n", rc);
|
|
return rc;
|
|
}
|
|
info->mpipe[instance].has_iqueue = true;
|
|
}
|
|
|
|
return ring;
|
|
}
|
|
|
|
/* Initialize NotifGroup and buckets.
|
|
* This routine supports tile_net_init_mpipe(), below.
|
|
*/
|
|
static int init_notif_group_and_buckets(struct net_device *dev,
|
|
int ring, int network_cpus_count)
|
|
{
|
|
int group, rc;
|
|
int instance = mpipe_instance(dev);
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
|
|
/* Allocate one NotifGroup. */
|
|
rc = gxio_mpipe_alloc_notif_groups(&md->context, 1, 0, 0);
|
|
if (rc < 0) {
|
|
netdev_err(dev, "gxio_mpipe_alloc_notif_groups: mpipe[%d] %d\n",
|
|
instance, rc);
|
|
return rc;
|
|
}
|
|
group = rc;
|
|
|
|
/* Initialize global num_buckets value. */
|
|
if (network_cpus_count > 4)
|
|
md->num_buckets = 256;
|
|
else if (network_cpus_count > 1)
|
|
md->num_buckets = 16;
|
|
|
|
/* Allocate some buckets, and set global first_bucket value. */
|
|
rc = gxio_mpipe_alloc_buckets(&md->context, md->num_buckets, 0, 0);
|
|
if (rc < 0) {
|
|
netdev_err(dev, "gxio_mpipe_alloc_buckets: mpipe[%d] %d\n",
|
|
instance, rc);
|
|
return rc;
|
|
}
|
|
md->first_bucket = rc;
|
|
|
|
/* Init group and buckets. */
|
|
rc = gxio_mpipe_init_notif_group_and_buckets(
|
|
&md->context, group, ring, network_cpus_count,
|
|
md->first_bucket, md->num_buckets,
|
|
GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY);
|
|
if (rc != 0) {
|
|
netdev_err(dev, "gxio_mpipe_init_notif_group_and_buckets: "
|
|
"mpipe[%d] %d\n", instance, rc);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Create an irq and register it, then activate the irq and request
|
|
* interrupts on all cores. Note that "ingress_irq" being initialized
|
|
* is how we know not to call tile_net_init_mpipe() again.
|
|
* This routine supports tile_net_init_mpipe(), below.
|
|
*/
|
|
static int tile_net_setup_interrupts(struct net_device *dev)
|
|
{
|
|
int cpu, rc, irq;
|
|
int instance = mpipe_instance(dev);
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
|
|
irq = md->ingress_irq;
|
|
if (irq < 0) {
|
|
irq = create_irq();
|
|
if (irq < 0) {
|
|
netdev_err(dev,
|
|
"create_irq failed: mpipe[%d] %d\n",
|
|
instance, irq);
|
|
return irq;
|
|
}
|
|
tile_irq_activate(irq, TILE_IRQ_PERCPU);
|
|
|
|
rc = request_irq(irq, tile_net_handle_ingress_irq,
|
|
0, "tile_net", (void *)((uint64_t)instance));
|
|
|
|
if (rc != 0) {
|
|
netdev_err(dev, "request_irq failed: mpipe[%d] %d\n",
|
|
instance, rc);
|
|
destroy_irq(irq);
|
|
return rc;
|
|
}
|
|
md->ingress_irq = irq;
|
|
}
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
|
|
if (info->mpipe[instance].has_iqueue) {
|
|
gxio_mpipe_request_notif_ring_interrupt(&md->context,
|
|
cpu_x(cpu), cpu_y(cpu), KERNEL_PL, irq,
|
|
info->mpipe[instance].iqueue.ring);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Undo any state set up partially by a failed call to tile_net_init_mpipe. */
|
|
static void tile_net_init_mpipe_fail(int instance)
|
|
{
|
|
int kind, cpu;
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
|
|
/* Do cleanups that require the mpipe context first. */
|
|
for (kind = 0; kind < MAX_KINDS; kind++) {
|
|
if (md->buffer_stack_vas[kind] != NULL) {
|
|
tile_net_pop_all_buffers(instance,
|
|
md->first_buffer_stack +
|
|
kind);
|
|
}
|
|
}
|
|
|
|
/* Destroy mpipe context so the hardware no longer owns any memory. */
|
|
gxio_mpipe_destroy(&md->context);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
|
|
free_pages(
|
|
(unsigned long)(
|
|
info->mpipe[instance].comps_for_echannel[0]),
|
|
get_order(COMPS_SIZE));
|
|
info->mpipe[instance].comps_for_echannel[0] = NULL;
|
|
free_pages((unsigned long)(info->mpipe[instance].iqueue.idescs),
|
|
get_order(NOTIF_RING_SIZE));
|
|
info->mpipe[instance].iqueue.idescs = NULL;
|
|
}
|
|
|
|
for (kind = 0; kind < MAX_KINDS; kind++) {
|
|
if (md->buffer_stack_vas[kind] != NULL) {
|
|
free_pages_exact(md->buffer_stack_vas[kind],
|
|
md->buffer_stack_bytes[kind]);
|
|
md->buffer_stack_vas[kind] = NULL;
|
|
}
|
|
}
|
|
|
|
md->first_buffer_stack = -1;
|
|
md->first_bucket = -1;
|
|
}
|
|
|
|
/* The first time any tilegx network device is opened, we initialize
|
|
* the global mpipe state. If this step fails, we fail to open the
|
|
* device, but if it succeeds, we never need to do it again, and since
|
|
* tile_net can't be unloaded, we never undo it.
