linux/virt/kvm/arm/vgic/vgic-v3.c
Andre Przywara 5dd4b924e3 KVM: arm/arm64: vgic: Add refcounting for IRQs
In the moment our struct vgic_irq's are statically allocated at guest
creation time. So getting a pointer to an IRQ structure is trivial and
safe. LPIs are more dynamic, they can be mapped and unmapped at any time
during the guest's _runtime_.
In preparation for supporting LPIs we introduce reference counting for
those structures using the kernel's kref infrastructure.
Since private IRQs and SPIs are statically allocated, we avoid actually
refcounting them, since they would never be released anyway.
But we take provisions to increase the refcount when an IRQ gets onto a
VCPU list and decrease it when it gets removed. Also this introduces
vgic_put_irq(), which wraps kref_put and hides the release function from
the callers.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-07-18 18:10:48 +01:00

347 lines
9.2 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_asm.h>
#include "vgic.h"
void vgic_v3_process_maintenance(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
if (cpuif->vgic_misr & ICH_MISR_EOI) {
unsigned long eisr_bmap = cpuif->vgic_eisr;
int lr;
for_each_set_bit(lr, &eisr_bmap, kvm_vgic_global_state.nr_lr) {
u32 intid;
u64 val = cpuif->vgic_lr[lr];
if (model == KVM_DEV_TYPE_ARM_VGIC_V3)
intid = val & ICH_LR_VIRTUAL_ID_MASK;
else
intid = val & GICH_LR_VIRTUALID;
WARN_ON(cpuif->vgic_lr[lr] & ICH_LR_STATE);
kvm_notify_acked_irq(vcpu->kvm, 0,
intid - VGIC_NR_PRIVATE_IRQS);
}
/*
* In the next iterations of the vcpu loop, if we sync
* the vgic state after flushing it, but before
* entering the guest (this happens for pending
* signals and vmid rollovers), then make sure we
* don't pick up any old maintenance interrupts here.
*/
cpuif->vgic_eisr = 0;
}
cpuif->vgic_hcr &= ~ICH_HCR_UIE;
}
void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
cpuif->vgic_hcr |= ICH_HCR_UIE;
}
void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
int lr;
for (lr = 0; lr < vcpu->arch.vgic_cpu.used_lrs; lr++) {
u64 val = cpuif->vgic_lr[lr];
u32 intid;
struct vgic_irq *irq;
if (model == KVM_DEV_TYPE_ARM_VGIC_V3)
intid = val & ICH_LR_VIRTUAL_ID_MASK;
else
intid = val & GICH_LR_VIRTUALID;
irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
spin_lock(&irq->irq_lock);
/* Always preserve the active bit */
irq->active = !!(val & ICH_LR_ACTIVE_BIT);
/* Edge is the only case where we preserve the pending bit */
if (irq->config == VGIC_CONFIG_EDGE &&
(val & ICH_LR_PENDING_BIT)) {
irq->pending = true;
if (vgic_irq_is_sgi(intid) &&
model == KVM_DEV_TYPE_ARM_VGIC_V2) {
u32 cpuid = val & GICH_LR_PHYSID_CPUID;
cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
irq->source |= (1 << cpuid);
}
}
/*
* Clear soft pending state when level irqs have been acked.
* Always regenerate the pending state.
*/
if (irq->config == VGIC_CONFIG_LEVEL) {
if (!(val & ICH_LR_PENDING_BIT))
irq->soft_pending = false;
irq->pending = irq->line_level || irq->soft_pending;
}
spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
}
}
/* Requires the irq to be locked already */
void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
{
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u64 val = irq->intid;
if (irq->pending) {
val |= ICH_LR_PENDING_BIT;
if (irq->config == VGIC_CONFIG_EDGE)
irq->pending = false;
if (vgic_irq_is_sgi(irq->intid) &&
model == KVM_DEV_TYPE_ARM_VGIC_V2) {
u32 src = ffs(irq->source);
BUG_ON(!src);
val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
irq->source &= ~(1 << (src - 1));
if (irq->source)
irq->pending = true;
}
}
if (irq->active)
val |= ICH_LR_ACTIVE_BIT;
if (irq->hw) {
val |= ICH_LR_HW;
val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
} else {
if (irq->config == VGIC_CONFIG_LEVEL)
val |= ICH_LR_EOI;
}
/*
* We currently only support Group1 interrupts, which is a
* known defect. This needs to be addressed at some point.
