forked from Minki/linux
60d8ce2cd6
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: timers, init: Limit the number of per cpu calibration bootup messages posix-cpu-timers: optimize and document timer_create callback clockevents: Add missing include to pacify sparse x86: vmiclock: Fix printk format x86: Fix printk format due to variable type change sparc: fix printk for change of variable type clocksource/events: Fix fallout of generic code changes nohz: Allow 32-bit machines to sleep for more than 2.15 seconds nohz: Track last do_timer() cpu nohz: Prevent clocksource wrapping during idle nohz: Type cast printk argument mips: Use generic mult/shift factor calculation for clocks clocksource: Provide a generic mult/shift factor calculation clockevents: Use u32 for mult and shift factors nohz: Introduce arch_needs_cpu nohz: Reuse ktime in sub-functions of tick_check_idle. time: Remove xtime_cache time: Implement logarithmic time accumulation
1818 lines
44 KiB
C
1818 lines
44 KiB
C
/*
|
|
* linux/kernel/hrtimer.c
|
|
*
|
|
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
|
|
* Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
|
|
*
|
|
* High-resolution kernel timers
|
|
*
|
|
* In contrast to the low-resolution timeout API implemented in
|
|
* kernel/timer.c, hrtimers provide finer resolution and accuracy
|
|
* depending on system configuration and capabilities.
|
|
*
|
|
* These timers are currently used for:
|
|
* - itimers
|
|
* - POSIX timers
|
|
* - nanosleep
|
|
* - precise in-kernel timing
|
|
*
|
|
* Started by: Thomas Gleixner and Ingo Molnar
|
|
*
|
|
* Credits:
|
|
* based on kernel/timer.c
|
|
*
|
|
* Help, testing, suggestions, bugfixes, improvements were
|
|
* provided by:
|
|
*
|
|
* George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
|
|
* et. al.
|
|
*
|
|
* For licencing details see kernel-base/COPYING
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/module.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/err.h>
|
|
#include <linux/debugobjects.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/timer.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <trace/events/timer.h>
|
|
|
|
/*
|
|
* The timer bases:
|
|
*
|
|
* Note: If we want to add new timer bases, we have to skip the two
|
|
* clock ids captured by the cpu-timers. We do this by holding empty
|
|
* entries rather than doing math adjustment of the clock ids.
|
|
* This ensures that we capture erroneous accesses to these clock ids
|
|
* rather than moving them into the range of valid clock id's.
|
|
*/
|
|
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
|
|
{
|
|
|
|
.clock_base =
|
|
{
|
|
{
|
|
.index = CLOCK_REALTIME,
|
|
.get_time = &ktime_get_real,
|
|
.resolution = KTIME_LOW_RES,
|
|
},
|
|
{
|
|
.index = CLOCK_MONOTONIC,
|
|
.get_time = &ktime_get,
|
|
.resolution = KTIME_LOW_RES,
|
|
},
|
|
}
|
|
};
|
|
|
|
/*
|
|
* Get the coarse grained time at the softirq based on xtime and
|
|
* wall_to_monotonic.
|
|
*/
|
|
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
|
|
{
|
|
ktime_t xtim, tomono;
|
|
struct timespec xts, tom;
|
|
unsigned long seq;
|
|
|
|
do {
|
|
seq = read_seqbegin(&xtime_lock);
|
|
xts = current_kernel_time();
|
|
tom = wall_to_monotonic;
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
|
|
xtim = timespec_to_ktime(xts);
|
|
tomono = timespec_to_ktime(tom);
|
|
base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
|
|
base->clock_base[CLOCK_MONOTONIC].softirq_time =
|
|
ktime_add(xtim, tomono);
|
|
}
|
|
|
|
/*
|
|
* Functions and macros which are different for UP/SMP systems are kept in a
|
|
* single place
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*
|
|
* We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
|
|
* means that all timers which are tied to this base via timer->base are
|
|
* locked, and the base itself is locked too.
|
|
*
|
|
* So __run_timers/migrate_timers can safely modify all timers which could
|
|
* be found on the lists/queues.
|
|
*
|
|
* When the timer's base is locked, and the timer removed from list, it is
|
|
* possible to set timer->base = NULL and drop the lock: the timer remains
|
|
* locked.
|
|
*/
|
|
static
|
|
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
|
|
unsigned long *flags)
|
|
{
|
|
struct hrtimer_clock_base *base;
|
|
|
|
for (;;) {
|
|
base = timer->base;
|
|
if (likely(base != NULL)) {
|
|
spin_lock_irqsave(&base->cpu_base->lock, *flags);
|
|
if (likely(base == timer->base))
|
|
return base;
|
|
/* The timer has migrated to another CPU: */
|
|
spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
|
|
}
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Get the preferred target CPU for NOHZ
|
|
*/
|
|
static int hrtimer_get_target(int this_cpu, int pinned)
|
|
{
|
|
#ifdef CONFIG_NO_HZ
|
|
if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
|
|
int preferred_cpu = get_nohz_load_balancer();
|
|
|
|
if (preferred_cpu >= 0)
|
|
return preferred_cpu;
|
|
}
|
|
#endif
|
|
return this_cpu;
|
|
}
|
|
|
|
/*
|
|
* With HIGHRES=y we do not migrate the timer when it is expiring
|
|
* before the next event on the target cpu because we cannot reprogram
|
|
* the target cpu hardware and we would cause it to fire late.
|
|
*
|
|
* Called with cpu_base->lock of target cpu held.
|
|
*/
|
|
static int
|
|
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
|
|
{
|
|
#ifdef CONFIG_HIGH_RES_TIMERS
|
|
ktime_t expires;
|
|
|
|
if (!new_base->cpu_base->hres_active)
|
|
return 0;
|
|
|
|
expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
|
|
return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Switch the timer base to the current CPU when possible.
|
|
*/
|
|
static inline struct hrtimer_clock_base *
|
|
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
|
|
int pinned)
|
|
{
|
|
struct hrtimer_clock_base *new_base;
|
|
struct hrtimer_cpu_base *new_cpu_base;
|
|
int this_cpu = smp_processor_id();
|
|
int cpu = hrtimer_get_target(this_cpu, pinned);
|
|
|
|
again:
|
|
new_cpu_base = &per_cpu(hrtimer_bases, cpu);
|
|
new_base = &new_cpu_base->clock_base[base->index];
|
|
|
|
if (base != new_base) {
|
|
/*
|
|
* We are trying to move timer to new_base.
|
|
* However we can't change timer's base while it is running,
|
|
* so we keep it on the same CPU. No hassle vs. reprogramming
|
|
* the event source in the high resolution case. The softirq
|
|
* code will take care of this when the timer function has
|
|
* completed. There is no conflict as we hold the lock until
|
|
* the timer is enqueued.
