linux/include/kvm/arm_vgic.h
Marc Zyngier 5fb66da640 arm/arm64: KVM: vgic: kill VGIC_NR_IRQS
Nuke VGIC_NR_IRQS entierly, now that the distributor instance
contains the number of IRQ allocated to this GIC.

Also add VGIC_NR_IRQS_LEGACY to preserve the current API.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-09-18 18:48:57 -07:00

372 lines
9.1 KiB
C

/*
* Copyright (C) 2012 ARM Ltd.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef __ASM_ARM_KVM_VGIC_H
#define __ASM_ARM_KVM_VGIC_H
#include <linux/kernel.h>
#include <linux/kvm.h>
#include <linux/irqreturn.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#define VGIC_NR_IRQS_LEGACY 256
#define VGIC_NR_SGIS 16
#define VGIC_NR_PPIS 16
#define VGIC_NR_PRIVATE_IRQS (VGIC_NR_SGIS + VGIC_NR_PPIS)
#define VGIC_V2_MAX_LRS (1 << 6)
#define VGIC_V3_MAX_LRS 16
#define VGIC_MAX_IRQS 1024
/* Sanity checks... */
#if (KVM_MAX_VCPUS > 8)
#error Invalid number of CPU interfaces
#endif
#if (VGIC_NR_IRQS_LEGACY & 31)
#error "VGIC_NR_IRQS must be a multiple of 32"
#endif
#if (VGIC_NR_IRQS_LEGACY > VGIC_MAX_IRQS)
#error "VGIC_NR_IRQS must be <= 1024"
#endif
/*
* The GIC distributor registers describing interrupts have two parts:
* - 32 per-CPU interrupts (SGI + PPI)
* - a bunch of shared interrupts (SPI)
*/
struct vgic_bitmap {
/*
* - One UL per VCPU for private interrupts (assumes UL is at
* least 32 bits)
* - As many UL as necessary for shared interrupts.
*
* The private interrupts are accessed via the "private"
* field, one UL per vcpu (the state for vcpu n is in
* private[n]). The shared interrupts are accessed via the
* "shared" pointer (IRQn state is at bit n-32 in the bitmap).
*/
unsigned long *private;
unsigned long *shared;
};
struct vgic_bytemap {
/*
* - 8 u32 per VCPU for private interrupts
* - As many u32 as necessary for shared interrupts.
*
* The private interrupts are accessed via the "private"
* field, (the state for vcpu n is in private[n*8] to
* private[n*8 + 7]). The shared interrupts are accessed via
* the "shared" pointer (IRQn state is at byte (n-32)%4 of the
* shared[(n-32)/4] word).
*/
u32 *private;
u32 *shared;
};
struct kvm_vcpu;
enum vgic_type {
VGIC_V2, /* Good ol' GICv2 */
VGIC_V3, /* New fancy GICv3 */
};
#define LR_STATE_PENDING (1 << 0)
#define LR_STATE_ACTIVE (1 << 1)
#define LR_STATE_MASK (3 << 0)
#define LR_EOI_INT (1 << 2)
struct vgic_lr {
u16 irq;
u8 source;
u8 state;
};
struct vgic_vmcr {
u32 ctlr;
u32 abpr;
u32 bpr;
u32 pmr;
};
struct vgic_ops {
struct vgic_lr (*get_lr)(const struct kvm_vcpu *, int);
void (*set_lr)(struct kvm_vcpu *, int, struct vgic_lr);
void (*sync_lr_elrsr)(struct kvm_vcpu *, int, struct vgic_lr);
u64 (*get_elrsr)(const struct kvm_vcpu *vcpu);
u64 (*get_eisr)(const struct kvm_vcpu *vcpu);
u32 (*get_interrupt_status)(const struct kvm_vcpu *vcpu);
void (*enable_underflow)(struct kvm_vcpu *vcpu);
void (*disable_underflow)(struct kvm_vcpu *vcpu);
void (*get_vmcr)(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
void (*set_vmcr)(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
void (*enable)(struct kvm_vcpu *vcpu);
};
struct vgic_params {
/* vgic type */
enum vgic_type type;
/* Physical address of vgic virtual cpu interface */
phys_addr_t vcpu_base;
/* Number of list registers */
u32 nr_lr;
/* Interrupt number */
unsigned int maint_irq;
/* Virtual control interface base address */
void __iomem *vctrl_base;
};
struct vgic_dist {
#ifdef CONFIG_KVM_ARM_VGIC
spinlock_t lock;
bool in_kernel;
bool ready;
int nr_cpus;
int nr_irqs;
/* Virtual control interface mapping */
void __iomem *vctrl_base;
/* Distributor and vcpu interface mapping in the guest */
phys_addr_t vgic_dist_base;
phys_addr_t vgic_cpu_base;
/* Distributor enabled */
u32 enabled;
/* Interrupt enabled (one bit per IRQ) */
struct vgic_bitmap irq_enabled;
/* Level-triggered interrupt external input is asserted */
struct vgic_bitmap irq_level;
/*
* Interrupt state is pending on the distributor
*/
struct vgic_bitmap irq_pending;
/*
* Tracks writes to GICD_ISPENDRn and GICD_ICPENDRn for level-triggered
* interrupts. Essentially holds the state of the flip-flop in
* Figure 4-10 on page 4-101 in ARM IHI 0048B.b.
* Once set, it is only cleared for level-triggered interrupts on
* guest ACKs (when we queue it) or writes to GICD_ICPENDRn.
*/
struct vgic_bitmap irq_soft_pend;
/* Level-triggered interrupt queued on VCPU interface */