|
|
*
|
|
* Note that some resources in this path (buffer stack indices,
|
|
* bindings from init_buffer_stack, etc.) are hypervisor resources
|
|
* that are freed implicitly by gxio_mpipe_destroy().
|
|
*/
|
|
static int tile_net_init_mpipe(struct net_device *dev)
|
|
{
|
|
int rc;
|
|
int cpu;
|
|
int first_ring, ring;
|
|
int instance = mpipe_instance(dev);
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
int network_cpus_count = cpus_weight(network_cpus_map);
|
|
|
|
if (!hash_default) {
|
|
netdev_err(dev, "Networking requires hash_default!\n");
|
|
return -EIO;
|
|
}
|
|
|
|
rc = gxio_mpipe_init(&md->context, instance);
|
|
if (rc != 0) {
|
|
netdev_err(dev, "gxio_mpipe_init: mpipe[%d] %d\n",
|
|
instance, rc);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Set up the buffer stacks. */
|
|
rc = init_buffer_stacks(dev, network_cpus_count);
|
|
if (rc != 0)
|
|
goto fail;
|
|
|
|
/* Allocate one NotifRing for each network cpu. */
|
|
rc = gxio_mpipe_alloc_notif_rings(&md->context,
|
|
network_cpus_count, 0, 0);
|
|
if (rc < 0) {
|
|
netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n",
|
|
rc);
|
|
goto fail;
|
|
}
|
|
|
|
/* Init NotifRings per-cpu. */
|
|
first_ring = rc;
|
|
ring = first_ring;
|
|
for_each_online_cpu(cpu) {
|
|
rc = alloc_percpu_mpipe_resources(dev, cpu, ring);
|
|
if (rc < 0)
|
|
goto fail;
|
|
ring = rc;
|
|
}
|
|
|
|
/* Initialize NotifGroup and buckets. */
|
|
rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count);
|
|
if (rc != 0)
|
|
goto fail;
|
|
|
|
/* Create and enable interrupts. */
|
|
rc = tile_net_setup_interrupts(dev);
|
|
if (rc != 0)
|
|
goto fail;
|
|
|
|
/* Register PTP clock and set mPIPE timestamp, if configured. */
|
|
register_ptp_clock(dev, md);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
tile_net_init_mpipe_fail(instance);
|
|
return rc;
|
|
}
|
|
|
|
/* Create persistent egress info for a given egress channel.
|
|
* Note that this may be shared between, say, "gbe0" and "xgbe0".
|
|
* ISSUE: Defer header allocation until TSO is actually needed?
|
|
*/
|
|
static int tile_net_init_egress(struct net_device *dev, int echannel)
|
|
{
|
|
static int ering = -1;
|
|
struct page *headers_page, *edescs_page, *equeue_page;
|
|
gxio_mpipe_edesc_t *edescs;
|
|
gxio_mpipe_equeue_t *equeue;
|
|
unsigned char *headers;
|
|
int headers_order, edescs_order, equeue_order;
|
|
size_t edescs_size;
|
|
int rc = -ENOMEM;
|
|
int instance = mpipe_instance(dev);
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
|
|
/* Only initialize once. */
|
|
if (md->egress_for_echannel[echannel].equeue != NULL)
|
|
return 0;
|
|
|
|
/* Allocate memory for the "headers". */
|
|
headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES);
|
|
headers_page = alloc_pages(GFP_KERNEL, headers_order);
|
|
if (headers_page == NULL) {
|
|
netdev_warn(dev,
|
|
"Could not alloc %zd bytes for TSO headers.\n",
|
|
PAGE_SIZE << headers_order);
|
|
goto fail;
|
|
}
|
|
headers = pfn_to_kaddr(page_to_pfn(headers_page));
|
|
|
|
/* Allocate memory for the "edescs". */
|
|
edescs_size = EQUEUE_ENTRIES * sizeof(*edescs);
|
|
edescs_order = get_order(edescs_size);
|
|
edescs_page = alloc_pages(GFP_KERNEL, edescs_order);
|
|
if (edescs_page == NULL) {
|
|
netdev_warn(dev,
|
|
"Could not alloc %zd bytes for eDMA ring.\n",
|
|
edescs_size);
|
|
goto fail_headers;
|
|
}
|
|
edescs = pfn_to_kaddr(page_to_pfn(edescs_page));
|
|
|
|
/* Allocate memory for the "equeue". */
|
|
equeue_order = get_order(sizeof(*equeue));
|
|
equeue_page = alloc_pages(GFP_KERNEL, equeue_order);
|
|
if (equeue_page == NULL) {
|
|
netdev_warn(dev,
|
|
"Could not alloc %zd bytes for equeue info.\n",
|
|
PAGE_SIZE << equeue_order);
|
|
goto fail_edescs;
|
|
}
|
|
equeue = pfn_to_kaddr(page_to_pfn(equeue_page));
|
|
|
|
/* Allocate an edma ring (using a one entry "free list"). */
|
|
if (ering < 0) {
|
|