|
|
*/
|
|
if (unlikely(hrtimer_callback_running(timer)))
|
|
return base;
|
|
|
|
/* See the comment in lock_timer_base() */
|
|
timer->base = NULL;
|
|
spin_unlock(&base->cpu_base->lock);
|
|
spin_lock(&new_base->cpu_base->lock);
|
|
|
|
if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
|
|
cpu = this_cpu;
|
|
spin_unlock(&new_base->cpu_base->lock);
|
|
spin_lock(&base->cpu_base->lock);
|
|
timer->base = base;
|
|
goto again;
|
|
}
|
|
timer->base = new_base;
|
|
}
|
|
return new_base;
|
|
}
|
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
static inline struct hrtimer_clock_base *
|
|
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
|
|
{
|
|
struct hrtimer_clock_base *base = timer->base;
|
|
|
|
spin_lock_irqsave(&base->cpu_base->lock, *flags);
|
|
|
|
return base;
|
|
}
|
|
|
|
# define switch_hrtimer_base(t, b, p) (b)
|
|
|
|
#endif /* !CONFIG_SMP */
|
|
|
|
/*
|
|
* Functions for the union type storage format of ktime_t which are
|
|
* too large for inlining:
|
|
*/
|
|
#if BITS_PER_LONG < 64
|
|
# ifndef CONFIG_KTIME_SCALAR
|
|
/**
|
|
* ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
|
|
* @kt: addend
|
|
* @nsec: the scalar nsec value to add
|
|
*
|
|
* Returns the sum of kt and nsec in ktime_t format
|
|
*/
|
|
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
|
|
{
|
|
ktime_t tmp;
|
|
|
|
if (likely(nsec < NSEC_PER_SEC)) {
|
|
tmp.tv64 = nsec;
|
|
} else {
|
|
unsigned long rem = do_div(nsec, NSEC_PER_SEC);
|
|
|
|
tmp = ktime_set((long)nsec, rem);
|
|
}
|
|
|
|
return ktime_add(kt, tmp);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ktime_add_ns);
|
|
|
|
/**
|
|
* ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
|
|
* @kt: minuend
|
|
* @nsec: the scalar nsec value to subtract
|
|
*
|
|
* Returns the subtraction of @nsec from @kt in ktime_t format
|
|
*/
|
|
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
|
|
{
|
|
ktime_t tmp;
|
|
|
|
if (likely(nsec < NSEC_PER_SEC)) {
|
|
tmp.tv64 = nsec;
|
|
} else {
|
|
unsigned long rem = do_div(nsec, NSEC_PER_SEC);
|
|
|
|
tmp = ktime_set((long)nsec, rem);
|
|
}
|
|
|
|
return ktime_sub(kt, tmp);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ktime_sub_ns);
|
|
# endif /* !CONFIG_KTIME_SCALAR */
|
|
|
|
/*
|
|
* Divide a ktime value by a nanosecond value
|
|
*/
|
|
u64 ktime_divns(const ktime_t kt, s64 div)
|
|
{
|
|
u64 dclc;
|
|
int sft = 0;
|
|
|
|
dclc = ktime_to_ns(kt);
|
|
/* Make sure the divisor is less than 2^32: */
|
|
while (div >> 32) {
|
|
sft++;
|
|
div >>= 1;
|
|
}
|
|
dclc >>= sft;
|
|
do_div(dclc, (unsigned long) div);
|
|
|
|
return dclc;
|
|
}
|
|
#endif /* BITS_PER_LONG >= 64 */
|
|
|
|
/*
|
|
* Add two ktime values and do a safety check for overflow:
|
|
*/
|
|
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
|
|
{
|
|
ktime_t res = ktime_add(lhs, rhs);
|
|
|
|
/*
|
|
* We use KTIME_SEC_MAX here, the maximum timeout which we can
|
|
* return to user space in a timespec:
|
|
*/
|
|
if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
|
|
res = ktime_set(KTIME_SEC_MAX, 0);
|
|
|
|
return res;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ktime_add_safe);
|
|
|
|
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
|
|
|
|
static struct debug_obj_descr hrtimer_debug_descr;
|
|
|
|
/*
|
|
* fixup_init is called when:
|
|
* - an active object is initialized
|
|
*/
|
|
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
|
|
{
|
|
struct hrtimer *timer = addr;
|
|
|
|
switch (state) {
|
|
case ODEBUG_STATE_ACTIVE:
|
|
hrtimer_cancel(timer);
|
|
debug_object_init(timer, &hrtimer_debug_descr);
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* fixup_activate is called when:
|
|
* - an active object is activated
|
|
* - an unknown object is activated (might be a statically initialized object)
|
|
*/
|
|
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
|
|
{
|
|
switch (state) {
|
|
|
|
case ODEBUG_STATE_NOTAVAILABLE:
|
|
WARN_ON_ONCE(1);
|
|
return 0;
|
|
|
|
case ODEBUG_STATE_ACTIVE:
|
|
WARN_ON(1);
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* fixup_free is called when:
|
|
* - an active object is freed
|
|
*/
|
|
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
|
|
{
|
|
struct hrtimer *timer = addr;
|
|
|
|
switch (state) {
|
|
case ODEBUG_STATE_ACTIVE:
|
|
hrtimer_cancel(timer);
|
|
debug_object_free(timer, &hrtimer_debug_descr);
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static struct debug_obj_descr hrtimer_debug_descr = {
|
|
.name = "hrtimer",
|
|
.fixup_init = hrtimer_fixup_init,
|
|
.fixup_activate = hrtimer_fixup_activate,
|
|
.fixup_free = hrtimer_fixup_free,
|
|
};
|
|
|
|
static inline void debug_hrtimer_init(struct hrtimer *timer)
|
|
{
|
|
debug_object_init(timer, &hrtimer_debug_descr);
|
|
}
|
|
|
|
static inline void debug_hrtimer_activate(struct hrtimer *timer)
|
|
{
|
|
debug_object_activate(timer, &hrtimer_debug_descr);
|
|
}
|
|
|
|
static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
|
|
{
|
|
debug_object_deactivate(timer, &hrtimer_debug_descr);
|
|
}
|
|
|
|
static inline void debug_hrtimer_free(struct hrtimer *timer)
|
|
{
|
|
debug_object_free(timer, &hrtimer_debug_descr);
|
|
}
|
|
|
|
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
|
|
enum hrtimer_mode mode);
|
|
|
|
void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
|
|
enum hrtimer_mode mode)
|
|
{
|
|
debug_object_init_on_stack(timer, &hrtimer_debug_descr);
|
|
__hrtimer_init(timer, clock_id, mode);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
|
|
|
|
void destroy_hrtimer_on_stack(struct hrtimer *timer)
|
|
{
|
|
debug_object_free(timer, &hrtimer_debug_descr);
|
|
}
|
|
|
|
#else
|
|
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
|
|
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
|
|
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
|
|
#endif
|
|
|
|
static inline void
|
|
debug_init(struct hrtimer *timer, clockid_t clockid,
|
|
enum hrtimer_mode mode)
|
|
{
|
|
debug_hrtimer_init(timer);
|
|
trace_hrtimer_init(timer, clockid, mode);
|
|
}
|
|
|
|
static inline void debug_activate(struct hrtimer *timer)
|
|
{
|
|
debug_hrtimer_activate(timer);
|
|
trace_hrtimer_start(timer);
|
|
}
|
|
|
|
static inline void debug_deactivate(struct hrtimer *timer)
|
|
{
|
|
debug_hrtimer_deactivate(timer);
|
|
trace_hrtimer_cancel(timer);
|
|
}
|
|
|
|
/* High resolution timer related functions */
|
|
#ifdef CONFIG_HIGH_RES_TIMERS
|
|
|
|
/*
|
|
* High resolution timer enabled ?
