0378daef0c
- Split the VHE and nVHE hypervisor code bases, build the EL2 code separately, allowing for the VHE code to now be built with instrumentation - Level-based TLB invalidation support - Restructure of the vcpu register storage to accomodate the NV code - Pointer Authentication available for guests on nVHE hosts - Simplification of the system register table parsing - MMU cleanups and fixes - A number of post-32bit cleanups and other fixes -----BEGIN PGP SIGNATURE----- iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl8q5DEPHG1hekBrZXJu ZWwub3JnAAoJECPQ0LrRPXpDQFAP/jtscnC5OxEOoGNW1gvg/1QI/BuU4zLvqQL1 OEW72fUQlil7tmF/CbLLKnsBpxKmzO02C3wDdg3oaRi884bRtTXdok0nsFuCvrZD u/wrlMnP0zTjjk1uwIFfZJTx+nnUiT0jC6ffvGxB/jnTJk/8atvOUFL7ODFEfixz mS5g1jwwJkRmWKESFg7KGSghKuwXTvo4HVWCfME+t1rQwAa03stXFV8H5tkU6+cG BRIssxo7BkAV2AozwL7hgl/M6wd6QvbOrYJqgb67+sQ8qts0YNne96NN3InMedb1 RENyDssXlA+VI0HoYyEbYnPtFy1Hoj1lOGDZLEZAEH1qcmWrV+hApnoSXSmuofvn QlfOWCyd92CZySu21MALRUVXbrKkA3zT2b9R93A5z7iEBPY+Wk0ryJCO6IxdZzF8 48LNjtzb/Kd0SMU/issJlw+u6fJvLbpnSzXNsYYhiiTMUE9cbu2SEkq0SkonH0a4 d3V8UifZyeffXsOfOAG0DJZOu/fWZp1/I3tfzujtG9rCb+jTQueJ4E1cFYrwSO6b sFNyiI1AzlwcCippG08zSUX61nGfKXBuMXuhIlMRk7GeiF95DmSXuxEgYndZX9I+ E6zJr1iQk/1lrip41svDIIOBHuMbIeD/w1bsOKi7Zoa270MxB4r2Z3IqRMgosoE5 l4YO9pl1 =Ukr4 -----END PGP SIGNATURE----- Merge tag 'kvmarm-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-next-5.6 KVM/arm64 updates for Linux 5.9: - Split the VHE and nVHE hypervisor code bases, build the EL2 code separately, allowing for the VHE code to now be built with instrumentation - Level-based TLB invalidation support - Restructure of the vcpu register storage to accomodate the NV code - Pointer Authentication available for guests on nVHE hosts - Simplification of the system register table parsing - MMU cleanups and fixes - A number of post-32bit cleanups and other fixes
610 lines
17 KiB
C
610 lines
17 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
/*
|
|
* Copyright (C) 2012,2013 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*/
|
|
|
|
#ifndef __ARM64_KVM_MMU_H__
|
|
#define __ARM64_KVM_MMU_H__
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/memory.h>
|
|
#include <asm/cpufeature.h>
|
|
|
|
/*
|
|
* As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
|
|
* "negative" addresses. This makes it impossible to directly share
|
|
* mappings with the kernel.
|
|
*
|
|
* Instead, give the HYP mode its own VA region at a fixed offset from
|
|
* the kernel by just masking the top bits (which are all ones for a
|
|
* kernel address). We need to find out how many bits to mask.
|
|
*
|
|
* We want to build a set of page tables that cover both parts of the
|
|
* idmap (the trampoline page used to initialize EL2), and our normal
|
|
* runtime VA space, at the same time.
|
|
*
|
|
* Given that the kernel uses VA_BITS for its entire address space,
|
|
* and that half of that space (VA_BITS - 1) is used for the linear
|
|
* mapping, we can also limit the EL2 space to (VA_BITS - 1).
|
|
*
|
|
* The main question is "Within the VA_BITS space, does EL2 use the
|
|
* top or the bottom half of that space to shadow the kernel's linear
|
|
* mapping?". As we need to idmap the trampoline page, this is
|
|
* determined by the range in which this page lives.
