linux/drivers/net/wireless/b43/main.h
Larry Finger 5e20a4b530 b43: Fix firmware loading when driver is built into the kernel
Recent versions of udev cause synchronous firmware loading from the
probe routine to fail because the request to user space would time
out. The original fix for b43 (commit 6b6fa58) moved the firmware
load from the probe routine to a work queue, but it still used synchronous
firmware loading. This method is OK when b43 is built as a module;
however, it fails when the driver is compiled into the kernel.

This version changes the code to load the initial firmware file
using request_firmware_nowait(). A completion event is used to
hold the work queue until that file is available. This driver
reads several firmware files - the remainder can be read synchronously.
On some test systems, the async read fails; however, a following synch
read works, thus the async failure falls through to the sync try.

Reported-and-Tested by: Felix Janda <felix.janda@posteo.de>
Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
Cc: Stable <stable@vger.kernel.org>  (V3.4+)
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2013-01-07 14:34:45 -05:00

145 lines
4.3 KiB
C

/*
Broadcom B43 wireless driver
Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
Stefano Brivio <stefano.brivio@polimi.it>
Michael Buesch <m@bues.ch>
Danny van Dyk <kugelfang@gentoo.org>
Andreas Jaggi <andreas.jaggi@waterwave.ch>
Some parts of the code in this file are derived from the ipw2200
driver Copyright(c) 2003 - 2004 Intel Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#ifndef B43_MAIN_H_
#define B43_MAIN_H_
#include "b43.h"
#define P4D_BYT3S(magic, nr_bytes) u8 __p4dding##magic[nr_bytes]
#define P4D_BYTES(line, nr_bytes) P4D_BYT3S(line, nr_bytes)
/* Magic helper macro to pad structures. Ignore those above. It's magic. */
#define PAD_BYTES(nr_bytes) P4D_BYTES( __LINE__ , (nr_bytes))
extern int b43_modparam_verbose;
/* Logmessage verbosity levels. Update the b43_modparam_verbose helptext, if
* you add or remove levels. */
enum b43_verbosity {
B43_VERBOSITY_ERROR,
B43_VERBOSITY_WARN,
B43_VERBOSITY_INFO,
B43_VERBOSITY_DEBUG,
__B43_VERBOSITY_AFTERLAST, /* keep last */
B43_VERBOSITY_MAX = __B43_VERBOSITY_AFTERLAST - 1,
#if B43_DEBUG
B43_VERBOSITY_DEFAULT = B43_VERBOSITY_DEBUG,
#else
B43_VERBOSITY_DEFAULT = B43_VERBOSITY_INFO,
#endif
};
/* Lightweight function to convert a frequency (in Mhz) to a channel number. */
static inline u8 b43_freq_to_channel_5ghz(int freq)
{
return ((freq - 5000) / 5);
}
static inline u8 b43_freq_to_channel_2ghz(int freq)
{
u8 channel;
if (freq == 2484)
channel = 14;
else
channel = (freq - 2407) / 5;
return channel;
}
/* Lightweight function to convert a channel number to a frequency (in Mhz). */
static inline int b43_channel_to_freq_5ghz(u8 channel)
{
return (5000 + (5 * channel));
}
static inline int b43_channel_to_freq_2ghz(u8 channel)
{
int freq;
if (channel == 14)
freq = 2484;
else
freq = 2407 + (5 * channel);
return freq;
}
static inline int b43_is_cck_rate(int rate)
{
return (rate == B43_CCK_RATE_1MB ||
rate == B43_CCK_RATE_2MB ||
rate == B43_CCK_RATE_5MB || rate == B43_CCK_RATE_11MB);
}
static inline int b43_is_ofdm_rate(int rate)
{
return !b43_is_cck_rate(rate);
}
u8 b43_ieee80211_antenna_sanitize(struct b43_wldev *dev,
u8 antenna_nr);
void b43_tsf_read(struct b43_wldev *dev, u64 * tsf);
void b43_tsf_write(struct b43_wldev *dev, u64 tsf);
u32 b43_shm_read32(struct b43_wldev *dev, u16 routing, u16 offset);
u16 b43_shm_read16(struct b43_wldev *dev, u16 routing, u16 offset);
void b43_shm_write32(struct b43_wldev *dev, u16 routing, u16 offset, u32 value);
void b43_shm_write16(struct b43_wldev *dev, u16 routing, u16 offset, u16 value);
u64 b43_hf_read(struct b43_wldev *dev);
void b43_hf_write(struct b43_wldev *dev, u64 value);
void b43_dummy_transmission(struct b43_wldev *dev, bool ofdm, bool pa_on);
void b43_wireless_core_reset(struct b43_wldev *dev, bool gmode);
void b43_controller_restart(struct b43_wldev *dev, const char *reason);
#define B43_PS_ENABLED (1 << 0) /* Force enable hardware power saving */
#define B43_PS_DISABLED (1 << 1) /* Force disable hardware power saving */
#define B43_PS_AWAKE (1 << 2) /* Force device awake */
#define B43_PS_ASLEEP (1 << 3) /* Force device asleep */
void b43_power_saving_ctl_bits(struct b43_wldev *dev, unsigned int ps_flags);
void b43_mac_suspend(struct b43_wldev *dev);
void b43_mac_enable(struct b43_wldev *dev);
void b43_mac_phy_clock_set(struct b43_wldev *dev, bool on);
struct b43_request_fw_context;
int b43_do_request_fw(struct b43_request_fw_context *ctx, const char *name,
struct b43_firmware_file *fw, bool async);
void b43_do_release_fw(struct b43_firmware_file *fw);
#endif /* B43_MAIN_H_ */