0d72c2ac89
Separate the overflow handling from the hardware interrupt status analysis. The interrupt status is a single register and is common for all PFs. The first PF reading the register is not necessarily the one who overflowed. All PFs must check their overflow status on every attention. In this change we clear the sticky indication in the attention handler to allow doorbells to be processed again as soon as possible, but running the doorbell recovery is scheduled for the periodic handler to reduce the time spent in the attention handler. Checking the need for DORQ flush was changed to "db_bar_no_edpm" because qed_edpm_enabled()'s result could change dynamically and might have prevented a needed flush. Signed-off-by: Denis Bolotin <dbolotin@marvell.com> Signed-off-by: Michal Kalderon <mkalderon@marvell.com> Signed-off-by: Ariel Elior <aelior@marvell.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2400 lines
68 KiB
C
2400 lines
68 KiB
C
/* QLogic qed NIC Driver
|
|
* Copyright (c) 2015-2017 QLogic Corporation
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and /or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/io.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include "qed.h"
|
|
#include "qed_hsi.h"
|
|
#include "qed_hw.h"
|
|
#include "qed_init_ops.h"
|
|
#include "qed_int.h"
|
|
#include "qed_mcp.h"
|
|
#include "qed_reg_addr.h"
|
|
#include "qed_sp.h"
|
|
#include "qed_sriov.h"
|
|
#include "qed_vf.h"
|
|
|
|
struct qed_pi_info {
|
|
qed_int_comp_cb_t comp_cb;
|
|
void *cookie;
|
|
};
|
|
|
|
struct qed_sb_sp_info {
|
|
struct qed_sb_info sb_info;
|
|
|
|
/* per protocol index data */
|
|
struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
|
|
};
|
|
|
|
enum qed_attention_type {
|
|
QED_ATTN_TYPE_ATTN,
|
|
QED_ATTN_TYPE_PARITY,
|
|
};
|
|
|
|
#define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
|
|
ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
|
|
|
|
struct aeu_invert_reg_bit {
|
|
char bit_name[30];
|
|
|
|
#define ATTENTION_PARITY (1 << 0)
|
|
|
|
#define ATTENTION_LENGTH_MASK (0x00000ff0)
|
|
#define ATTENTION_LENGTH_SHIFT (4)
|
|
#define ATTENTION_LENGTH(flags) (((flags) & ATTENTION_LENGTH_MASK) >> \
|
|
ATTENTION_LENGTH_SHIFT)
|
|
#define ATTENTION_SINGLE BIT(ATTENTION_LENGTH_SHIFT)
|
|
#define ATTENTION_PAR (ATTENTION_SINGLE | ATTENTION_PARITY)
|
|
#define ATTENTION_PAR_INT ((2 << ATTENTION_LENGTH_SHIFT) | \
|
|
ATTENTION_PARITY)
|
|
|
|
/* Multiple bits start with this offset */
|
|
#define ATTENTION_OFFSET_MASK (0x000ff000)
|
|
#define ATTENTION_OFFSET_SHIFT (12)
|
|
|
|
#define ATTENTION_BB_MASK (0x00700000)
|
|
#define ATTENTION_BB_SHIFT (20)
|
|
#define ATTENTION_BB(value) (value << ATTENTION_BB_SHIFT)
|
|
#define ATTENTION_BB_DIFFERENT BIT(23)
|
|
|
|
unsigned int flags;
|
|
|
|
/* Callback to call if attention will be triggered */
|
|
int (*cb)(struct qed_hwfn *p_hwfn);
|
|
|
|
enum block_id block_index;
|
|
};
|
|
|
|
struct aeu_invert_reg {
|
|
struct aeu_invert_reg_bit bits[32];
|
|
};
|
|
|
|
#define MAX_ATTN_GRPS (8)
|
|
#define NUM_ATTN_REGS (9)
|
|
|
|
/* Specific HW attention callbacks */
|
|
static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
|
|
|
|
/* This might occur on certain instances; Log it once then mask it */
|
|
DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
|
|
tmp);
|
|
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
|
|
0xffffffff);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define QED_PSWHST_ATTENTION_INCORRECT_ACCESS (0x1)
|
|
#define ATTENTION_INCORRECT_ACCESS_WR_MASK (0x1)
|
|
#define ATTENTION_INCORRECT_ACCESS_WR_SHIFT (0)
|
|
#define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK (0xf)
|
|
#define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT (1)
|
|
#define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK (0x1)
|
|
#define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT (5)
|
|
#define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK (0xff)
|
|
#define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT (6)
|
|
#define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK (0xf)
|
|
#define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT (14)
|
|
#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK (0xff)
|
|
#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT (18)
|
|
static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
|
|
PSWHST_REG_INCORRECT_ACCESS_VALID);
|
|
|
|
if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
|
|
u32 addr, data, length;
|
|
|
|
addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
|
|
PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
|
|
data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
|
|
PSWHST_REG_INCORRECT_ACCESS_DATA);
|
|
length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
|
|
PSWHST_REG_INCORRECT_ACCESS_LENGTH);
|
|
|
|
DP_INFO(p_hwfn->cdev,
|
|
"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
|
|
addr, length,
|
|
(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
|
|
(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
|
|
(u8) GET_FIELD(data,
|
|
ATTENTION_INCORRECT_ACCESS_VF_VALID),
|
|
(u8) GET_FIELD(data,
|
|