rc = gxio_mpipe_alloc_edma_rings(&md->context, 1, 0, 0);
|
|
if (rc < 0) {
|
|
netdev_warn(dev, "gxio_mpipe_alloc_edma_rings: "
|
|
"mpipe[%d] %d\n", instance, rc);
|
|
goto fail_equeue;
|
|
}
|
|
ering = rc;
|
|
}
|
|
|
|
/* Initialize the equeue. */
|
|
rc = gxio_mpipe_equeue_init(equeue, &md->context, ering, echannel,
|
|
edescs, edescs_size, 0);
|
|
if (rc != 0) {
|
|
netdev_err(dev, "gxio_mpipe_equeue_init: mpipe[%d] %d\n",
|
|
instance, rc);
|
|
goto fail_equeue;
|
|
}
|
|
|
|
/* Don't reuse the ering later. */
|
|
ering = -1;
|
|
|
|
if (jumbo_num != 0) {
|
|
/* Make sure "jumbo" packets can be egressed safely. */
|
|
if (gxio_mpipe_equeue_set_snf_size(equeue, 10368) < 0) {
|
|
/* ISSUE: There is no "gxio_mpipe_equeue_destroy()". */
|
|
netdev_warn(dev, "Jumbo packets may not be egressed"
|
|
" properly on channel %d\n", echannel);
|
|
}
|
|
}
|
|
|
|
/* Done. */
|
|
md->egress_for_echannel[echannel].equeue = equeue;
|
|
md->egress_for_echannel[echannel].headers = headers;
|
|
return 0;
|
|
|
|
fail_equeue:
|
|
__free_pages(equeue_page, equeue_order);
|
|
|
|
fail_edescs:
|
|
__free_pages(edescs_page, edescs_order);
|
|
|
|
fail_headers:
|
|
__free_pages(headers_page, headers_order);
|
|
|
|
fail:
|
|
return rc;
|
|
}
|
|
|
|
/* Return channel number for a newly-opened link. */
|
|
static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link,
|
|
const char *link_name)
|
|
{
|
|
int instance = mpipe_instance(dev);
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
int rc = gxio_mpipe_link_open(link, &md->context, link_name, 0);
|
|
if (rc < 0) {
|
|
netdev_err(dev, "Failed to open '%s', mpipe[%d], %d\n",
|
|
link_name, instance, rc);
|
|
return rc;
|
|
}
|
|
if (jumbo_num != 0) {
|
|
u32 attr = GXIO_MPIPE_LINK_RECEIVE_JUMBO;
|
|
rc = gxio_mpipe_link_set_attr(link, attr, 1);
|
|
if (rc != 0) {
|
|
netdev_err(dev,
|
|
"Cannot receive jumbo packets on '%s'\n",
|
|
link_name);
|
|
gxio_mpipe_link_close(link);
|
|
return rc;
|
|
}
|
|
}
|
|
rc = gxio_mpipe_link_channel(link);
|
|
if (rc < 0 || rc >= TILE_NET_CHANNELS) {
|
|
netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc);
|
|
gxio_mpipe_link_close(link);
|
|
return -EINVAL;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Help the kernel activate the given network interface. */
|
|
static int tile_net_open(struct net_device *dev)
|
|
{
|
|
struct tile_net_priv *priv = netdev_priv(dev);
|
|
int cpu, rc, instance;
|
|
|
|
mutex_lock(&tile_net_devs_for_channel_mutex);
|
|
|
|
/* Get the instance info. */
|
|
rc = gxio_mpipe_link_instance(dev->name);
|
|
if (rc < 0 || rc >= NR_MPIPE_MAX) {
|
|
mutex_unlock(&tile_net_devs_for_channel_mutex);
|
|
return -EIO;
|
|
}
|
|
|
|
priv->instance = rc;
|
|
instance = rc;
|
|
if (!mpipe_data[rc].context.mmio_fast_base) {
|
|
/* Do one-time initialization per instance the first time
|
|
* any device is opened.
|
|
*/
|
|
rc = tile_net_init_mpipe(dev);
|
|
if (rc != 0)
|
|
goto fail;
|
|
}
|
|
|
|
/* Determine if this is the "loopify" device. */
|
|
if (unlikely((loopify_link_name != NULL) &&
|
|
!strcmp(dev->name, loopify_link_name))) {
|
|
rc = tile_net_link_open(dev, &priv->link, "loop0");
|
|
if (rc < 0)
|
|
goto fail;
|
|
priv->channel = rc;
|
|
rc = tile_net_link_open(dev, &priv->loopify_link, "loop1");
|
|
if (rc < 0)
|
|
goto fail;
|
|
priv->loopify_channel = rc;
|
|
priv->echannel = rc;
|
|
} else {
|
|
rc = tile_net_link_open(dev, &priv->link, dev->name);
|
|
if (rc < 0)
|
|
goto fail;
|
|
priv->channel = rc;
|
|
priv->echannel = rc;
|
|
}
|
|
|
|
/* Initialize egress info (if needed). Once ever, per echannel. */
|
|
rc = tile_net_init_egress(dev, priv->echannel);
|
|
if (rc != 0)
|
|
goto fail;
|
|
|
|
mpipe_data[instance].tile_net_devs_for_channel[priv->channel] = dev;
|
|
|
|
rc = tile_net_update(dev);
|
|
if (rc != 0)
|
|
goto fail;
|
|
|
|
mutex_unlock(&tile_net_devs_for_channel_mutex);
|
|
|
|