*/
if (model == KVM_DEV_TYPE_ARM_VGIC_V3)
val |= ICH_LR_GROUP;
val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
}
void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
}
void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
u32 vmcr;
vmcr = (vmcrp->ctlr << ICH_VMCR_CTLR_SHIFT) & ICH_VMCR_CTLR_MASK;
vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
vcpu->arch.vgic_cpu.vgic_v3.vgic_vmcr = vmcr;
}
void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
u32 vmcr = vcpu->arch.vgic_cpu.vgic_v3.vgic_vmcr;
vmcrp->ctlr = (vmcr & ICH_VMCR_CTLR_MASK) >> ICH_VMCR_CTLR_SHIFT;
vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
}
void vgic_v3_enable(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
/*
* By forcing VMCR to zero, the GIC will restore the binary
* points to their reset values. Anything else resets to zero
* anyway.
*/
vgic_v3->vgic_vmcr = 0;
vgic_v3->vgic_elrsr = ~0;
/*
* If we are emulating a GICv3, we do it in an non-GICv2-compatible
* way, so we force SRE to 1 to demonstrate this to the guest.
* This goes with the spec allowing the value to be RAO/WI.
*/
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)
vgic_v3->vgic_sre = ICC_SRE_EL1_SRE;
else
vgic_v3->vgic_sre = 0;
/* Get the show on the road... */
vgic_v3->vgic_hcr = ICH_HCR_EN;
}
/* check for overlapping regions and for regions crossing the end of memory */
static bool vgic_v3_check_base(struct kvm *kvm)
{
struct vgic_dist *d = &kvm->arch.vgic;
gpa_t redist_size = KVM_VGIC_V3_REDIST_SIZE;
redist_size *= atomic_read(&kvm->online_vcpus);
if (d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
return false;
if (d->vgic_redist_base + redist_size < d->vgic_redist_base)
return false;
if (d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE <= d->vgic_redist_base)
return true;
if (d->vgic_redist_base + redist_size <= d->vgic_dist_base)
return true;
return false;
}
int vgic_v3_map_resources(struct kvm *kvm)
{
int ret = 0;
struct vgic_dist *dist = &kvm->arch.vgic;
if (vgic_ready(kvm))
goto out;
if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) {
kvm_err("Need to set vgic distributor addresses first\n");
ret = -ENXIO;
goto out;
}
if (!vgic_v3_check_base(kvm)) {
kvm_err("VGIC redist and dist frames overlap\n");
ret = -EINVAL;
goto out;
}
/*
* For a VGICv3 we require the userland to explicitly initialize
* the VGIC before we need to use it.
*/
if (!vgic_initialized(kvm)) {
ret = -EBUSY;
goto out;
}
ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
if (ret) {
kvm_err("Unable to register VGICv3 dist MMIO regions\n");
goto out;
}
ret = vgic_register_redist_iodevs(kvm, dist->vgic_redist_base);
if (ret) {
kvm_err("Unable to register VGICv3 redist MMIO regions\n");
goto out;
}
dist->ready = true;
out:
if (ret)
kvm_vgic_destroy(kvm);
return ret;
}
/**
* vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT
* @node: pointer to the DT node
*
* Returns 0 if a GICv3 has been found, returns an error code otherwise
*/
int vgic_v3_probe(const struct gic_kvm_info *info)
{
u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2);
int ret;
/*
* The ListRegs field is 5 bits, but there is a architectural
* maximum of 16 list registers. Just ignore bit 4...
*/
kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
kvm_vgic_global_state.can_emulate_gicv2 = false;
if (!info->vcpu.start) {
kvm_info("GICv3: no GICV resource entry\n");
kvm_vgic_global_state.vcpu_base = 0;
} else if (!PAGE_ALIGNED(info->vcpu.start)) {
pr_warn("GICV physical address 0x%llx not page aligned\n",
(unsigned long long)info->vcpu.start);
kvm_vgic_global_state.vcpu_base = 0;
} else if (!PAGE_ALIGNED(resource_size(&info->vcpu))) {
pr_warn("GICV size 0x%llx not a multiple of page size 0x%lx\n",
(unsigned long long)resource_size(&info->vcpu),
PAGE_SIZE);
kvm_vgic_global_state.vcpu_base = 0;
} else {
kvm_vgic_global_state.vcpu_base = info->vcpu.start;
kvm_vgic_global_state.can_emulate_gicv2 = true;
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
if (ret) {
kvm_err("Cannot register GICv2 KVM device.\n");
return ret;
}
kvm_info("vgic-v2@%llx\n", info->vcpu.start);
}
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
if (ret) {
kvm_err("Cannot register GICv3 KVM device.\n");
kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
return ret;
}
if (kvm_vgic_global_state.vcpu_base == 0)
kvm_info("disabling GICv2 emulation\n");
kvm_vgic_global_state.vctrl_base = NULL;
kvm_vgic_global_state.type = VGIC_V3;
kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
return 0;
}