struct vgic_bitmap irq_queued;
/* Interrupt priority. Not used yet. */
struct vgic_bytemap irq_priority;
/* Level/edge triggered */
struct vgic_bitmap irq_cfg;
/*
* Source CPU per SGI and target CPU:
*
* Each byte represent a SGI observable on a VCPU, each bit of
* this byte indicating if the corresponding VCPU has
* generated this interrupt. This is a GICv2 feature only.
*
* For VCPUn (n < 8), irq_sgi_sources[n*16] to [n*16 + 15] are
* the SGIs observable on VCPUn.
*/
u8 *irq_sgi_sources;
/*
* Target CPU for each SPI:
*
* Array of available SPI, each byte indicating the target
* VCPU for SPI. IRQn (n >=32) is at irq_spi_cpu[n-32].
*/
u8 *irq_spi_cpu;
/*
* Reverse lookup of irq_spi_cpu for faster compute pending:
*
* Array of bitmaps, one per VCPU, describing if IRQn is
* routed to a particular VCPU.
*/
struct vgic_bitmap *irq_spi_target;
/* Bitmap indicating which CPU has something pending */
unsigned long *irq_pending_on_cpu;
#endif
};
struct vgic_v2_cpu_if {
u32 vgic_hcr;
u32 vgic_vmcr;
u32 vgic_misr; /* Saved only */
u32 vgic_eisr[2]; /* Saved only */
u32 vgic_elrsr[2]; /* Saved only */
u32 vgic_apr;
u32 vgic_lr[VGIC_V2_MAX_LRS];
};
struct vgic_v3_cpu_if {
#ifdef CONFIG_ARM_GIC_V3
u32 vgic_hcr;
u32 vgic_vmcr;
u32 vgic_misr; /* Saved only */
u32 vgic_eisr; /* Saved only */
u32 vgic_elrsr; /* Saved only */
u32 vgic_ap0r[4];
u32 vgic_ap1r[4];
u64 vgic_lr[VGIC_V3_MAX_LRS];
#endif
};
struct vgic_cpu {
#ifdef CONFIG_KVM_ARM_VGIC
/* per IRQ to LR mapping */
u8 *vgic_irq_lr_map;
/* Pending interrupts on this VCPU */
DECLARE_BITMAP( pending_percpu, VGIC_NR_PRIVATE_IRQS);
unsigned long *pending_shared;
/* Bitmap of used/free list registers */
DECLARE_BITMAP( lr_used, VGIC_V2_MAX_LRS);
/* Number of list registers on this CPU */
int nr_lr;
/* CPU vif control registers for world switch */
union {
struct vgic_v2_cpu_if vgic_v2;
struct vgic_v3_cpu_if vgic_v3;
};
#endif
};
#define LR_EMPTY 0xff
#define INT_STATUS_EOI (1 << 0)
#define INT_STATUS_UNDERFLOW (1 << 1)
struct kvm;
struct kvm_vcpu;
struct kvm_run;
struct kvm_exit_mmio;
#ifdef CONFIG_KVM_ARM_VGIC
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write);
int kvm_vgic_hyp_init(void);
int kvm_vgic_init(struct kvm *kvm);
int kvm_vgic_create(struct kvm *kvm);
void kvm_vgic_destroy(struct kvm *kvm);
int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu);
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu);
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu);
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu);
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
bool level);
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu);
bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
struct kvm_exit_mmio *mmio);
#define irqchip_in_kernel(k) (!!((k)->arch.vgic.in_kernel))
#define vgic_initialized(k) ((k)->arch.vgic.ready)
int vgic_v2_probe(struct device_node *vgic_node,
const struct vgic_ops **ops,
const struct vgic_params **params);
#ifdef CONFIG_ARM_GIC_V3
int vgic_v3_probe(struct device_node *vgic_node,
const struct vgic_ops **ops,
const struct vgic_params **params);
#else
static inline int vgic_v3_probe(struct device_node *vgic_node,
const struct vgic_ops **ops,
const struct vgic_params **params)
{
return -ENODEV;
}
#endif
#else
static inline int kvm_vgic_hyp_init(void)
{
return 0;
}
static inline int kvm_vgic_set_addr(struct kvm *kvm, unsigned long type, u64 addr)
{
return 0;
}
static inline int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
{
return -ENXIO;
}
static inline int kvm_vgic_init(struct kvm *kvm)
{
return 0;
}
static inline int kvm_vgic_create(struct kvm *kvm)
{
return 0;
}
static inline int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
{
return 0;
}
static inline void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) {}
static inline void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) {}
static inline int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid,
unsigned int irq_num, bool level)
{
return 0;
}
static inline int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
{
return 0;
}
static inline bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
struct kvm_exit_mmio *mmio)
{
return false;
}
static inline int irqchip_in_kernel(struct kvm *kvm)
{
return 0;
}
static inline bool vgic_initialized(struct kvm *kvm)
{
return true;
}
#endif
#endif