/* Initialize the transmit wake timer for this device for each cpu. */
|
|
for_each_online_cpu(cpu) {
|
|
struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
|
|
struct tile_net_tx_wake *tx_wake =
|
|
&info->mpipe[instance].tx_wake[priv->echannel];
|
|
|
|
hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC,
|
|
HRTIMER_MODE_REL);
|
|
tx_wake->tx_queue_idx = cpu;
|
|
tx_wake->timer.function = tile_net_handle_tx_wake_timer;
|
|
tx_wake->dev = dev;
|
|
}
|
|
|
|
for_each_online_cpu(cpu)
|
|
netif_start_subqueue(dev, cpu);
|
|
netif_carrier_on(dev);
|
|
return 0;
|
|
|
|
fail:
|
|
if (priv->loopify_channel >= 0) {
|
|
if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
|
|
netdev_warn(dev, "Failed to close loopify link!\n");
|
|
priv->loopify_channel = -1;
|
|
}
|
|
if (priv->channel >= 0) {
|
|
if (gxio_mpipe_link_close(&priv->link) != 0)
|
|
netdev_warn(dev, "Failed to close link!\n");
|
|
priv->channel = -1;
|
|
}
|
|
priv->echannel = -1;
|
|
mpipe_data[instance].tile_net_devs_for_channel[priv->channel] = NULL;
|
|
mutex_unlock(&tile_net_devs_for_channel_mutex);
|
|
|
|
/* Don't return raw gxio error codes to generic Linux. */
|
|
return (rc > -512) ? rc : -EIO;
|
|
}
|
|
|
|
/* Help the kernel deactivate the given network interface. */
|
|
static int tile_net_stop(struct net_device *dev)
|
|
{
|
|
struct tile_net_priv *priv = netdev_priv(dev);
|
|
int cpu;
|
|
int instance = priv->instance;
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
|
|
struct tile_net_tx_wake *tx_wake =
|
|
&info->mpipe[instance].tx_wake[priv->echannel];
|
|
|
|
hrtimer_cancel(&tx_wake->timer);
|
|
netif_stop_subqueue(dev, cpu);
|
|
}
|
|
|
|
mutex_lock(&tile_net_devs_for_channel_mutex);
|
|
md->tile_net_devs_for_channel[priv->channel] = NULL;
|
|
(void)tile_net_update(dev);
|
|
if (priv->loopify_channel >= 0) {
|
|
if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
|
|
netdev_warn(dev, "Failed to close loopify link!\n");
|
|
priv->loopify_channel = -1;
|
|
}
|
|
if (priv->channel >= 0) {
|
|
if (gxio_mpipe_link_close(&priv->link) != 0)
|
|
netdev_warn(dev, "Failed to close link!\n");
|
|
priv->channel = -1;
|
|
}
|
|
priv->echannel = -1;
|
|
mutex_unlock(&tile_net_devs_for_channel_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Determine the VA for a fragment. */
|
|
static inline void *tile_net_frag_buf(skb_frag_t *f)
|
|
{
|
|
unsigned long pfn = page_to_pfn(skb_frag_page(f));
|
|
return pfn_to_kaddr(pfn) + f->page_offset;
|
|
}
|
|
|
|
/* Acquire a completion entry and an egress slot, or if we can't,
|
|
* stop the queue and schedule the tx_wake timer.
|
|
*/
|
|
static s64 tile_net_equeue_try_reserve(struct net_device *dev,
|
|
int tx_queue_idx,
|
|
struct tile_net_comps *comps,
|
|
gxio_mpipe_equeue_t *equeue,
|
|
int num_edescs)
|
|
{
|
|
/* Try to acquire a completion entry. */
|
|
if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 ||
|
|
tile_net_free_comps(equeue, comps, 32, false) != 0) {
|
|
|
|
/* Try to acquire an egress slot. */
|
|
s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
|
|
if (slot >= 0)
|
|
return slot;
|
|
|
|
/* Freeing some completions gives the equeue time to drain. */
|
|
tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false);
|
|
|
|
slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
|
|
if (slot >= 0)
|
|
return slot;
|
|
}
|
|
|
|
/* Still nothing; give up and stop the queue for a short while. */
|
|
netif_stop_subqueue(dev, tx_queue_idx);
|
|
tile_net_schedule_tx_wake_timer(dev, tx_queue_idx);
|
|
return -1;
|
|
}
|
|
|
|
/* Determine how many edesc's are needed for TSO.
|
|
*
|
|
* Sometimes, if "sendfile()" requires copying, we will be called with
|
|
* "data" containing the header and payload, with "frags" being empty.
|
|
* Sometimes, for example when using NFS over TCP, a single segment can
|
|
* span 3 fragments. This requires special care.