ATTENTION_INCORRECT_ACCESS_CLIENT),
|
|
(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
|
|
(u8) GET_FIELD(data,
|
|
ATTENTION_INCORRECT_ACCESS_BYTE_EN),
|
|
data);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define QED_GRC_ATTENTION_VALID_BIT (1 << 0)
|
|
#define QED_GRC_ATTENTION_ADDRESS_MASK (0x7fffff)
|
|
#define QED_GRC_ATTENTION_ADDRESS_SHIFT (0)
|
|
#define QED_GRC_ATTENTION_RDWR_BIT (1 << 23)
|
|
#define QED_GRC_ATTENTION_MASTER_MASK (0xf)
|
|
#define QED_GRC_ATTENTION_MASTER_SHIFT (24)
|
|
#define QED_GRC_ATTENTION_PF_MASK (0xf)
|
|
#define QED_GRC_ATTENTION_PF_SHIFT (0)
|
|
#define QED_GRC_ATTENTION_VF_MASK (0xff)
|
|
#define QED_GRC_ATTENTION_VF_SHIFT (4)
|
|
#define QED_GRC_ATTENTION_PRIV_MASK (0x3)
|
|
#define QED_GRC_ATTENTION_PRIV_SHIFT (14)
|
|
#define QED_GRC_ATTENTION_PRIV_VF (0)
|
|
static const char *attn_master_to_str(u8 master)
|
|
{
|
|
switch (master) {
|
|
case 1: return "PXP";
|
|
case 2: return "MCP";
|
|
case 3: return "MSDM";
|
|
case 4: return "PSDM";
|
|
case 5: return "YSDM";
|
|
case 6: return "USDM";
|
|
case 7: return "TSDM";
|
|
case 8: return "XSDM";
|
|
case 9: return "DBU";
|
|
case 10: return "DMAE";
|
|
default:
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u32 tmp, tmp2;
|
|
|
|
/* We've already cleared the timeout interrupt register, so we learn
|
|
* of interrupts via the validity register
|
|
*/
|
|
tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
|
|
GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
|
|
if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
|
|
goto out;
|
|
|
|
/* Read the GRC timeout information */
|
|
tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
|
|
GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
|
|
tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
|
|
GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
|
|
|
|
DP_INFO(p_hwfn->cdev,
|
|
"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
|
|
tmp2, tmp,
|
|
(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
|
|
GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
|
|
attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
|
|
GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
|
|
(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
|
|
QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
|
|
GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
|
|
|
|
out:
|
|
/* Regardles of anything else, clean the validity bit */
|
|
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
|
|
GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
|
|
return 0;
|
|
}
|
|
|
|
#define PGLUE_ATTENTION_VALID (1 << 29)
|
|
#define PGLUE_ATTENTION_RD_VALID (1 << 26)
|
|
#define PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf)
|
|
#define PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
|
|
#define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK (0x1)
|
|
#define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT (19)
|
|
#define PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff)
|
|
#define PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
|
|
#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK (0x1)
|
|
#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT (21)
|
|
#define PGLUE_ATTENTION_DETAILS2_BME_MASK (0x1)
|
|
#define PGLUE_ATTENTION_DETAILS2_BME_SHIFT (22)
|
|
#define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK (0x1)
|
|
#define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT (23)
|
|
#define PGLUE_ATTENTION_ICPL_VALID (1 << 23)
|
|
#define PGLUE_ATTENTION_ZLR_VALID (1 << 25)
|
|
#define PGLUE_ATTENTION_ILT_VALID (1 << 23)
|
|
|
|
int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
u32 tmp;
|
|
|
|
tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
|
|
if (tmp & PGLUE_ATTENTION_VALID) {
|
|
u32 addr_lo, addr_hi, details;
|
|
|
|
addr_lo = qed_rd(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
|
|
addr_hi = qed_rd(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
|
|
details = qed_rd(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_TX_ERR_WR_DETAILS);
|
|
|
|
DP_NOTICE(p_hwfn,
|
|
"Illegal write by chip to [%08x:%08x] blocked.\n"
|
|
"Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
|
|
"Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
|
|
addr_hi, addr_lo, details,
|
|
(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
|
|
(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
|
|
GET_FIELD(details,
|
|
PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
|
|
tmp,
|
|
GET_FIELD(tmp,
|
|
PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
|
|
GET_FIELD(tmp,
|
|
PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
|
|
GET_FIELD(tmp,
|
|
PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
|
|
}
|
|
|
|
tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
|
|
if (tmp & PGLUE_ATTENTION_RD_VALID) {
|
|
u32 addr_lo, addr_hi, details;
|
|
|
|
addr_lo = qed_rd(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
|
|
addr_hi = qed_rd(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
|
|
details = qed_rd(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_TX_ERR_RD_DETAILS);
|
|
|
|