|
|
*
|
|
* If the page is in the bottom half, we have to use the top half. If
|
|
* the page is in the top half, we have to use the bottom half:
|
|
*
|
|
* T = __pa_symbol(__hyp_idmap_text_start)
|
|
* if (T & BIT(VA_BITS - 1))
|
|
* HYP_VA_MIN = 0 //idmap in upper half
|
|
* else
|
|
* HYP_VA_MIN = 1 << (VA_BITS - 1)
|
|
* HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
|
|
*
|
|
* This of course assumes that the trampoline page exists within the
|
|
* VA_BITS range. If it doesn't, then it means we're in the odd case
|
|
* where the kernel idmap (as well as HYP) uses more levels than the
|
|
* kernel runtime page tables (as seen when the kernel is configured
|
|
* for 4k pages, 39bits VA, and yet memory lives just above that
|
|
* limit, forcing the idmap to use 4 levels of page tables while the
|
|
* kernel itself only uses 3). In this particular case, it doesn't
|
|
* matter which side of VA_BITS we use, as we're guaranteed not to
|
|
* conflict with anything.
|
|
*
|
|
* When using VHE, there are no separate hyp mappings and all KVM
|
|
* functionality is already mapped as part of the main kernel
|
|
* mappings, and none of this applies in that case.
|
|
*/
|
|
|
|
#ifdef __ASSEMBLY__
|
|
|
|
#include <asm/alternative.h>
|
|
|
|
/*
|
|
* Convert a kernel VA into a HYP VA.
|
|
* reg: VA to be converted.
|
|
*
|
|
* The actual code generation takes place in kvm_update_va_mask, and
|
|
* the instructions below are only there to reserve the space and
|
|
* perform the register allocation (kvm_update_va_mask uses the
|
|
* specific registers encoded in the instructions).
|
|
*/
|
|
.macro kern_hyp_va reg
|
|
alternative_cb kvm_update_va_mask
|
|
and \reg, \reg, #1 /* mask with va_mask */
|
|
ror \reg, \reg, #1 /* rotate to the first tag bit */
|
|
add \reg, \reg, #0 /* insert the low 12 bits of the tag */
|
|
add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */
|
|
ror \reg, \reg, #63 /* rotate back */
|
|
alternative_cb_end
|
|
.endm
|
|
|
|
#else
|
|
|
|
#include <linux/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/mmu_context.h>
|
|
|
|
void kvm_update_va_mask(struct alt_instr *alt,
|
|
__le32 *origptr, __le32 *updptr, int nr_inst);
|
|
void kvm_compute_layout(void);
|
|
|
|
static __always_inline unsigned long __kern_hyp_va(unsigned long v)
|
|
{
|
|
asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
|
|
"ror %0, %0, #1\n"
|
|
"add %0, %0, #0\n"
|
|
"add %0, %0, #0, lsl 12\n"
|
|
"ror %0, %0, #63\n",
|
|
kvm_update_va_mask)
|
|
: "+r" (v));
|
|
return v;
|
|
}
|
|
|
|
#define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
|
|
|
|
/*
|
|
* We currently support using a VM-specified IPA size. For backward
|
|
* compatibility, the default IPA size is fixed to 40bits.
|
|
*/
|
|
#define KVM_PHYS_SHIFT (40)
|
|
|
|
#define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr)
|
|
#define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm))
|
|
#define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL))
|
|
|
|
static inline bool kvm_page_empty(void *ptr)
|
|
{
|
|
struct page *ptr_page = virt_to_page(ptr);
|
|
return page_count(ptr_page) == 1;
|
|
}
|
|
|
|
#include <asm/stage2_pgtable.h>
|
|
|
|
int create_hyp_mappings(void *from, void *to, pgprot_t prot);
|
|
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
|
|
void __iomem **kaddr,
|
|
void __iomem **haddr);
|
|
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
|
|
void **haddr);
|
|
void free_hyp_pgds(void);
|
|
|
|
void stage2_unmap_vm(struct kvm *kvm);
|
|
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu);
|
|
void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
|
|
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
|
|
phys_addr_t pa, unsigned long size, bool writable);
|
|
|
|
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
|
|
|
|
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
|
|
|
|
phys_addr_t kvm_mmu_get_httbr(void);
|
|
phys_addr_t kvm_get_idmap_vector(void);
|
|
int kvm_mmu_init(void);
|
|
void kvm_clear_hyp_idmap(void);
|
|
|
|
#define kvm_mk_pmd(ptep) \
|
|
__pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
|
|
#define kvm_mk_pud(pmdp) \
|
|
__pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
|
|
#define kvm_mk_p4d(pmdp) \
|
|
__p4d(__phys_to_p4d_val(__pa(pmdp)) | PUD_TYPE_TABLE)
|
|
|
|
#define kvm_set_pud(pudp, pud) set_pud(pudp, pud)
|
|
|
|
#define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot)
|
|
#define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot)
|
|
#define kvm_pfn_pud(pfn, prot) pfn_pud(pfn, prot)
|
|
|
|
#define kvm_pud_pfn(pud) pud_pfn(pud)
|
|
|
|
#define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd)
|
|
#define kvm_pud_mkhuge(pud) pud_mkhuge(pud)
|
|
|
|
static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
|
|
{
|
|
pte_val(pte) |= PTE_S2_RDWR;
|
|
return pte;
|
|
}
|
|
|
|
static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
|
|
{
|
|
pmd_val(pmd) |= PMD_S2_RDWR;
|
|
return pmd;
|
|
}
|
|
|
|
static inline pud_t kvm_s2pud_mkwrite(pud_t pud)
|
|
{
|
|
pud_val(pud) |= PUD_S2_RDWR;
|
|
return pud;
|
|
}
|
|
|
|
static inline pte_t kvm_s2pte_mkexec(pte_t pte)
|
|
{
|
|
pte_val(pte) &= ~PTE_S2_XN;
|
|
return pte;
|
|
}
|
|
|
|
static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
|
|
{
|
|
pmd_val(pmd) &= ~PMD_S2_XN;
|
|
return pmd;
|
|
}
|
|
|
|
static inline pud_t kvm_s2pud_mkexec(pud_t pud)
|
|
{
|
|
pud_val(pud) &= ~PUD_S2_XN;
|
|
return pud;
|
|
}
|
|
|
|
static inline void kvm_set_s2pte_readonly(pte_t *ptep)
|
|
{
|
|
pteval_t old_pteval, pteval;
|
|
|
|
pteval = READ_ONCE(pte_val(*ptep));
|
|
do {
|
|
old_pteval = pteval;
|
|
pteval &= ~PTE_S2_RDWR;
|
|
pteval |= PTE_S2_RDONLY;
|
|
pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
|
|
} while (pteval != old_pteval);
|
|
}
|
|
|
|
static inline bool kvm_s2pte_readonly(pte_t *ptep)
|
|
{
|
|
return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
|
|
}
|
|
|
|
static inline bool kvm_s2pte_exec(pte_t *ptep)
|
|
{
|
|
return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
|
|
}
|
|
|
|
static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
|
|
{
|
|
kvm_set_s2pte_readonly((pte_t *)pmdp);
|
|
}
|
|
|
|
static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
|
|
{
|
|
return kvm_s2pte_readonly((pte_t *)pmdp);
|
|
}
|
|
|
|
static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
|
|
{
|
|
return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
|
|
}
|
|
|
|
static inline void kvm_set_s2pud_readonly(pud_t *pudp)
|
|
{
|
|
kvm_set_s2pte_readonly((pte_t *)pudp);
|
|
}
|
|
|
|
static inline bool kvm_s2pud_readonly(pud_t *pudp)
|
|
{
|
|
return kvm_s2pte_readonly((pte_t *)pudp);
|
|
}
|
|
|
|
static inline bool kvm_s2pud_exec(pud_t *pudp)
|
|
{
|
|
return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN);
|
|
}
|
|
|
|
static inline pud_t kvm_s2pud_mkyoung(pud_t pud)
|
|
{
|
|
return pud_mkyoung(pud);
|
|
}
|
|
|
|
static inline bool kvm_s2pud_young(pud_t pud)
|
|
{
|
|
return pud_young(pud);
|
|
}
|
|
|
|
#define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
|
|
|
|
#ifdef __PAGETABLE_PMD_FOLDED
|
|
#define hyp_pmd_table_empty(pmdp) (0)
|
|
#else
|
|
#define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
|
|
#endif
|
|
|
|
#ifdef __PAGETABLE_PUD_FOLDED
|
|
#define hyp_pud_table_empty(pudp) (0)
|
|
#else
|
|
#define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
|
|
#endif
|
|
|
|
#ifdef __PAGETABLE_P4D_FOLDED
|
|
#define hyp_p4d_table_empty(p4dp) (0)
|
|
#else
|
|
#define hyp_p4d_table_empty(p4dp) kvm_page_empty(p4dp)
|
|
#endif
|
|
|
|
struct kvm;
|
|
|
|
#define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
|
|
|
|
static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
|
|
{
|
|
return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
|
|
}
|
|
|
|
static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
|
|
{
|
|
void *va = page_address(pfn_to_page(pfn));
|
|
|
|
/*
|
|
* With FWB, we ensure that the guest always accesses memory using
|
|
* cacheable attributes, and we don't have to clean to PoC when
|
|
* faulting in pages. Furthermore, FWB implies IDC, so cleaning to
|
|
* PoU is not required either in this case.