|
|
*/
|
|
static int tso_count_edescs(struct sk_buff *skb)
|
|
{
|
|
struct skb_shared_info *sh = skb_shinfo(skb);
|
|
unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
|
|
unsigned int data_len = skb->len - sh_len;
|
|
unsigned int p_len = sh->gso_size;
|
|
long f_id = -1; /* id of the current fragment */
|
|
long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
|
|
long f_used = 0; /* bytes used from the current fragment */
|
|
long n; /* size of the current piece of payload */
|
|
int num_edescs = 0;
|
|
int segment;
|
|
|
|
for (segment = 0; segment < sh->gso_segs; segment++) {
|
|
|
|
unsigned int p_used = 0;
|
|
|
|
/* One edesc for header and for each piece of the payload. */
|
|
for (num_edescs++; p_used < p_len; num_edescs++) {
|
|
|
|
/* Advance as needed. */
|
|
while (f_used >= f_size) {
|
|
f_id++;
|
|
f_size = skb_frag_size(&sh->frags[f_id]);
|
|
f_used = 0;
|
|
}
|
|
|
|
/* Use bytes from the current fragment. */
|
|
n = p_len - p_used;
|
|
if (n > f_size - f_used)
|
|
n = f_size - f_used;
|
|
f_used += n;
|
|
p_used += n;
|
|
}
|
|
|
|
/* The last segment may be less than gso_size. */
|
|
data_len -= p_len;
|
|
if (data_len < p_len)
|
|
p_len = data_len;
|
|
}
|
|
|
|
return num_edescs;
|
|
}
|
|
|
|
/* Prepare modified copies of the skbuff headers. */
|
|
static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers,
|
|
s64 slot)
|
|
{
|
|
struct skb_shared_info *sh = skb_shinfo(skb);
|
|
struct iphdr *ih;
|
|
struct ipv6hdr *ih6;
|
|
struct tcphdr *th;
|
|
unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
|
|
unsigned int data_len = skb->len - sh_len;
|
|
unsigned char *data = skb->data;
|
|
unsigned int ih_off, th_off, p_len;
|
|
unsigned int isum_seed, tsum_seed, seq;
|
|
unsigned int uninitialized_var(id);
|
|
int is_ipv6;
|
|
long f_id = -1; /* id of the current fragment */
|
|
long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
|
|
long f_used = 0; /* bytes used from the current fragment */
|
|
long n; /* size of the current piece of payload */
|
|
int segment;
|
|
|
|
/* Locate original headers and compute various lengths. */
|
|
is_ipv6 = skb_is_gso_v6(skb);
|
|
if (is_ipv6) {
|
|
ih6 = ipv6_hdr(skb);
|
|
ih_off = skb_network_offset(skb);
|
|
} else {
|
|
ih = ip_hdr(skb);
|
|
ih_off = skb_network_offset(skb);
|
|
isum_seed = ((0xFFFF - ih->check) +
|
|
(0xFFFF - ih->tot_len) +
|
|
(0xFFFF - ih->id));
|
|
id = ntohs(ih->id);
|
|
}
|
|
|
|
th = tcp_hdr(skb);
|
|
th_off = skb_transport_offset(skb);
|
|
p_len = sh->gso_size;
|
|
|
|
tsum_seed = th->check + (0xFFFF ^ htons(skb->len));
|
|
seq = ntohl(th->seq);
|
|
|
|
/* Prepare all the headers. */
|
|
for (segment = 0; segment < sh->gso_segs; segment++) {
|
|
unsigned char *buf;
|
|
unsigned int p_used = 0;
|
|
|
|
/* Copy to the header memory for this segment. */
|
|
buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
|
|
NET_IP_ALIGN;
|
|
memcpy(buf, data, sh_len);
|
|
|
|
/* Update copied ip header. */
|
|
if (is_ipv6) {
|
|
ih6 = (struct ipv6hdr *)(buf + ih_off);
|
|
ih6->payload_len = htons(sh_len + p_len - ih_off -
|
|
sizeof(*ih6));
|
|
} else {
|
|
ih = (struct iphdr *)(buf + ih_off);
|
|
ih->tot_len = htons(sh_len + p_len - ih_off);
|
|
ih->id = htons(id++);
|
|
ih->check = csum_long(isum_seed + ih->tot_len +
|
|
ih->id) ^ 0xffff;
|
|
}
|
|
|
|
/* Update copied tcp header. */
|
|
th = (struct tcphdr *)(buf + th_off);
|
|
th->seq = htonl(seq);
|
|
th->check = csum_long(tsum_seed + htons(sh_len + p_len));
|
|
if (segment != sh->gso_segs - 1) {
|
|
th->fin = 0;
|
|
th->psh = 0;
|
|
}
|
|
|
|
/* Skip past the header. */
|
|
slot++;
|
|
|
|
/* Skip past the payload. */
|
|
while (p_used < p_len) {
|
|
|
|
/* Advance as needed. */
|
|
while (f_used >= f_size) {
|
|
f_id++;
|
|
f_size = skb_frag_size(&sh->frags[f_id]);
|
|
f_used = 0;
|
|
}
|
|
|
|
/* Use bytes from the current fragment. */
|
|
n = p_len - p_used;
|
|
if (n > f_size - f_used)
|
|
n = f_size - f_used;
|
|
f_used += n;
|
|
p_used += n;
|
|
|
|
slot++;
|
|
}
|
|
|
|
seq += p_len;
|
|
|
|
/* The last segment may be less than gso_size. */
|
|
data_len -= p_len;
|
|
if (data_len < p_len)
|
|
p_len = data_len;
|
|
}
|
|
|
|
/* Flush the headers so they are ready for hardware DMA. */
|
|
wmb();
|
|
}
|
|
|
|
/* Pass all the data to mpipe for egress. */
|
|
static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue,
|
|
struct sk_buff *skb, unsigned char *headers, s64 slot)
|
|
{
|
|
struct skb_shared_info *sh = skb_shinfo(skb);
|
|
int instance = mpipe_instance(dev);
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
|
|
unsigned int data_len = skb->len - sh_len;
|
|