DP_NOTICE(p_hwfn,
|
|
"Illegal read by chip from [%08x:%08x] blocked.\n"
|
|
"Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
|
|
"Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
|
|
addr_hi, addr_lo, details,
|
|
(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
|
|
(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
|
|
GET_FIELD(details,
|
|
PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
|
|
tmp,
|
|
GET_FIELD(tmp,
|
|
PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
|
|
GET_FIELD(tmp,
|
|
PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
|
|
GET_FIELD(tmp,
|
|
PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
|
|
}
|
|
|
|
tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
|
|
if (tmp & PGLUE_ATTENTION_ICPL_VALID)
|
|
DP_NOTICE(p_hwfn, "ICPL error - %08x\n", tmp);
|
|
|
|
tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
|
|
if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
|
|
u32 addr_hi, addr_lo;
|
|
|
|
addr_lo = qed_rd(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
|
|
addr_hi = qed_rd(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
|
|
|
|
DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
|
|
tmp, addr_hi, addr_lo);
|
|
}
|
|
|
|
tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
|
|
if (tmp & PGLUE_ATTENTION_ILT_VALID) {
|
|
u32 addr_hi, addr_lo, details;
|
|
|
|
addr_lo = qed_rd(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
|
|
addr_hi = qed_rd(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
|
|
details = qed_rd(p_hwfn, p_ptt,
|
|
PGLUE_B_REG_VF_ILT_ERR_DETAILS);
|
|
|
|
DP_NOTICE(p_hwfn,
|
|
"ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
|
|
details, tmp, addr_hi, addr_lo);
|
|
}
|
|
|
|
/* Clear the indications */
|
|
qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
|
|
{
|
|
return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
|
|
}
|
|
|
|
#define QED_DORQ_ATTENTION_REASON_MASK (0xfffff)
|
|
#define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
|
|
#define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
|
|
#define QED_DORQ_ATTENTION_SIZE_MASK (0x7f)
|
|
#define QED_DORQ_ATTENTION_SIZE_SHIFT (16)
|
|
|
|
#define QED_DB_REC_COUNT 1000
|
|
#define QED_DB_REC_INTERVAL 100
|
|
|
|
static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
u32 count = QED_DB_REC_COUNT;
|
|
u32 usage = 1;
|
|
|
|
/* Flush any pending (e)dpms as they may never arrive */
|
|
qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
|
|
|
|
/* wait for usage to zero or count to run out. This is necessary since
|
|
* EDPM doorbell transactions can take multiple 64b cycles, and as such
|
|
* can "split" over the pci. Possibly, the doorbell drop can happen with
|
|
* half an EDPM in the queue and other half dropped. Another EDPM
|
|
* doorbell to the same address (from doorbell recovery mechanism or
|
|
* from the doorbelling entity) could have first half dropped and second
|
|
* half interpreted as continuation of the first. To prevent such
|
|
* malformed doorbells from reaching the device, flush the queue before
|
|
* releasing the overflow sticky indication.
|
|
*/
|
|
while (count-- && usage) {
|
|
usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
|
|
udelay(QED_DB_REC_INTERVAL);
|
|
}
|
|
|
|
/* should have been depleted by now */
|
|
if (usage) {
|
|
DP_NOTICE(p_hwfn->cdev,
|
|
"DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
|
|
QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
u32 attn_ovfl, cur_ovfl;
|
|
int rc;
|
|
|
|
attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT,
|
|
&p_hwfn->db_recovery_info.overflow);
|
|
cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
|
|
if (!cur_ovfl && !attn_ovfl)
|
|
return 0;
|
|
|
|
DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n",
|
|
attn_ovfl, cur_ovfl);
|
|
|
|
if (cur_ovfl && !p_hwfn->db_bar_no_edpm) {
|
|
rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
/* Release overflow sticky indication (stop silently dropping everything) */
|
|
qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
|
|
|
|
/* Repeat all last doorbells (doorbell drop recovery) */
|
|
qed_db_recovery_execute(p_hwfn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
|
|
u32 overflow;
|
|
int rc;
|
|
|
|
overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
|
|
if (!overflow)
|
|
goto out;
|
|
|
|
/* Run PF doorbell recovery in next periodic handler */
|
|
set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow);
|
|
|
|
if (!p_hwfn->db_bar_no_edpm) {
|
|
rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
|
|
qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
|
|
out:
|
|
/* Schedule the handler even if overflow was not detected */
|
|
qed_periodic_db_rec_start(p_hwfn);
|
|
}
|
|
|
|
static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u32 int_sts, first_drop_reason, details, address, all_drops_reason;
|
|
struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
|
|
|
|
/* int_sts may be zero since all PFs were interrupted for doorbell
|
|
* overflow but another one already handled it. Can abort here. If
|
|
* This PF also requires overflow recovery we will be interrupted again.