|
|
*/
|
|
if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
|
|
return;
|
|
|
|
kvm_flush_dcache_to_poc(va, size);
|
|
}
|
|
|
|
static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
|
|
unsigned long size)
|
|
{
|
|
if (icache_is_aliasing()) {
|
|
/* any kind of VIPT cache */
|
|
__flush_icache_all();
|
|
} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
|
|
/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
|
|
void *va = page_address(pfn_to_page(pfn));
|
|
|
|
invalidate_icache_range((unsigned long)va,
|
|
(unsigned long)va + size);
|
|
}
|
|
}
|
|
|
|
static inline void __kvm_flush_dcache_pte(pte_t pte)
|
|
{
|
|
if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
|
|
struct page *page = pte_page(pte);
|
|
kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
|
|
{
|
|
if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
|
|
struct page *page = pmd_page(pmd);
|
|
kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
|
|
}
|
|
}
|
|
|
|
static inline void __kvm_flush_dcache_pud(pud_t pud)
|
|
{
|
|
if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
|
|
struct page *page = pud_page(pud);
|
|
kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
|
|
}
|
|
}
|
|
|
|
void kvm_set_way_flush(struct kvm_vcpu *vcpu);
|
|
void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
|
|
|
|
static inline bool __kvm_cpu_uses_extended_idmap(void)
|
|
{
|
|
return __cpu_uses_extended_idmap_level();
|
|
}
|
|
|
|
static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
|
|
{
|
|
return idmap_ptrs_per_pgd;
|
|
}
|
|
|
|
/*
|
|
* Can't use pgd_populate here, because the extended idmap adds an extra level
|
|
* above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
|
|
* idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
|
|
*/
|
|
static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
|
|
pgd_t *hyp_pgd,
|
|
pgd_t *merged_hyp_pgd,
|
|
unsigned long hyp_idmap_start)
|
|
{
|
|
int idmap_idx;
|
|
u64 pgd_addr;
|
|
|
|
/*
|
|
* Use the first entry to access the HYP mappings. It is
|
|
* guaranteed to be free, otherwise we wouldn't use an
|
|
* extended idmap.
|
|
*/
|
|
VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
|
|
pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
|
|
merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
|
|
|
|
/*
|
|
* Create another extended level entry that points to the boot HYP map,
|
|
* which contains an ID mapping of the HYP init code. We essentially
|
|
* merge the boot and runtime HYP maps by doing so, but they don't
|
|
* overlap anyway, so this is fine.
|
|
*/
|
|
idmap_idx = hyp_idmap_start >> VA_BITS;
|
|
VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
|
|
pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
|
|
merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
|
|
}
|
|
|
|
static inline unsigned int kvm_get_vmid_bits(void)
|
|
{
|
|
int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
|
|
|
|
return get_vmid_bits(reg);
|
|
}
|
|
|
|
/*
|
|
* We are not in the kvm->srcu critical section most of the time, so we take
|
|
* the SRCU read lock here. Since we copy the data from the user page, we
|
|
* can immediately drop the lock again.
|
|
*/
|
|
static inline int kvm_read_guest_lock(struct kvm *kvm,
|
|
gpa_t gpa, void *data, unsigned long len)
|
|
{
|
|
int srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
int ret = kvm_read_guest(kvm, gpa, data, len);
|
|
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
|
|
const void *data, unsigned long len)
|
|
{
|
|
int srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
int ret = kvm_write_guest(kvm, gpa, data, len);
|
|
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_INDIRECT_VECTORS
|
|
/*
|
|
* EL2 vectors can be mapped and rerouted in a number of ways,
|
|
* depending on the kernel configuration and CPU present:
|
|
*
|
|
* - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
|
|
* hardening sequence is placed in one of the vector slots, which is
|
|
* executed before jumping to the real vectors.
|
|
*
|
|
* - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
|
|
* ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
|
|
* hardening sequence is mapped next to the idmap page, and executed
|
|
* before jumping to the real vectors.