unsigned int p_len = sh->gso_size;
|
|
gxio_mpipe_edesc_t edesc_head = { { 0 } };
|
|
gxio_mpipe_edesc_t edesc_body = { { 0 } };
|
|
long f_id = -1; /* id of the current fragment */
|
|
long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
|
|
long f_used = 0; /* bytes used from the current fragment */
|
|
void *f_data = skb->data + sh_len;
|
|
long n; /* size of the current piece of payload */
|
|
unsigned long tx_packets = 0, tx_bytes = 0;
|
|
unsigned int csum_start;
|
|
int segment;
|
|
|
|
/* Prepare to egress the headers: set up header edesc. */
|
|
csum_start = skb_checksum_start_offset(skb);
|
|
edesc_head.csum = 1;
|
|
edesc_head.csum_start = csum_start;
|
|
edesc_head.csum_dest = csum_start + skb->csum_offset;
|
|
edesc_head.xfer_size = sh_len;
|
|
|
|
/* This is only used to specify the TLB. */
|
|
edesc_head.stack_idx = md->first_buffer_stack;
|
|
edesc_body.stack_idx = md->first_buffer_stack;
|
|
|
|
/* Egress all the edescs. */
|
|
for (segment = 0; segment < sh->gso_segs; segment++) {
|
|
unsigned char *buf;
|
|
unsigned int p_used = 0;
|
|
|
|
/* Egress the header. */
|
|
buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
|
|
NET_IP_ALIGN;
|
|
edesc_head.va = va_to_tile_io_addr(buf);
|
|
gxio_mpipe_equeue_put_at(equeue, edesc_head, slot);
|
|
slot++;
|
|
|
|
/* Egress the payload. */
|
|
while (p_used < p_len) {
|
|
void *va;
|
|
|
|
/* Advance as needed. */
|
|
while (f_used >= f_size) {
|
|
f_id++;
|
|
f_size = skb_frag_size(&sh->frags[f_id]);
|
|
f_data = tile_net_frag_buf(&sh->frags[f_id]);
|
|
f_used = 0;
|
|
}
|
|
|
|
va = f_data + f_used;
|
|
|
|
/* Use bytes from the current fragment. */
|
|
n = p_len - p_used;
|
|
if (n > f_size - f_used)
|
|
n = f_size - f_used;
|
|
f_used += n;
|
|
p_used += n;
|
|
|
|
/* Egress a piece of the payload. */
|
|
edesc_body.va = va_to_tile_io_addr(va);
|
|
edesc_body.xfer_size = n;
|
|
edesc_body.bound = !(p_used < p_len);
|
|
gxio_mpipe_equeue_put_at(equeue, edesc_body, slot);
|
|
slot++;
|
|
}
|
|
|
|
tx_packets++;
|
|
tx_bytes += sh_len + p_len;
|
|
|
|
/* The last segment may be less than gso_size. */
|
|
data_len -= p_len;
|
|
if (data_len < p_len)
|
|
p_len = data_len;
|
|
}
|
|
|
|
/* Update stats. */
|
|
tile_net_stats_add(tx_packets, &dev->stats.tx_packets);
|
|
tile_net_stats_add(tx_bytes, &dev->stats.tx_bytes);
|
|
}
|
|
|
|
/* Do "TSO" handling for egress.
|
|
*
|
|
* Normally drivers set NETIF_F_TSO only to support hardware TSO;
|
|
* otherwise the stack uses scatter-gather to implement GSO in software.
|
|
* On our testing, enabling GSO support (via NETIF_F_SG) drops network
|
|
* performance down to around 7.5 Gbps on the 10G interfaces, although
|
|
* also dropping cpu utilization way down, to under 8%. But
|
|
* implementing "TSO" in the driver brings performance back up to line
|
|
* rate, while dropping cpu usage even further, to less than 4%. In
|
|
* practice, profiling of GSO shows that skb_segment() is what causes
|
|
* the performance overheads; we benefit in the driver from using
|
|
* preallocated memory to duplicate the TCP/IP headers.
|
|
*/
|
|
static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
|
|
struct tile_net_priv *priv = netdev_priv(dev);
|
|
int channel = priv->echannel;
|
|
int instance = priv->instance;
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
struct tile_net_egress *egress = &md->egress_for_echannel[channel];
|
|
struct tile_net_comps *comps =
|
|
info->mpipe[instance].comps_for_echannel[channel];
|
|
gxio_mpipe_equeue_t *equeue = egress->equeue;
|
|
unsigned long irqflags;
|
|
int num_edescs;
|
|
s64 slot;
|
|
|
|
/* Determine how many mpipe edesc's are needed. */
|
|
num_edescs = tso_count_edescs(skb);
|
|
|
|
local_irq_save(irqflags);
|
|
|
|
/* Try to acquire a completion entry and an egress slot. */
|
|
slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
|
|
equeue, num_edescs);
|
|
if (slot < 0) {
|
|
local_irq_restore(irqflags);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
/* Set up copies of header data properly. */
|
|
tso_headers_prepare(skb, egress->headers, slot);
|
|
|
|
/* Actually pass the data to the network hardware. */
|
|
tso_egress(dev, equeue, skb, egress->headers, slot);
|
|
|
|
/* Add a completion record. */
|
|
add_comp(equeue, comps, slot + num_edescs - 1, skb);
|
|
|
|
local_irq_restore(irqflags);
|
|
|
|
/* Make sure the egress timer is scheduled. */
|
|
tile_net_schedule_egress_timer();
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Analyze the body and frags for a transmit request. */
|
|
static unsigned int tile_net_tx_frags(struct frag *frags,
|
|
struct sk_buff *skb,
|
|