|
|
* The masked almost full indication may also be set. Ignoring.
|
|
*/
|
|
int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
|
|
if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
|
|
return 0;
|
|
|
|
DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
|
|
|
|
/* check if db_drop or overflow happened */
|
|
if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
|
|
DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
|
|
/* Obtain data about db drop/overflow */
|
|
first_drop_reason = qed_rd(p_hwfn, p_ptt,
|
|
DORQ_REG_DB_DROP_REASON) &
|
|
QED_DORQ_ATTENTION_REASON_MASK;
|
|
details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
|
|
address = qed_rd(p_hwfn, p_ptt,
|
|
DORQ_REG_DB_DROP_DETAILS_ADDRESS);
|
|
all_drops_reason = qed_rd(p_hwfn, p_ptt,
|
|
DORQ_REG_DB_DROP_DETAILS_REASON);
|
|
|
|
/* Log info */
|
|
DP_NOTICE(p_hwfn->cdev,
|
|
"Doorbell drop occurred\n"
|
|
"Address\t\t0x%08x\t(second BAR address)\n"
|
|
"FID\t\t0x%04x\t\t(Opaque FID)\n"
|
|
"Size\t\t0x%04x\t\t(in bytes)\n"
|
|
"1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
|
|
"Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
|
|
address,
|
|
GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
|
|
GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
|
|
first_drop_reason, all_drops_reason);
|
|
|
|
/* Clear the doorbell drop details and prepare for next drop */
|
|
qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
|
|
|
|
/* Mark interrupt as handled (note: even if drop was due to a different
|
|
* reason than overflow we mark as handled)
|
|
*/
|
|
qed_wr(p_hwfn,
|
|
p_ptt,
|
|
DORQ_REG_INT_STS_WR,
|
|
DORQ_REG_INT_STS_DB_DROP |
|
|
DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
|
|
|
|
/* If there are no indications other than drop indications, success */
|
|
if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
|
|
DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
|
|
DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
|
|
return 0;
|
|
}
|
|
|
|
/* Some other indication was present - non recoverable */
|
|
DP_INFO(p_hwfn, "DORQ fatal attention\n");
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
|
|
{
|
|
p_hwfn->db_recovery_info.dorq_attn = true;
|
|
qed_dorq_attn_overflow(p_hwfn);
|
|
|
|
return qed_dorq_attn_int_sts(p_hwfn);
|
|
}
|
|
|
|
static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn)
|
|
{
|
|
if (p_hwfn->db_recovery_info.dorq_attn)
|
|
goto out;
|
|
|
|
/* Call DORQ callback if the attention was missed */
|
|
qed_dorq_attn_cb(p_hwfn);
|
|
out:
|
|
p_hwfn->db_recovery_info.dorq_attn = false;
|
|
}
|
|
|
|
/* Instead of major changes to the data-structure, we have a some 'special'
|
|
* identifiers for sources that changed meaning between adapters.
|
|
*/
|
|
enum aeu_invert_reg_special_type {
|
|
AEU_INVERT_REG_SPECIAL_CNIG_0,
|
|
AEU_INVERT_REG_SPECIAL_CNIG_1,
|
|
AEU_INVERT_REG_SPECIAL_CNIG_2,
|
|
AEU_INVERT_REG_SPECIAL_CNIG_3,
|
|
AEU_INVERT_REG_SPECIAL_MAX,
|
|
};
|
|
|
|
static struct aeu_invert_reg_bit
|
|
aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
|
|
{"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
|
|
{"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
|
|
{"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
|
|
{"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
|
|
};
|
|
|
|
/* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
|
|
static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
|
|
{
|
|
{ /* After Invert 1 */
|
|
{"GPIO0 function%d",
|
|
(32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
|
|
}
|
|
},
|
|
|
|
{
|
|
{ /* After Invert 2 */
|
|
{"PGLUE config_space", ATTENTION_SINGLE,
|
|
NULL, MAX_BLOCK_ID},
|
|
{"PGLUE misc_flr", ATTENTION_SINGLE,
|
|
NULL, MAX_BLOCK_ID},
|
|
{"PGLUE B RBC", ATTENTION_PAR_INT,
|
|
qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
|
|
{"PGLUE misc_mctp", ATTENTION_SINGLE,
|
|
NULL, MAX_BLOCK_ID},
|
|
{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
|
|
{"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
|
|
{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
|
|
{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
|
|
(1 << ATTENTION_OFFSET_SHIFT),
|
|
NULL, MAX_BLOCK_ID},
|
|
{"PCIE glue/PXP VPD %d",
|
|
(16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
|
|
}
|
|
},
|
|
|
|
{
|
|
{ /* After Invert 3 */
|
|
{"General Attention %d",
|
|
(32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
|
|
}
|
|
},
|
|
|
|
{
|
|
{ /* After Invert 4 */
|
|
{"General Attention 32", ATTENTION_SINGLE,
|
|
NULL, MAX_BLOCK_ID},
|
|
{"General Attention %d",
|
|
(2 << ATTENTION_LENGTH_SHIFT) |
|
|
(33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
|
|
{"General Attention 35", ATTENTION_SINGLE,
|
|
NULL, MAX_BLOCK_ID},
|
|
{"NWS Parity",
|
|
ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
|
|
ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
|
|
NULL, BLOCK_NWS},
|
|
{"NWS Interrupt",
|
|
ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
|
|
ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