|
|
*/
|
|
static int hrtimer_hres_enabled __read_mostly = 1;
|
|
|
|
/*
|
|
* Enable / Disable high resolution mode
|
|
*/
|
|
static int __init setup_hrtimer_hres(char *str)
|
|
{
|
|
if (!strcmp(str, "off"))
|
|
hrtimer_hres_enabled = 0;
|
|
else if (!strcmp(str, "on"))
|
|
hrtimer_hres_enabled = 1;
|
|
else
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
__setup("highres=", setup_hrtimer_hres);
|
|
|
|
/*
|
|
* hrtimer_high_res_enabled - query, if the highres mode is enabled
|
|
*/
|
|
static inline int hrtimer_is_hres_enabled(void)
|
|
{
|
|
return hrtimer_hres_enabled;
|
|
}
|
|
|
|
/*
|
|
* Is the high resolution mode active ?
|
|
*/
|
|
static inline int hrtimer_hres_active(void)
|
|
{
|
|
return __get_cpu_var(hrtimer_bases).hres_active;
|
|
}
|
|
|
|
/*
|
|
* Reprogram the event source with checking both queues for the
|
|
* next event
|
|
* Called with interrupts disabled and base->lock held
|
|
*/
|
|
static void
|
|
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
|
|
{
|
|
int i;
|
|
struct hrtimer_clock_base *base = cpu_base->clock_base;
|
|
ktime_t expires, expires_next;
|
|
|
|
expires_next.tv64 = KTIME_MAX;
|
|
|
|
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
|
|
struct hrtimer *timer;
|
|
|
|
if (!base->first)
|
|
continue;
|
|
timer = rb_entry(base->first, struct hrtimer, node);
|
|
expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
|
|
/*
|
|
* clock_was_set() has changed base->offset so the
|
|
* result might be negative. Fix it up to prevent a
|
|
* false positive in clockevents_program_event()
|
|
*/
|
|
if (expires.tv64 < 0)
|
|
expires.tv64 = 0;
|
|
if (expires.tv64 < expires_next.tv64)
|
|
expires_next = expires;
|
|
}
|
|
|
|
if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
|
|
return;
|
|
|
|
cpu_base->expires_next.tv64 = expires_next.tv64;
|
|
|
|
if (cpu_base->expires_next.tv64 != KTIME_MAX)
|
|
tick_program_event(cpu_base->expires_next, 1);
|
|
}
|
|
|
|
/*
|
|
* Shared reprogramming for clock_realtime and clock_monotonic
|
|
*
|
|
* When a timer is enqueued and expires earlier than the already enqueued
|
|
* timers, we have to check, whether it expires earlier than the timer for
|
|
* which the clock event device was armed.
|
|
*
|
|
* Called with interrupts disabled and base->cpu_base.lock held
|
|
*/
|
|
static int hrtimer_reprogram(struct hrtimer *timer,
|
|
struct hrtimer_clock_base *base)
|
|
{
|
|
ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
|
|
ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
|
|
int res;
|
|
|
|
WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
|
|
|
|
/*
|
|
* When the callback is running, we do not reprogram the clock event
|
|
* device. The timer callback is either running on a different CPU or
|
|
* the callback is executed in the hrtimer_interrupt context. The
|
|
* reprogramming is handled either by the softirq, which called the
|
|
* callback or at the end of the hrtimer_interrupt.
|
|
*/
|
|
if (hrtimer_callback_running(timer))
|
|
return 0;
|
|
|
|
/*
|
|
* CLOCK_REALTIME timer might be requested with an absolute
|
|
* expiry time which is less than base->offset. Nothing wrong
|
|
* about that, just avoid to call into the tick code, which
|
|
* has now objections against negative expiry values.
|
|
*/
|
|
if (expires.tv64 < 0)
|
|
return -ETIME;
|
|
|
|
if (expires.tv64 >= expires_next->tv64)
|
|
return 0;
|
|
|
|
/*
|
|
* Clockevents returns -ETIME, when the event was in the past.
|
|
*/
|
|
res = tick_program_event(expires, 0);
|
|
if (!IS_ERR_VALUE(res))
|
|
*expires_next = expires;
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* Retrigger next event is called after clock was set
|
|
*
|
|
* Called with interrupts disabled via on_each_cpu()
|
|
*/
|
|
static void retrigger_next_event(void *arg)
|
|
{
|
|
struct hrtimer_cpu_base *base;
|
|
struct timespec realtime_offset;
|
|
unsigned long seq;
|
|
|
|
if (!hrtimer_hres_active())
|
|
return;
|
|
|
|
do {
|
|
seq = read_seqbegin(&xtime_lock);
|
|
set_normalized_timespec(&realtime_offset,
|
|
-wall_to_monotonic.tv_sec,
|
|
-wall_to_monotonic.tv_nsec);
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
|
|
base = &__get_cpu_var(hrtimer_bases);
|
|
|
|
/* Adjust CLOCK_REALTIME offset */
|
|
spin_lock(&base->lock);
|
|
base->clock_base[CLOCK_REALTIME].offset =
|
|
timespec_to_ktime(realtime_offset);
|
|
|
|
hrtimer_force_reprogram(base, 0);
|
|
spin_unlock(&base->lock);
|
|
}
|
|
|
|
/*
|
|
* Clock realtime was set
|
|
*
|
|
* Change the offset of the realtime clock vs. the monotonic
|
|
* clock.
|
|
*
|
|
* We might have to reprogram the high resolution timer interrupt. On
|
|
* SMP we call the architecture specific code to retrigger _all_ high
|
|
* resolution timer interrupts. On UP we just disable interrupts and
|
|
* call the high resolution interrupt code.
|
|
*/
|
|
void clock_was_set(void)
|
|
{
|
|
/* Retrigger the CPU local events everywhere */
|
|
on_each_cpu(retrigger_next_event, NULL, 1);
|
|
}
|
|
|
|
/*
|
|
* During resume we might have to reprogram the high resolution timer
|
|
* interrupt (on the local CPU):
|
|
*/
|
|
void hres_timers_resume(void)
|
|
{
|
|
WARN_ONCE(!irqs_disabled(),
|
|
KERN_INFO "hres_timers_resume() called with IRQs enabled!");
|
|
|
|
retrigger_next_event(NULL);
|
|
}
|
|
|
|
/*
|
|
* Initialize the high resolution related parts of cpu_base
|
|
*/
|
|
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
|
|
{
|
|
base->expires_next.tv64 = KTIME_MAX;
|
|
base->hres_active = 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize the high resolution related parts of a hrtimer
|
|
*/
|
|
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
|
|
{
|
|
}
|
|
|
|
|
|
/*
|
|
* When High resolution timers are active, try to reprogram. Note, that in case
|
|
* the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
|
|
* check happens. The timer gets enqueued into the rbtree. The reprogramming
|
|
* and expiry check is done in the hrtimer_interrupt or in the softirq.