void *b_data, unsigned int b_len)
|
|
{
|
|
unsigned int i, n = 0;
|
|
|
|
struct skb_shared_info *sh = skb_shinfo(skb);
|
|
|
|
if (b_len != 0) {
|
|
frags[n].buf = b_data;
|
|
frags[n++].length = b_len;
|
|
}
|
|
|
|
for (i = 0; i < sh->nr_frags; i++) {
|
|
skb_frag_t *f = &sh->frags[i];
|
|
frags[n].buf = tile_net_frag_buf(f);
|
|
frags[n++].length = skb_frag_size(f);
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Help the kernel transmit a packet. */
|
|
static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
|
|
struct tile_net_priv *priv = netdev_priv(dev);
|
|
int instance = priv->instance;
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
struct tile_net_egress *egress =
|
|
&md->egress_for_echannel[priv->echannel];
|
|
gxio_mpipe_equeue_t *equeue = egress->equeue;
|
|
struct tile_net_comps *comps =
|
|
info->mpipe[instance].comps_for_echannel[priv->echannel];
|
|
unsigned int len = skb->len;
|
|
unsigned char *data = skb->data;
|
|
unsigned int num_edescs;
|
|
struct frag frags[MAX_FRAGS];
|
|
gxio_mpipe_edesc_t edescs[MAX_FRAGS];
|
|
unsigned long irqflags;
|
|
gxio_mpipe_edesc_t edesc = { { 0 } };
|
|
unsigned int i;
|
|
s64 slot;
|
|
|
|
if (skb_is_gso(skb))
|
|
return tile_net_tx_tso(skb, dev);
|
|
|
|
num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
|
|
|
|
/* This is only used to specify the TLB. */
|
|
edesc.stack_idx = md->first_buffer_stack;
|
|
|
|
/* Prepare the edescs. */
|
|
for (i = 0; i < num_edescs; i++) {
|
|
edesc.xfer_size = frags[i].length;
|
|
edesc.va = va_to_tile_io_addr(frags[i].buf);
|
|
edescs[i] = edesc;
|
|
}
|
|
|
|
/* Mark the final edesc. */
|
|
edescs[num_edescs - 1].bound = 1;
|
|
|
|
/* Add checksum info to the initial edesc, if needed. */
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
unsigned int csum_start = skb_checksum_start_offset(skb);
|
|
edescs[0].csum = 1;
|
|
edescs[0].csum_start = csum_start;
|
|
edescs[0].csum_dest = csum_start + skb->csum_offset;
|
|
}
|
|
|
|
local_irq_save(irqflags);
|
|
|
|
/* Try to acquire a completion entry and an egress slot. */
|
|
slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
|
|
equeue, num_edescs);
|
|
if (slot < 0) {
|
|
local_irq_restore(irqflags);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
for (i = 0; i < num_edescs; i++)
|
|
gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++);
|
|
|
|
/* Store TX timestamp if needed. */
|
|
tile_tx_timestamp(skb, instance);
|
|
|
|
/* Add a completion record. */
|
|
add_comp(equeue, comps, slot - 1, skb);
|
|
|
|
/* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */
|
|
tile_net_stats_add(1, &dev->stats.tx_packets);
|
|
tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN),
|
|
&dev->stats.tx_bytes);
|
|
|
|
local_irq_restore(irqflags);
|
|
|
|
/* Make sure the egress timer is scheduled. */
|
|
tile_net_schedule_egress_timer();
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Return subqueue id on this core (one per core). */
|
|
static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb,
|
|
void *accel_priv)
|
|
{
|
|
return smp_processor_id();
|
|
}
|
|
|
|
/* Deal with a transmit timeout. */
|
|
static void tile_net_tx_timeout(struct net_device *dev)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_online_cpu(cpu)
|
|
netif_wake_subqueue(dev, cpu);
|
|
}
|
|
|
|
/* Ioctl commands. */
|
|
static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
|
|
{
|
|
if (cmd == SIOCSHWTSTAMP)
|
|
return tile_hwtstamp_set(dev, rq);
|
|
if (cmd == SIOCGHWTSTAMP)
|
|
return tile_hwtstamp_get(dev, rq);
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* Change the MTU. */
|
|
static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
|
|
{
|
|
if (new_mtu < 68)
|
|
return -EINVAL;
|
|
if (new_mtu > ((jumbo_num != 0) ? 9000 : 1500))
|
|
return -EINVAL;
|
|
dev->mtu = new_mtu;
|
|
return 0;
|
|
}
|
|
|
|
/* Change the Ethernet address of the NIC.
|
|
*
|
|
* The hypervisor driver does not support changing MAC address. However,
|
|
* the hardware does not do anything with the MAC address, so the address
|
|
* which gets used on outgoing packets, and which is accepted on incoming
|
|
* packets, is completely up to us.
|
|
*
|
|
* Returns 0 on success, negative on failure.
|
|
*/
|
|
static int tile_net_set_mac_address(struct net_device *dev, void *p)
|
|
{
|
|
struct sockaddr *addr = p;
|
|
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EINVAL;
|
|
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
/* Polling 'interrupt' - used by things like netconsole to send skbs
|
|
* without having to re-enable interrupts. It's not called while
|
|
* the interrupt routine is executing.