|
|
*
|
|
* - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
|
|
* empty slot is selected, mapped next to the idmap page, and
|
|
* executed before jumping to the real vectors.
|
|
*
|
|
* Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
|
|
* VHE, as we don't have hypervisor-specific mappings. If the system
|
|
* is VHE and yet selects this capability, it will be ignored.
|
|
*/
|
|
#include <asm/mmu.h>
|
|
|
|
extern void *__kvm_bp_vect_base;
|
|
extern int __kvm_harden_el2_vector_slot;
|
|
|
|
/* This is called on both VHE and !VHE systems */
|
|
static inline void *kvm_get_hyp_vector(void)
|
|
{
|
|
struct bp_hardening_data *data = arm64_get_bp_hardening_data();
|
|
void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
|
|
int slot = -1;
|
|
|
|
if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
|
|
vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
|
|
slot = data->hyp_vectors_slot;
|
|
}
|
|
|
|
if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
|
|
vect = __kvm_bp_vect_base;
|
|
if (slot == -1)
|
|
slot = __kvm_harden_el2_vector_slot;
|
|
}
|
|
|
|
if (slot != -1)
|
|
vect += slot * SZ_2K;
|
|
|
|
return vect;
|
|
}
|
|
|
|
/* This is only called on a !VHE system */
|
|
static inline int kvm_map_vectors(void)
|
|
{
|
|
/*
|
|
* HBP = ARM64_HARDEN_BRANCH_PREDICTOR
|
|
* HEL2 = ARM64_HARDEN_EL2_VECTORS
|
|
*
|
|
* !HBP + !HEL2 -> use direct vectors
|
|
* HBP + !HEL2 -> use hardened vectors in place
|
|
* !HBP + HEL2 -> allocate one vector slot and use exec mapping
|
|
* HBP + HEL2 -> use hardened vertors and use exec mapping
|
|
*/
|
|
if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
|
|
__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs);
|
|
__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
|
|
}
|
|
|
|
if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
|
|
phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs);
|
|
unsigned long size = __BP_HARDEN_HYP_VECS_SZ;
|
|
|
|
/*
|
|
* Always allocate a spare vector slot, as we don't
|
|
* know yet which CPUs have a BP hardening slot that
|
|
* we can reuse.
|
|
*/
|
|
__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
|
|
BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
|
|
return create_hyp_exec_mappings(vect_pa, size,
|
|
&__kvm_bp_vect_base);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline void *kvm_get_hyp_vector(void)
|
|
{
|
|
return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
|
|
}
|
|
|
|
static inline int kvm_map_vectors(void)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARM64_SSBD
|
|
DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
|
|
|
|
static inline int hyp_map_aux_data(void)
|
|
{
|
|
int cpu, err;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
u64 *ptr;
|
|
|
|
ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
|
|
err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline int hyp_map_aux_data(void)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
|
|
|
|
/*
|
|
* Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
|
|
* With v8.2 LVA extensions, 'x' should be a minimum of 6 with
|
|
* 52bit IPS.
|
|
*/
|
|
static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
|
|
{
|
|
int x = ARM64_VTTBR_X(ipa_shift, levels);
|
|
|
|
return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
|
|
}
|
|
|
|
static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
|
|
{
|
|
unsigned int x = arm64_vttbr_x(ipa_shift, levels);
|
|
|
|
return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
|
|
}
|
|
|
|
static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
|
|
{
|
|
return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
|
|
}
|
|
|
|
static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
|
|
{
|
|
struct kvm_vmid *vmid = &mmu->vmid;
|
|
u64 vmid_field, baddr;
|
|
u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
|
|
|
|
baddr = mmu->pgd_phys;
|
|
vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
|
|
return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
|
|
}
|
|
|
|
/*
|
|
* Must be called from hyp code running at EL2 with an updated VTTBR
|
|
* and interrupts disabled.
|
|
*/
|
|
static __always_inline void __load_guest_stage2(struct kvm_s2_mmu *mmu)
|
|
{
|
|
write_sysreg(kern_hyp_va(mmu->kvm)->arch.vtcr, vtcr_el2);
|
|
write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
|
|
|
|
/*
|
|
* ARM errata 1165522 and 1530923 require the actual execution of the
|
|
* above before we can switch to the EL1/EL0 translation regime used by
|
|
* the guest.
|
|
*/
|
|
asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
|
|
}
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
#endif /* __ARM64_KVM_MMU_H__ */
|