|
|
*/
|
|
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
|
|
struct hrtimer_clock_base *base,
|
|
int wakeup)
|
|
{
|
|
if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
|
|
if (wakeup) {
|
|
spin_unlock(&base->cpu_base->lock);
|
|
raise_softirq_irqoff(HRTIMER_SOFTIRQ);
|
|
spin_lock(&base->cpu_base->lock);
|
|
} else
|
|
__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Switch to high resolution mode
|
|
*/
|
|
static int hrtimer_switch_to_hres(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
|
|
unsigned long flags;
|
|
|
|
if (base->hres_active)
|
|
return 1;
|
|
|
|
local_irq_save(flags);
|
|
|
|
if (tick_init_highres()) {
|
|
local_irq_restore(flags);
|
|
printk(KERN_WARNING "Could not switch to high resolution "
|
|
"mode on CPU %d\n", cpu);
|
|
return 0;
|
|
}
|
|
base->hres_active = 1;
|
|
base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
|
|
base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
|
|
|
|
tick_setup_sched_timer();
|
|
|
|
/* "Retrigger" the interrupt to get things going */
|
|
retrigger_next_event(NULL);
|
|
local_irq_restore(flags);
|
|
return 1;
|
|
}
|
|
|
|
#else
|
|
|
|
static inline int hrtimer_hres_active(void) { return 0; }
|
|
static inline int hrtimer_is_hres_enabled(void) { return 0; }
|
|
static inline int hrtimer_switch_to_hres(void) { return 0; }
|
|
static inline void
|
|
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
|
|
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
|
|
struct hrtimer_clock_base *base,
|
|
int wakeup)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
|
|
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
|
|
|
|
#endif /* CONFIG_HIGH_RES_TIMERS */
|
|
|
|
#ifdef CONFIG_TIMER_STATS
|
|
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
|
|
{
|
|
if (timer->start_site)
|
|
return;
|
|
|
|
timer->start_site = addr;
|
|
memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
|
|
timer->start_pid = current->pid;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Counterpart to lock_hrtimer_base above:
|
|
*/
|
|
static inline
|
|
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
|
|
{
|
|
spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
|
|
}
|
|
|
|
/**
|
|
* hrtimer_forward - forward the timer expiry
|
|
* @timer: hrtimer to forward
|
|
* @now: forward past this time
|
|
* @interval: the interval to forward
|
|
*
|
|
* Forward the timer expiry so it will expire in the future.
|
|
* Returns the number of overruns.
|
|
*/
|
|
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
|
|
{
|
|
u64 orun = 1;
|
|
ktime_t delta;
|
|
|
|
delta = ktime_sub(now, hrtimer_get_expires(timer));
|
|
|
|
if (delta.tv64 < 0)
|
|
return 0;
|
|
|
|
if (interval.tv64 < timer->base->resolution.tv64)
|
|
interval.tv64 = timer->base->resolution.tv64;
|
|
|
|
if (unlikely(delta.tv64 >= interval.tv64)) {
|
|
s64 incr = ktime_to_ns(interval);
|
|
|
|
orun = ktime_divns(delta, incr);
|
|
hrtimer_add_expires_ns(timer, incr * orun);
|
|
if (hrtimer_get_expires_tv64(timer) > now.tv64)
|
|
return orun;
|
|
/*
|
|
* This (and the ktime_add() below) is the
|
|
* correction for exact:
|
|
*/
|
|
orun++;
|
|
}
|
|
hrtimer_add_expires(timer, interval);
|
|
|
|
return orun;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hrtimer_forward);
|
|
|
|
/*
|
|
* enqueue_hrtimer - internal function to (re)start a timer
|
|
*
|
|
* The timer is inserted in expiry order. Insertion into the
|
|
* red black tree is O(log(n)). Must hold the base lock.
|
|
*
|
|
* Returns 1 when the new timer is the leftmost timer in the tree.
|
|
*/
|
|
static int enqueue_hrtimer(struct hrtimer *timer,
|
|
struct hrtimer_clock_base *base)
|
|
{
|
|
struct rb_node **link = &base->active.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct hrtimer *entry;
|
|
int leftmost = 1;
|
|
|
|
debug_activate(timer);
|
|
|
|
/*
|
|
* Find the right place in the rbtree:
|
|
*/
|
|
while (*link) {
|
|
parent = *link;
|
|
entry = rb_entry(parent, struct hrtimer, node);
|
|
/*
|
|
* We dont care about collisions. Nodes with
|
|
* the same expiry time stay together.
|
|
*/
|
|
if (hrtimer_get_expires_tv64(timer) <
|
|
hrtimer_get_expires_tv64(entry)) {
|
|
link = &(*link)->rb_left;
|
|
} else {
|
|
link = &(*link)->rb_right;
|
|
leftmost = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Insert the timer to the rbtree and check whether it
|
|
* replaces the first pending timer
|
|
*/
|
|
if (leftmost)
|
|
base->first = &timer->node;
|
|
|
|
rb_link_node(&timer->node, parent, link);
|
|
rb_insert_color(&timer->node, &base->active);
|
|
/*
|
|
* HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
|
|
* state of a possibly running callback.
|
|
*/
|
|
timer->state |= HRTIMER_STATE_ENQUEUED;
|
|
|
|
return leftmost;
|
|
}
|
|
|
|
/*
|
|
* __remove_hrtimer - internal function to remove a timer
|
|
*
|
|
* Caller must hold the base lock.
|
|
*
|
|
* High resolution timer mode reprograms the clock event device when the
|
|
* timer is the one which expires next. The caller can disable this by setting
|
|
* reprogram to zero. This is useful, when the context does a reprogramming
|
|
* anyway (e.g. timer interrupt)
|
|
*/
|
|
static void __remove_hrtimer(struct hrtimer *timer,
|
|
struct hrtimer_clock_base *base,
|
|
unsigned long newstate, int reprogram)
|
|
{
|
|
if (!(timer->state & HRTIMER_STATE_ENQUEUED))
|
|
goto out;
|
|
|
|
/*
|
|
* Remove the timer from the rbtree and replace the first
|
|
* entry pointer if necessary.
|
|
*/
|
|
if (base->first == &timer->node) {
|
|
base->first = rb_next(&timer->node);
|
|
#ifdef CONFIG_HIGH_RES_TIMERS
|
|
/* Reprogram the clock event device. if enabled */
|
|
if (reprogram && hrtimer_hres_active()) {
|
|
ktime_t expires;
|
|
|
|
expires = ktime_sub(hrtimer_get_expires(timer),
|
|
base->offset);
|
|
if (base->cpu_base->expires_next.tv64 == expires.tv64)
|
|
hrtimer_force_reprogram(base->cpu_base, 1);
|
|
}
|
|
#endif
|
|
}
|
|
rb_erase(&timer->node, &base->active);
|
|
out:
|
|
timer->state = newstate;
|
|
}
|
|
|
|
/*
|
|
* remove hrtimer, called with base lock held
|
|
*/
|
|
static inline int
|
|
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
|
|
{
|
|
if (hrtimer_is_queued(timer)) {
|
|
int reprogram;
|
|
|
|
/*
|
|
* Remove the timer and force reprogramming when high
|
|
* resolution mode is active and the timer is on the current
|
|
* CPU. If we remove a timer on another CPU, reprogramming is
|
|
* skipped. The interrupt event on this CPU is fired and
|
|
* reprogramming happens in the interrupt handler. This is a
|
|
* rare case and less expensive than a smp call.