|
|
NULL, BLOCK_NWS},
|
|
{"NWM Parity",
|
|
ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
|
|
ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
|
|
NULL, BLOCK_NWM},
|
|
{"NWM Interrupt",
|
|
ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
|
|
ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
|
|
NULL, BLOCK_NWM},
|
|
{"MCP CPU", ATTENTION_SINGLE,
|
|
qed_mcp_attn_cb, MAX_BLOCK_ID},
|
|
{"MCP Watchdog timer", ATTENTION_SINGLE,
|
|
NULL, MAX_BLOCK_ID},
|
|
{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
|
|
{"AVS stop status ready", ATTENTION_SINGLE,
|
|
NULL, MAX_BLOCK_ID},
|
|
{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
|
|
{"MSTAT per-path", ATTENTION_PAR_INT,
|
|
NULL, MAX_BLOCK_ID},
|
|
{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
|
|
NULL, MAX_BLOCK_ID},
|
|
{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
|
|
{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
|
|
{"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB},
|
|
{"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB},
|
|
{"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS},
|
|
}
|
|
},
|
|
|
|
{
|
|
{ /* After Invert 5 */
|
|
{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
|
|
{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
|
|
{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
|
|
{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
|
|
{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
|
|
{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
|
|
{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
|
|
{"MCM", ATTENTION_PAR_INT, NULL, BLOCK_MCM},
|
|
{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
|
|
{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
|
|
{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
|
|
{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
|
|
{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
|
|
{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
|
|
{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
|
|
{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
|
|
}
|
|
},
|
|
|
|
{
|
|
{ /* After Invert 6 */
|
|
{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
|
|
{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
|
|
{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
|
|
{"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM},
|
|
{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
|
|
{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
|
|
{"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM},
|
|
{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
|
|
{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
|
|
{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
|
|
{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
|
|
{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
|
|
{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
|
|
{"DORQ", ATTENTION_PAR_INT,
|
|
qed_dorq_attn_cb, BLOCK_DORQ},
|
|
{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
|
|
{"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC},
|
|
}
|
|
},
|
|
|
|
{
|
|
{ /* After Invert 7 */
|
|
{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
|
|
{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
|
|
{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
|
|
{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
|
|
{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
|
|
{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
|
|
{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
|
|
{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
|
|
{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
|
|
{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
|
|
{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
|
|
{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
|
|
{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
|
|
{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
|
|
{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
|
|
{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
|
|
{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
|
|
}
|
|
},
|
|
|
|
{
|
|
{ /* After Invert 8 */
|
|
{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
|
|
NULL, BLOCK_PSWRQ2},
|
|
{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
|
|
{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
|
|
NULL, BLOCK_PSWWR2},
|
|
{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
|
|
{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
|
|
NULL, BLOCK_PSWRD2},
|
|
{"PSWHST", ATTENTION_PAR_INT,
|
|
qed_pswhst_attn_cb, BLOCK_PSWHST},
|
|
{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
|
|
NULL, BLOCK_PSWHST2},
|
|
{"GRC", ATTENTION_PAR_INT,
|
|
qed_grc_attn_cb, BLOCK_GRC},
|
|
{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
|
|
{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
|
|
{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
|
|