|
|
*/
|
|
static void tile_net_netpoll(struct net_device *dev)
|
|
{
|
|
int instance = mpipe_instance(dev);
|
|
struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
|
|
struct mpipe_data *md = &mpipe_data[instance];
|
|
|
|
disable_percpu_irq(md->ingress_irq);
|
|
napi_schedule(&info->mpipe[instance].napi);
|
|
enable_percpu_irq(md->ingress_irq, 0);
|
|
}
|
|
#endif
|
|
|
|
static const struct net_device_ops tile_net_ops = {
|
|
.ndo_open = tile_net_open,
|
|
.ndo_stop = tile_net_stop,
|
|
.ndo_start_xmit = tile_net_tx,
|
|
.ndo_select_queue = tile_net_select_queue,
|
|
.ndo_do_ioctl = tile_net_ioctl,
|
|
.ndo_change_mtu = tile_net_change_mtu,
|
|
.ndo_tx_timeout = tile_net_tx_timeout,
|
|
.ndo_set_mac_address = tile_net_set_mac_address,
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
.ndo_poll_controller = tile_net_netpoll,
|
|
#endif
|
|
};
|
|
|
|
/* The setup function.
|
|
*
|
|
* This uses ether_setup() to assign various fields in dev, including
|
|
* setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
|
|
*/
|
|
static void tile_net_setup(struct net_device *dev)
|
|
{
|
|
netdev_features_t features = 0;
|
|
|
|
ether_setup(dev);
|
|
dev->netdev_ops = &tile_net_ops;
|
|
dev->watchdog_timeo = TILE_NET_TIMEOUT;
|
|
dev->mtu = 1500;
|
|
|
|
features |= NETIF_F_HW_CSUM;
|
|
features |= NETIF_F_SG;
|
|
features |= NETIF_F_TSO;
|
|
features |= NETIF_F_TSO6;
|
|
|
|
dev->hw_features |= features;
|
|
dev->vlan_features |= features;
|
|
dev->features |= features;
|
|
}
|
|
|
|
/* Allocate the device structure, register the device, and obtain the
|
|
* MAC address from the hypervisor.
|
|
*/
|
|
static void tile_net_dev_init(const char *name, const uint8_t *mac)
|
|
{
|
|
int ret;
|
|
int i;
|
|
int nz_addr = 0;
|
|
struct net_device *dev;
|
|
struct tile_net_priv *priv;
|
|
|
|
/* HACK: Ignore "loop" links. */
|
|
if (strncmp(name, "loop", 4) == 0)
|
|
return;
|
|
|
|
/* Allocate the device structure. Normally, "name" is a
|
|
* template, instantiated by register_netdev(), but not for us.
|
|
*/
|
|
dev = alloc_netdev_mqs(sizeof(*priv), name, tile_net_setup,
|
|
NR_CPUS, 1);
|
|
if (!dev) {
|
|
pr_err("alloc_netdev_mqs(%s) failed\n", name);
|
|
return;
|
|
}
|
|
|
|
/* Initialize "priv". */
|
|
priv = netdev_priv(dev);
|
|
memset(priv, 0, sizeof(*priv));
|
|
priv->dev = dev;
|
|
priv->channel = -1;
|
|
priv->loopify_channel = -1;
|
|
priv->echannel = -1;
|
|
init_ptp_dev(priv);
|
|
|
|
/* Get the MAC address and set it in the device struct; this must
|
|
* be done before the device is opened. If the MAC is all zeroes,
|
|
* we use a random address, since we're probably on the simulator.
|
|
*/
|
|
for (i = 0; i < 6; i++)
|
|
nz_addr |= mac[i];
|
|
|
|
if (nz_addr) {
|
|
memcpy(dev->dev_addr, mac, ETH_ALEN);
|
|
dev->addr_len = 6;
|
|
} else {
|
|
eth_hw_addr_random(dev);
|
|
}
|
|
|
|
/* Register the network device. */
|
|
ret = register_netdev(dev);
|
|
if (ret) {
|
|
netdev_err(dev, "register_netdev failed %d\n", ret);
|
|
free_netdev(dev);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Per-cpu module initialization. */
|
|
static void tile_net_init_module_percpu(void *unused)
|
|
{
|
|
struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
|
|
int my_cpu = smp_processor_id();
|
|
int instance;
|
|
|
|
for (instance = 0; instance < NR_MPIPE_MAX; instance++) {
|
|
info->mpipe[instance].has_iqueue = false;
|
|
info->mpipe[instance].instance = instance;
|
|
}
|
|
info->my_cpu = my_cpu;
|
|
|
|
/* Initialize the egress timer. */
|
|
hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
info->egress_timer.function = tile_net_handle_egress_timer;
|
|
}
|
|
|
|
/* Module initialization. */
|
|
static int __init tile_net_init_module(void)
|
|
{
|
|
int i;
|
|
char name[GXIO_MPIPE_LINK_NAME_LEN];
|
|
uint8_t mac[6];
|
|
|
|
pr_info("Tilera Network Driver\n");
|
|
|
|
BUILD_BUG_ON(NR_MPIPE_MAX != 2);
|
|
|
|
mutex_init(&tile_net_devs_for_channel_mutex);
|
|
|
|
/* Initialize each CPU. */
|
|
on_each_cpu(tile_net_init_module_percpu, NULL, 1);
|
|
|
|
/* Find out what devices we have, and initialize them. */
|
|
for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++)
|
|
tile_net_dev_init(name, mac);
|
|
|
|
if (!network_cpus_init())
|
|
network_cpus_map = *cpu_online_mask;
|
|
|
|
return 0;
|
|
}
|
|
|
|
module_init(tile_net_init_module);
|