|
|
*/
|
|
debug_deactivate(timer);
|
|
timer_stats_hrtimer_clear_start_info(timer);
|
|
reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
|
|
__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
|
|
reprogram);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
|
|
unsigned long delta_ns, const enum hrtimer_mode mode,
|
|
int wakeup)
|
|
{
|
|
struct hrtimer_clock_base *base, *new_base;
|
|
unsigned long flags;
|
|
int ret, leftmost;
|
|
|
|
base = lock_hrtimer_base(timer, &flags);
|
|
|
|
/* Remove an active timer from the queue: */
|
|
ret = remove_hrtimer(timer, base);
|
|
|
|
/* Switch the timer base, if necessary: */
|
|
new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
|
|
|
|
if (mode & HRTIMER_MODE_REL) {
|
|
tim = ktime_add_safe(tim, new_base->get_time());
|
|
/*
|
|
* CONFIG_TIME_LOW_RES is a temporary way for architectures
|
|
* to signal that they simply return xtime in
|
|
* do_gettimeoffset(). In this case we want to round up by
|
|
* resolution when starting a relative timer, to avoid short
|
|
* timeouts. This will go away with the GTOD framework.
|
|
*/
|
|
#ifdef CONFIG_TIME_LOW_RES
|
|
tim = ktime_add_safe(tim, base->resolution);
|
|
#endif
|
|
}
|
|
|
|
hrtimer_set_expires_range_ns(timer, tim, delta_ns);
|
|
|
|
timer_stats_hrtimer_set_start_info(timer);
|
|
|
|
leftmost = enqueue_hrtimer(timer, new_base);
|
|
|
|
/*
|
|
* Only allow reprogramming if the new base is on this CPU.
|
|
* (it might still be on another CPU if the timer was pending)
|
|
*
|
|
* XXX send_remote_softirq() ?
|
|
*/
|
|
if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
|
|
hrtimer_enqueue_reprogram(timer, new_base, wakeup);
|
|
|
|
unlock_hrtimer_base(timer, &flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
|
|
* @timer: the timer to be added
|
|
* @tim: expiry time
|
|
* @delta_ns: "slack" range for the timer
|
|
* @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
|
|
*
|
|
* Returns:
|
|
* 0 on success
|
|
* 1 when the timer was active
|
|
*/
|
|
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
|
|
unsigned long delta_ns, const enum hrtimer_mode mode)
|
|
{
|
|
return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
|
|
|
|
/**
|
|
* hrtimer_start - (re)start an hrtimer on the current CPU
|
|
* @timer: the timer to be added
|
|
* @tim: expiry time
|
|
* @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
|
|
*
|
|
* Returns:
|
|
* 0 on success
|
|
* 1 when the timer was active
|
|
*/
|
|
int
|
|
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
|
|
{
|
|
return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hrtimer_start);
|
|
|
|
|
|
/**
|
|
* hrtimer_try_to_cancel - try to deactivate a timer
|
|
* @timer: hrtimer to stop
|
|
*
|
|
* Returns:
|
|
* 0 when the timer was not active
|
|
* 1 when the timer was active
|
|
* -1 when the timer is currently excuting the callback function and
|
|
* cannot be stopped
|
|
*/
|
|
int hrtimer_try_to_cancel(struct hrtimer *timer)
|
|
{
|
|
struct hrtimer_clock_base *base;
|
|
unsigned long flags;
|
|
int ret = -1;
|
|
|
|
base = lock_hrtimer_base(timer, &flags);
|
|
|
|
if (!hrtimer_callback_running(timer))
|
|
ret = remove_hrtimer(timer, base);
|
|
|
|
unlock_hrtimer_base(timer, &flags);
|
|
|
|
return ret;
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
|
|
|
|
/**
|
|
* hrtimer_cancel - cancel a timer and wait for the handler to finish.
|
|
* @timer: the timer to be cancelled
|
|
*
|
|
* Returns:
|
|
* 0 when the timer was not active
|
|
* 1 when the timer was active
|
|
*/
|
|
int hrtimer_cancel(struct hrtimer *timer)
|
|
{
|
|
for (;;) {
|
|
int ret = hrtimer_try_to_cancel(timer);
|
|
|
|
if (ret >= 0)
|
|
return ret;
|
|
cpu_relax();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(hrtimer_cancel);
|
|
|
|
/**
|
|
* hrtimer_get_remaining - get remaining time for the timer
|
|
* @timer: the timer to read
|
|
*/
|
|
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
|
|
{
|
|
struct hrtimer_clock_base *base;
|
|
unsigned long flags;
|
|
ktime_t rem;
|
|
|
|
base = lock_hrtimer_base(timer, &flags);
|
|
rem = hrtimer_expires_remaining(timer);
|
|
unlock_hrtimer_base(timer, &flags);
|
|
|
|
return rem;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
|
|
|
|
#ifdef CONFIG_NO_HZ
|
|
/**
|
|
* hrtimer_get_next_event - get the time until next expiry event
|
|
*
|
|
* Returns the delta to the next expiry event or KTIME_MAX if no timer
|
|
* is pending.
|
|
*/
|
|
ktime_t hrtimer_get_next_event(void)
|
|
{
|
|
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
|
|
struct hrtimer_clock_base *base = cpu_base->clock_base;
|
|
ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
spin_lock_irqsave(&cpu_base->lock, flags);
|
|
|
|
if (!hrtimer_hres_active()) {
|
|
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
|
|
struct hrtimer *timer;
|
|
|
|
if (!base->first)
|
|
continue;
|
|
|
|
timer = rb_entry(base->first, struct hrtimer, node);
|
|
delta.tv64 = hrtimer_get_expires_tv64(timer);
|
|
delta = ktime_sub(delta, base->get_time());
|
|
if (delta.tv64 < mindelta.tv64)
|
|
mindelta.tv64 = delta.tv64;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&cpu_base->lock, flags);
|
|
|
|
if (mindelta.tv64 < 0)
|
|
mindelta.tv64 = 0;
|
|
return mindelta;
|
|
}
|
|
#endif
|
|
|
|
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
|
|
enum hrtimer_mode mode)
|
|
{
|
|
struct hrtimer_cpu_base *cpu_base;
|
|
|
|
memset(timer, 0, sizeof(struct hrtimer));
|
|
|
|
cpu_base = &__raw_get_cpu_var(hrtimer_bases);
|
|
|
|
if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
|
|
clock_id = CLOCK_MONOTONIC;
|
|
|
|
timer->base = &cpu_base->clock_base[clock_id];
|
|
hrtimer_init_timer_hres(timer);
|
|
|
|
#ifdef CONFIG_TIMER_STATS
|
|
timer->start_site = NULL;
|
|
timer->start_pid = -1;
|
|
memset(timer->start_comm, 0, TASK_COMM_LEN);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* hrtimer_init - initialize a timer to the given clock
|
|
* @timer: the timer to be initialized
|
|
* @clock_id: the clock to be used
|
|
* @mode: timer mode abs/rel
|
|
*/
|
|
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
|
|
enum hrtimer_mode mode)
|
|
{
|
|
debug_init(timer, clock_id, mode);
|
|
__hrtimer_init(timer, clock_id, mode);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hrtimer_init);
|
|
|
|
/**
|
|
* hrtimer_get_res - get the timer resolution for a clock
|
|
* @which_clock: which clock to query
|
|
* @tp: pointer to timespec variable to store the resolution
|
|
*
|
|
* Store the resolution of the clock selected by @which_clock in the
|
|
* variable pointed to by @tp.