{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
|
|
{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
|
|
{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
|
|
{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
|
|
{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
|
|
{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
|
|
{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
|
|
NULL, BLOCK_PGLCS},
|
|
{"PERST_B assertion", ATTENTION_SINGLE,
|
|
NULL, MAX_BLOCK_ID},
|
|
{"PERST_B deassertion", ATTENTION_SINGLE,
|
|
NULL, MAX_BLOCK_ID},
|
|
{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
|
|
NULL, MAX_BLOCK_ID},
|
|
}
|
|
},
|
|
|
|
{
|
|
{ /* After Invert 9 */
|
|
{"MCP Latched memory", ATTENTION_PAR,
|
|
NULL, MAX_BLOCK_ID},
|
|
{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
|
|
NULL, MAX_BLOCK_ID},
|
|
{"MCP Latched ump_tx", ATTENTION_PAR,
|
|
NULL, MAX_BLOCK_ID},
|
|
{"MCP Latched scratchpad", ATTENTION_PAR,
|
|
NULL, MAX_BLOCK_ID},
|
|
{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
|
|
NULL, MAX_BLOCK_ID},
|
|
}
|
|
},
|
|
};
|
|
|
|
static struct aeu_invert_reg_bit *
|
|
qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
|
|
struct aeu_invert_reg_bit *p_bit)
|
|
{
|
|
if (!QED_IS_BB(p_hwfn->cdev))
|
|
return p_bit;
|
|
|
|
if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
|
|
return p_bit;
|
|
|
|
return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
|
|
ATTENTION_BB_SHIFT];
|
|
}
|
|
|
|
static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
|
|
struct aeu_invert_reg_bit *p_bit)
|
|
{
|
|
return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
|
|
ATTENTION_PARITY);
|
|
}
|
|
|
|
#define ATTN_STATE_BITS (0xfff)
|
|
#define ATTN_BITS_MASKABLE (0x3ff)
|
|
struct qed_sb_attn_info {
|
|
/* Virtual & Physical address of the SB */
|
|
struct atten_status_block *sb_attn;
|
|
dma_addr_t sb_phys;
|
|
|
|
/* Last seen running index */
|
|
u16 index;
|
|
|
|
/* A mask of the AEU bits resulting in a parity error */
|
|
u32 parity_mask[NUM_ATTN_REGS];
|
|
|
|
/* A pointer to the attention description structure */
|
|
struct aeu_invert_reg *p_aeu_desc;
|
|
|
|
/* Previously asserted attentions, which are still unasserted */
|
|
u16 known_attn;
|
|
|
|
/* Cleanup address for the link's general hw attention */
|
|
u32 mfw_attn_addr;
|
|
};
|
|
|
|
static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
|
|
struct qed_sb_attn_info *p_sb_desc)
|
|
{
|
|
u16 rc = 0, index;
|
|
|
|
/* Make certain HW write took affect */
|
|
mmiowb();
|
|
|
|
index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
|
|
if (p_sb_desc->index != index) {
|
|
p_sb_desc->index = index;
|
|
rc = QED_SB_ATT_IDX;
|
|
}
|
|
|
|
/* Make certain we got a consistent view with HW */
|
|
mmiowb();
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_int_assertion - handles asserted attention bits
|
|
*
|
|
* @param p_hwfn
|
|
* @param asserted_bits newly asserted bits
|
|
* @return int
|
|
*/
|
|
static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
|
|
{
|
|
struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
|
|
u32 igu_mask;
|
|
|
|
/* Mask the source of the attention in the IGU */
|
|
igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
|
|
igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
|
|
igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
|
|
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
|
|
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
|
|
"inner known ATTN state: 0x%04x --> 0x%04x\n",
|
|
sb_attn_sw->known_attn,
|
|
sb_attn_sw->known_attn | asserted_bits);
|
|
sb_attn_sw->known_attn |= asserted_bits;
|
|
|
|
/* Handle MCP events */
|
|
if (asserted_bits & 0x100) {
|
|
qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
|
|
/* Clean the MCP attention */
|
|
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
|
|
sb_attn_sw->mfw_attn_addr, 0);
|
|
}
|
|
|
|
DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
|
|
GTT_BAR0_MAP_REG_IGU_CMD +
|
|
((IGU_CMD_ATTN_BIT_SET_UPPER -
|
|
IGU_CMD_INT_ACK_BASE) << 3),
|
|
(u32)asserted_bits);
|
|
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
|
|
asserted_bits);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
|
|
enum block_id id,
|
|
enum dbg_attn_type type, bool b_clear)
|
|
{
|
|
struct dbg_attn_block_result attn_results;
|
|
enum dbg_status status;
|
|
|
|
memset(&attn_results, 0, sizeof(attn_results));
|
|
|
|
status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
|
|
b_clear, &attn_results);
|
|
if (status != DBG_STATUS_OK)
|
|
DP_NOTICE(p_hwfn,
|
|
"Failed to parse attention information [status: %s]\n",
|
|
qed_dbg_get_status_str(status));
|
|
else
|
|
qed_dbg_parse_attn(p_hwfn, &attn_results);
|
|
}
|
|
|
|
/**
|
|
* @brief qed_int_deassertion_aeu_bit - handles the effects of a single
|
|
* cause of the attention
|
|
*
|
|
* @param p_hwfn
|
|
* @param p_aeu - descriptor of an AEU bit which caused the attention
|
|
* @param aeu_en_reg - register offset of the AEU enable reg. which configured
|
|
* this bit to this group.