|
|
*/
|
|
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
|
|
{
|
|
struct hrtimer_cpu_base *cpu_base;
|
|
|
|
cpu_base = &__raw_get_cpu_var(hrtimer_bases);
|
|
*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hrtimer_get_res);
|
|
|
|
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
|
|
{
|
|
struct hrtimer_clock_base *base = timer->base;
|
|
struct hrtimer_cpu_base *cpu_base = base->cpu_base;
|
|
enum hrtimer_restart (*fn)(struct hrtimer *);
|
|
int restart;
|
|
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
debug_deactivate(timer);
|
|
__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
|
|
timer_stats_account_hrtimer(timer);
|
|
fn = timer->function;
|
|
|
|
/*
|
|
* Because we run timers from hardirq context, there is no chance
|
|
* they get migrated to another cpu, therefore its safe to unlock
|
|
* the timer base.
|
|
*/
|
|
spin_unlock(&cpu_base->lock);
|
|
trace_hrtimer_expire_entry(timer, now);
|
|
restart = fn(timer);
|
|
trace_hrtimer_expire_exit(timer);
|
|
spin_lock(&cpu_base->lock);
|
|
|
|
/*
|
|
* Note: We clear the CALLBACK bit after enqueue_hrtimer and
|
|
* we do not reprogramm the event hardware. Happens either in
|
|
* hrtimer_start_range_ns() or in hrtimer_interrupt()
|
|
*/
|
|
if (restart != HRTIMER_NORESTART) {
|
|
BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
|
|
enqueue_hrtimer(timer, base);
|
|
}
|
|
timer->state &= ~HRTIMER_STATE_CALLBACK;
|
|
}
|
|
|
|
#ifdef CONFIG_HIGH_RES_TIMERS
|
|
|
|
static int force_clock_reprogram;
|
|
|
|
/*
|
|
* After 5 iteration's attempts, we consider that hrtimer_interrupt()
|
|
* is hanging, which could happen with something that slows the interrupt
|
|
* such as the tracing. Then we force the clock reprogramming for each future
|
|
* hrtimer interrupts to avoid infinite loops and use the min_delta_ns
|
|
* threshold that we will overwrite.
|
|
* The next tick event will be scheduled to 3 times we currently spend on
|
|
* hrtimer_interrupt(). This gives a good compromise, the cpus will spend
|
|
* 1/4 of their time to process the hrtimer interrupts. This is enough to
|
|
* let it running without serious starvation.
|
|
*/
|
|
|
|
static inline void
|
|
hrtimer_interrupt_hanging(struct clock_event_device *dev,
|
|
ktime_t try_time)
|
|
{
|
|
force_clock_reprogram = 1;
|
|
dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
|
|
printk(KERN_WARNING "hrtimer: interrupt too slow, "
|
|
"forcing clock min delta to %llu ns\n",
|
|
(unsigned long long) dev->min_delta_ns);
|
|
}
|
|
/*
|
|
* High resolution timer interrupt
|
|
* Called with interrupts disabled
|
|
*/
|
|
void hrtimer_interrupt(struct clock_event_device *dev)
|
|
{
|
|
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
|
|
struct hrtimer_clock_base *base;
|
|
ktime_t expires_next, now;
|
|
int nr_retries = 0;
|
|
int i;
|
|
|
|
BUG_ON(!cpu_base->hres_active);
|
|
cpu_base->nr_events++;
|
|
dev->next_event.tv64 = KTIME_MAX;
|
|
|
|
retry:
|
|
/* 5 retries is enough to notice a hang */
|
|
if (!(++nr_retries % 5))
|
|
hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
|
|
|
|
now = ktime_get();
|
|
|
|
expires_next.tv64 = KTIME_MAX;
|
|
|
|
spin_lock(&cpu_base->lock);
|
|
/*
|
|
* We set expires_next to KTIME_MAX here with cpu_base->lock
|
|
* held to prevent that a timer is enqueued in our queue via
|
|
* the migration code. This does not affect enqueueing of
|
|
* timers which run their callback and need to be requeued on
|
|
* this CPU.
|
|
*/
|
|
cpu_base->expires_next.tv64 = KTIME_MAX;
|
|
|
|
base = cpu_base->clock_base;
|
|
|
|
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
|
|
ktime_t basenow;
|
|
struct rb_node *node;
|
|
|
|
basenow = ktime_add(now, base->offset);
|
|
|
|
while ((node = base->first)) {
|
|
struct hrtimer *timer;
|
|
|
|
timer = rb_entry(node, struct hrtimer, node);
|
|
|
|
/*
|
|
* The immediate goal for using the softexpires is
|
|
* minimizing wakeups, not running timers at the
|
|
* earliest interrupt after their soft expiration.
|
|
* This allows us to avoid using a Priority Search
|
|
* Tree, which can answer a stabbing querry for
|
|
* overlapping intervals and instead use the simple
|
|
* BST we already have.
|
|
* We don't add extra wakeups by delaying timers that
|
|
* are right-of a not yet expired timer, because that
|
|
* timer will have to trigger a wakeup anyway.
|
|
*/
|
|
|
|
if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
|
|
ktime_t expires;
|
|
|
|
expires = ktime_sub(hrtimer_get_expires(timer),
|
|
base->offset);
|
|
if (expires.tv64 < expires_next.tv64)
|
|
expires_next = expires;
|
|
break;
|
|
}
|
|
|
|
__run_hrtimer(timer, &basenow);
|
|
}
|
|
base++;
|
|
}
|
|
|
|
/*
|
|
* Store the new expiry value so the migration code can verify
|
|
* against it.
|
|
*/
|
|
cpu_base->expires_next = expires_next;
|
|
spin_unlock(&cpu_base->lock);
|
|
|
|
/* Reprogramming necessary ? */
|
|
if (expires_next.tv64 != KTIME_MAX) {
|
|
if (tick_program_event(expires_next, force_clock_reprogram))
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* local version of hrtimer_peek_ahead_timers() called with interrupts
|
|
* disabled.
|
|
*/
|
|
static void __hrtimer_peek_ahead_timers(void)
|
|
{
|
|
struct tick_device *td;
|
|
|
|
if (!hrtimer_hres_active())
|
|
return;
|
|
|
|
td = &__get_cpu_var(tick_cpu_device);
|
|
if (td && td->evtdev)
|
|
hrtimer_interrupt(td->evtdev);
|
|
}
|
|
|
|
/**
|
|
* hrtimer_peek_ahead_timers -- run soft-expired timers now
|
|
*
|
|
* hrtimer_peek_ahead_timers will peek at the timer queue of
|
|
* the current cpu and check if there are any timers for which
|
|
* the soft expires time has passed. If any such timers exist,
|
|
* they are run immediately and then removed from the timer queue.
|
|
*
|
|
*/
|
|
void hrtimer_peek_ahead_timers(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__hrtimer_peek_ahead_timers();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void run_hrtimer_softirq(struct softirq_action *h)
|
|
{
|
|
hrtimer_peek_ahead_timers();
|
|
}
|
|
|
|
#else /* CONFIG_HIGH_RES_TIMERS */
|
|
|
|
static inline void __hrtimer_peek_ahead_timers(void) { }
|
|
|
|
#endif /* !CONFIG_HIGH_RES_TIMERS */
|
|
|
|
/*
|
|
* Called from timer softirq every jiffy, expire hrtimers:
|
|
*
|
|
* For HRT its the fall back code to run the softirq in the timer
|
|
* softirq context in case the hrtimer initialization failed or has
|
|
* not been done yet.
|
|
*/
|
|
void hrtimer_run_pending(void)
|
|
{
|
|
if (hrtimer_hres_active())
|
|
return;
|
|
|
|
/*
|
|
* This _is_ ugly: We have to check in the softirq context,
|
|
* whether we can switch to highres and / or nohz mode. The
|
|
* clocksource switch happens in the timer interrupt with
|
|
* xtime_lock held. Notification from there only sets the
|
|
* check bit in the tick_oneshot code, otherwise we might
|
|
* deadlock vs. xtime_lock.
|
|
*/
|
|
if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
|
|
hrtimer_switch_to_hres();
|
|
}
|
|
|
|
/*
|
|
* Called from hardirq context every jiffy
|
|
*/
|
|
void hrtimer_run_queues(void)
|
|
{
|
|
struct rb_node *node;
|
|
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
|
|
struct hrtimer_clock_base *base;
|
|
int index, gettime = 1;
|
|
|
|
if (hrtimer_hres_active())
|
|
return;
|
|
|
|
for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
|
|
base = &cpu_base->clock_base[index];
|
|
|
|
if (!base->first)
|
|
continue;
|
|
|
|
if (gettime) {
|
|
hrtimer_get_softirq_time(cpu_base);
|
|
gettime = 0;
|
|
}
|
|
|
|
spin_lock(&cpu_base->lock);
|
|
|
|
while ((node = base->first)) {
|
|
struct hrtimer *timer;
|
|
|
|
timer = rb_entry(node, struct hrtimer, node);
|
|
if (base->softirq_time.tv64 <=
|
|
hrtimer_get_expires_tv64(timer))
|
|
break;
|
|
|
|
__run_hrtimer(timer, &base->softirq_time);
|
|
}
|
|
spin_unlock(&cpu_base->lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sleep related functions:
|
|
*/
|
|
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
|
|
{
|
|
struct hrtimer_sleeper *t =
|
|
container_of(timer, struct hrtimer_sleeper, timer);
|
|
struct task_struct *task = t->task;
|
|
|
|
t->task = NULL;
|
|
if (task)
|
|
wake_up_process(task);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
|
|
{
|
|
sl->timer.function = hrtimer_wakeup;
|
|
sl->task = task;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
|
|
|
|
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
|
|
{
|
|
hrtimer_init_sleeper(t, current);
|
|
|
|
do {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
hrtimer_start_expires(&t->timer, mode);
|
|
if (!hrtimer_active(&t->timer))
|
|
t->task = NULL;
|
|
|
|
if (likely(t->task))
|
|
schedule();
|
|
|
|
hrtimer_cancel(&t->timer);
|
|
mode = HRTIMER_MODE_ABS;
|
|
|
|
} while (t->task && !signal_pending(current));
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
return t->task == NULL;
|
|
}
|
|
|
|
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
|
|
{
|
|
struct timespec rmt;
|
|
ktime_t rem;
|
|
|
|
rem = hrtimer_expires_remaining(timer);
|
|
if (rem.tv64 <= 0)
|
|
return 0;
|
|
rmt = ktime_to_timespec(rem);
|
|
|
|
if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
|
|
return -EFAULT;
|
|
|
|
return 1;
|
|
}
|
|
|
|
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
|
|
{
|
|
struct hrtimer_sleeper t;
|
|
struct timespec __user *rmtp;
|
|
int ret = 0;
|
|
|
|
hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
|
|
HRTIMER_MODE_ABS);
|
|
hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
|
|
|
|
if (do_nanosleep(&t, HRTIMER_MODE_ABS))
|
|
goto out;
|
|
|
|
rmtp = restart->nanosleep.rmtp;
|
|
if (rmtp) {
|
|
ret = update_rmtp(&t.timer, rmtp);
|
|
if (ret <= 0)
|
|
goto out;
|
|
}
|
|
|
|
/* The other values in restart are already filled in */
|
|
ret = -ERESTART_RESTARTBLOCK;
|
|
out:
|
|
destroy_hrtimer_on_stack(&t.timer);
|
|
return ret;
|
|
}
|
|
|
|
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
|
|
const enum hrtimer_mode mode, const clockid_t clockid)
|
|
{
|
|
struct restart_block *restart;
|
|
struct hrtimer_sleeper t;
|
|
int ret = 0;
|
|
unsigned long slack;
|
|
|
|
slack = current->timer_slack_ns;
|
|
if (rt_task(current))
|
|
slack = 0;
|
|
|
|
hrtimer_init_on_stack(&t.timer, clockid, mode);
|
|
hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
|
|
if (do_nanosleep(&t, mode))
|
|
goto out;
|
|
|
|
/* Absolute timers do not update the rmtp value and restart: */
|
|
if (mode == HRTIMER_MODE_ABS) {
|
|
ret = -ERESTARTNOHAND;
|
|
goto out;
|
|
}
|
|
|
|
if (rmtp) {
|
|
ret = update_rmtp(&t.timer, rmtp);
|
|
if (ret <= 0)
|
|
goto out;
|
|
}
|
|
|
|
restart = ¤t_thread_info()->restart_block;
|
|
restart->fn = hrtimer_nanosleep_restart;
|
|
restart->nanosleep.index = t.timer.base->index;
|
|
restart->nanosleep.rmtp = rmtp;
|
|
restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
|
|
|
|
ret = -ERESTART_RESTARTBLOCK;
|
|
out:
|
|
destroy_hrtimer_on_stack(&t.timer);
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
|
|
struct timespec __user *, rmtp)
|
|
{
|
|
struct timespec tu;
|
|
|
|
if (copy_from_user(&tu, rqtp, sizeof(tu)))
|
|
return -EFAULT;
|
|
|
|
if (!timespec_valid(&tu))
|
|
return -EINVAL;
|
|
|
|
return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
|
|
}
|
|
|
|
/*
|
|
* Functions related to boot-time initialization:
|
|
*/
|
|
static void __cpuinit init_hrtimers_cpu(int cpu)
|
|
{
|
|
struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
|
|
int i;
|
|
|
|
spin_lock_init(&cpu_base->lock);
|
|
|
|
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
|
|
cpu_base->clock_base[i].cpu_base = cpu_base;
|
|
|
|
hrtimer_init_hres(cpu_base);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
|
|
struct hrtimer_clock_base *new_base)
|
|
{
|
|
struct hrtimer *timer;
|
|
struct rb_node *node;
|
|
|
|
while ((node = rb_first(&old_base->active))) {
|
|
timer = rb_entry(node, struct hrtimer, node);
|
|
BUG_ON(hrtimer_callback_running(timer));
|
|
debug_deactivate(timer);
|
|
|
|
/*
|
|
* Mark it as STATE_MIGRATE not INACTIVE otherwise the
|
|
* timer could be seen as !active and just vanish away
|
|
* under us on another CPU
|
|
*/
|
|
__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
|
|
timer->base = new_base;
|
|
/*
|
|
* Enqueue the timers on the new cpu. This does not
|
|
* reprogram the event device in case the timer
|
|
* expires before the earliest on this CPU, but we run
|
|
* hrtimer_interrupt after we migrated everything to
|
|
* sort out already expired timers and reprogram the
|
|
* event device.