|
|
* @param bit_index - index of this bit in the aeu_en_reg
|
|
*
|
|
* @return int
|
|
*/
|
|
static int
|
|
qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
|
|
struct aeu_invert_reg_bit *p_aeu,
|
|
u32 aeu_en_reg,
|
|
const char *p_bit_name, u32 bitmask)
|
|
{
|
|
bool b_fatal = false;
|
|
int rc = -EINVAL;
|
|
u32 val;
|
|
|
|
DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
|
|
p_bit_name, bitmask);
|
|
|
|
/* Call callback before clearing the interrupt status */
|
|
if (p_aeu->cb) {
|
|
DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
|
|
p_bit_name);
|
|
rc = p_aeu->cb(p_hwfn);
|
|
}
|
|
|
|
if (rc)
|
|
b_fatal = true;
|
|
|
|
/* Print HW block interrupt registers */
|
|
if (p_aeu->block_index != MAX_BLOCK_ID)
|
|
qed_int_attn_print(p_hwfn, p_aeu->block_index,
|
|
ATTN_TYPE_INTERRUPT, !b_fatal);
|
|
|
|
|
|
/* If the attention is benign, no need to prevent it */
|
|
if (!rc)
|
|
goto out;
|
|
|
|
/* Prevent this Attention from being asserted in the future */
|
|
val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
|
|
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
|
|
DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
|
|
p_bit_name);
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_int_deassertion_parity - handle a single parity AEU source
|
|
*
|
|
* @param p_hwfn
|
|
* @param p_aeu - descriptor of an AEU bit which caused the parity
|
|
* @param aeu_en_reg - address of the AEU enable register
|
|
* @param bit_index
|
|
*/
|
|
static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
|
|
struct aeu_invert_reg_bit *p_aeu,
|
|
u32 aeu_en_reg, u8 bit_index)
|
|
{
|
|
u32 block_id = p_aeu->block_index, mask, val;
|
|
|
|
DP_NOTICE(p_hwfn->cdev,
|
|
"%s parity attention is set [address 0x%08x, bit %d]\n",
|
|
p_aeu->bit_name, aeu_en_reg, bit_index);
|
|
|
|
if (block_id != MAX_BLOCK_ID) {
|
|
qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
|
|
|
|
/* In BB, there's a single parity bit for several blocks */
|
|
if (block_id == BLOCK_BTB) {
|
|
qed_int_attn_print(p_hwfn, BLOCK_OPTE,
|
|
ATTN_TYPE_PARITY, false);
|
|
qed_int_attn_print(p_hwfn, BLOCK_MCP,
|
|
ATTN_TYPE_PARITY, false);
|
|
}
|
|
}
|
|
|
|
/* Prevent this parity error from being re-asserted */
|
|
mask = ~BIT(bit_index);
|
|
val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
|
|
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
|
|
DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
|
|
p_aeu->bit_name);
|
|
}
|
|
|
|
/**
|
|
* @brief - handles deassertion of previously asserted attentions.
|
|
*
|
|
* @param p_hwfn
|
|
* @param deasserted_bits - newly deasserted bits
|
|
* @return int
|
|
*
|
|
*/
|
|
static int qed_int_deassertion(struct qed_hwfn *p_hwfn,
|
|
u16 deasserted_bits)
|
|
{
|
|
struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
|
|
u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
|
|
u8 i, j, k, bit_idx;
|
|
int rc = 0;
|
|
|
|
/* Read the attention registers in the AEU */
|
|
for (i = 0; i < NUM_ATTN_REGS; i++) {
|
|
aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
|
|
MISC_REG_AEU_AFTER_INVERT_1_IGU +
|
|
i * 0x4);
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
|
|
"Deasserted bits [%d]: %08x\n",
|
|
i, aeu_inv_arr[i]);
|
|
}
|
|
|
|
/* Find parity attentions first */
|
|
for (i = 0; i < NUM_ATTN_REGS; i++) {
|
|
struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
|
|
u32 parities;
|
|
|
|
aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
|
|
en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
|
|
|
|
/* Skip register in which no parity bit is currently set */
|
|
parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
|
|
if (!parities)
|
|
continue;
|
|
|
|
for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
|
|
struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
|
|
|
|
if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
|
|
!!(parities & BIT(bit_idx)))
|
|
qed_int_deassertion_parity(p_hwfn, p_bit,
|
|
aeu_en, bit_idx);
|
|
|
|
bit_idx += ATTENTION_LENGTH(p_bit->flags);
|
|
}
|
|
}
|
|
|
|
/* Find non-parity cause for attention and act */
|
|
for (k = 0; k < MAX_ATTN_GRPS; k++) {
|
|
struct aeu_invert_reg_bit *p_aeu;
|
|
|
|
/* Handle only groups whose attention is currently deasserted */
|
|
if (!(deasserted_bits & (1 << k)))
|
|
continue;
|
|
|
|
for (i = 0; i < NUM_ATTN_REGS; i++) {
|
|
u32 bits;
|
|
|
|
aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
|
|
i * sizeof(u32) +
|
|
k * sizeof(u32) * NUM_ATTN_REGS;
|
|
|
|
en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
|
|
bits = aeu_inv_arr[i] & en;
|
|
|
|
/* Skip if no bit from this group is currently set */
|
|
if (!bits)
|
|
continue;
|
|
|
|
/* Find all set bits from current register which belong
|
|
* to current group, making them responsible for the
|
|
* previous assertion.