|
|
*/
|
|
enqueue_hrtimer(timer, new_base);
|
|
|
|
/* Clear the migration state bit */
|
|
timer->state &= ~HRTIMER_STATE_MIGRATE;
|
|
}
|
|
}
|
|
|
|
static void migrate_hrtimers(int scpu)
|
|
{
|
|
struct hrtimer_cpu_base *old_base, *new_base;
|
|
int i;
|
|
|
|
BUG_ON(cpu_online(scpu));
|
|
tick_cancel_sched_timer(scpu);
|
|
|
|
local_irq_disable();
|
|
old_base = &per_cpu(hrtimer_bases, scpu);
|
|
new_base = &__get_cpu_var(hrtimer_bases);
|
|
/*
|
|
* The caller is globally serialized and nobody else
|
|
* takes two locks at once, deadlock is not possible.
|
|
*/
|
|
spin_lock(&new_base->lock);
|
|
spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
|
|
|
|
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
|
|
migrate_hrtimer_list(&old_base->clock_base[i],
|
|
&new_base->clock_base[i]);
|
|
}
|
|
|
|
spin_unlock(&old_base->lock);
|
|
spin_unlock(&new_base->lock);
|
|
|
|
/* Check, if we got expired work to do */
|
|
__hrtimer_peek_ahead_timers();
|
|
local_irq_enable();
|
|
}
|
|
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
int scpu = (long)hcpu;
|
|
|
|
switch (action) {
|
|
|
|
case CPU_UP_PREPARE:
|
|
case CPU_UP_PREPARE_FROZEN:
|
|
init_hrtimers_cpu(scpu);
|
|
break;
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
case CPU_DYING:
|
|
case CPU_DYING_FROZEN:
|
|
clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
|
|
break;
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
{
|
|
clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
|
|
migrate_hrtimers(scpu);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block __cpuinitdata hrtimers_nb = {
|
|
.notifier_call = hrtimer_cpu_notify,
|
|
};
|
|
|
|
void __init hrtimers_init(void)
|
|
{
|
|
hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
|
|
(void *)(long)smp_processor_id());
|
|
register_cpu_notifier(&hrtimers_nb);
|
|
#ifdef CONFIG_HIGH_RES_TIMERS
|
|
open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* schedule_hrtimeout_range - sleep until timeout
|
|
* @expires: timeout value (ktime_t)
|
|
* @delta: slack in expires timeout (ktime_t)
|
|
* @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
|
|
*
|
|
* Make the current task sleep until the given expiry time has
|
|
* elapsed. The routine will return immediately unless
|
|
* the current task state has been set (see set_current_state()).
|
|
*
|
|
* The @delta argument gives the kernel the freedom to schedule the
|
|
* actual wakeup to a time that is both power and performance friendly.
|
|
* The kernel give the normal best effort behavior for "@expires+@delta",
|
|
* but may decide to fire the timer earlier, but no earlier than @expires.
|
|
*
|
|
* You can set the task state as follows -
|
|
*
|
|
* %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
|
|
* pass before the routine returns.
|
|
*
|
|
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
|
|
* delivered to the current task.
|
|
*
|
|
* The current task state is guaranteed to be TASK_RUNNING when this
|
|
* routine returns.
|
|
*
|
|
* Returns 0 when the timer has expired otherwise -EINTR
|
|
*/
|
|
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
|
|
const enum hrtimer_mode mode)
|
|
{
|
|
struct hrtimer_sleeper t;
|
|
|
|
/*
|
|
* Optimize when a zero timeout value is given. It does not
|
|
* matter whether this is an absolute or a relative time.
|
|
*/
|
|
if (expires && !expires->tv64) {
|
|
__set_current_state(TASK_RUNNING);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* A NULL parameter means "inifinte"
|
|
*/
|
|
if (!expires) {
|
|
schedule();
|
|
__set_current_state(TASK_RUNNING);
|
|
return -EINTR;
|
|
}
|
|
|
|
hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
|
|
hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
|
|
|
|
hrtimer_init_sleeper(&t, current);
|
|
|
|
hrtimer_start_expires(&t.timer, mode);
|
|
if (!hrtimer_active(&t.timer))
|
|
t.task = NULL;
|
|
|
|
if (likely(t.task))
|
|
schedule();
|
|
|
|
hrtimer_cancel(&t.timer);
|
|
destroy_hrtimer_on_stack(&t.timer);
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
return !t.task ? 0 : -EINTR;
|
|
}
|
|
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
|
|
|
|
/**
|
|
* schedule_hrtimeout - sleep until timeout
|
|
* @expires: timeout value (ktime_t)
|
|
* @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
|
|
*
|
|
* Make the current task sleep until the given expiry time has
|
|
* elapsed. The routine will return immediately unless
|
|
* the current task state has been set (see set_current_state()).
|
|
*
|
|
* You can set the task state as follows -
|
|
*
|
|
* %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
|
|
* pass before the routine returns.
|
|
*
|
|
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
|
|
* delivered to the current task.
|
|
*
|
|
* The current task state is guaranteed to be TASK_RUNNING when this
|
|
* routine returns.
|
|
*
|
|
* Returns 0 when the timer has expired otherwise -EINTR
|
|
*/
|
|
int __sched schedule_hrtimeout(ktime_t *expires,
|
|
const enum hrtimer_mode mode)
|
|
{
|
|
return schedule_hrtimeout_range(expires, 0, mode);
|
|
}
|
|
EXPORT_SYMBOL_GPL(schedule_hrtimeout);
|