|
|
*/
|
|
for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
|
|
long unsigned int bitmask;
|
|
u8 bit, bit_len;
|
|
|
|
p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
|
|
p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
|
|
|
|
bit = bit_idx;
|
|
bit_len = ATTENTION_LENGTH(p_aeu->flags);
|
|
if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
|
|
/* Skip Parity */
|
|
bit++;
|
|
bit_len--;
|
|
}
|
|
|
|
bitmask = bits & (((1 << bit_len) - 1) << bit);
|
|
bitmask >>= bit;
|
|
|
|
if (bitmask) {
|
|
u32 flags = p_aeu->flags;
|
|
char bit_name[30];
|
|
u8 num;
|
|
|
|
num = (u8)find_first_bit(&bitmask,
|
|
bit_len);
|
|
|
|
/* Some bits represent more than a
|
|
* a single interrupt. Correctly print
|
|
* their name.
|
|
*/
|
|
if (ATTENTION_LENGTH(flags) > 2 ||
|
|
((flags & ATTENTION_PAR_INT) &&
|
|
ATTENTION_LENGTH(flags) > 1))
|
|
snprintf(bit_name, 30,
|
|
p_aeu->bit_name, num);
|
|
else
|
|
strncpy(bit_name,
|
|
p_aeu->bit_name, 30);
|
|
|
|
/* We now need to pass bitmask in its
|
|
* correct position.
|
|
*/
|
|
bitmask <<= bit;
|
|
|
|
/* Handle source of the attention */
|
|
qed_int_deassertion_aeu_bit(p_hwfn,
|
|
p_aeu,
|
|
aeu_en,
|
|
bit_name,
|
|
bitmask);
|
|
}
|
|
|
|
bit_idx += ATTENTION_LENGTH(p_aeu->flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Handle missed DORQ attention */
|
|
qed_dorq_attn_handler(p_hwfn);
|
|
|
|
/* Clear IGU indication for the deasserted bits */
|
|
DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
|
|
GTT_BAR0_MAP_REG_IGU_CMD +
|
|
((IGU_CMD_ATTN_BIT_CLR_UPPER -
|
|
IGU_CMD_INT_ACK_BASE) << 3),
|
|
~((u32)deasserted_bits));
|
|
|
|
/* Unmask deasserted attentions in IGU */
|
|
aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
|
|
aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
|
|
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
|
|
|
|
/* Clear deassertion from inner state */
|
|
sb_attn_sw->known_attn &= ~deasserted_bits;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int qed_int_attentions(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
|
|
struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
|
|
u32 attn_bits = 0, attn_acks = 0;
|
|
u16 asserted_bits, deasserted_bits;
|
|
__le16 index;
|
|
int rc = 0;
|
|
|
|
/* Read current attention bits/acks - safeguard against attentions
|
|
* by guaranting work on a synchronized timeframe
|
|
*/
|
|
do {
|
|
index = p_sb_attn->sb_index;
|
|
/* finish reading index before the loop condition */
|
|
dma_rmb();
|
|
attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
|
|
attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
|
|
} while (index != p_sb_attn->sb_index);
|
|
p_sb_attn->sb_index = index;
|
|
|
|
/* Attention / Deassertion are meaningful (and in correct state)
|
|
* only when they differ and consistent with known state - deassertion
|
|
* when previous attention & current ack, and assertion when current
|
|
* attention with no previous attention
|
|
*/
|
|
asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
|
|
~p_sb_attn_sw->known_attn;
|
|
deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
|
|
p_sb_attn_sw->known_attn;
|
|
|
|
if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
|
|
DP_INFO(p_hwfn,
|
|
"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
|
|
index, attn_bits, attn_acks, asserted_bits,
|
|
deasserted_bits, p_sb_attn_sw->known_attn);
|
|
} else if (asserted_bits == 0x100) {
|
|
DP_INFO(p_hwfn, "MFW indication via attention\n");
|
|
} else {
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
|
|
"MFW indication [deassertion]\n");
|
|
}
|
|
|
|
if (asserted_bits) {
|
|
rc = qed_int_assertion(p_hwfn, asserted_bits);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
if (deasserted_bits)
|
|
rc = qed_int_deassertion(p_hwfn, deasserted_bits);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
|
|
void __iomem *igu_addr, u32 ack_cons)
|
|
{
|
|
struct igu_prod_cons_update igu_ack = { 0 };
|
|
|
|
igu_ack.sb_id_and_flags =
|
|
((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
|
|
(1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
|
|
(IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
|
|
(IGU_SEG_ACCESS_ATTN <<
|
|
IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
|
|
|
|
DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
|
|
|
|
/* Both segments (interrupts & acks) are written to same place address;
|
|
* Need to guarantee all commands will be received (in-order) by HW.
|
|
*/
|
|
mmiowb();
|
|
barrier();
|
|
}
|
|
|
|
void qed_int_sp_dpc(unsigned long hwfn_cookie)
|
|
{
|
|
struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
|
|
struct qed_pi_info *pi_info = NULL;
|
|
struct qed_sb_attn_info *sb_attn;
|
|
struct qed_sb_info *sb_info;
|
|
int arr_size;
|
|
u16 rc = 0;
|
|
|
|
if (!p_hwfn->p_sp_sb) {
|
|
DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
|
|
return;
|
|
}
|
|
|
|
sb_info = &p_hwfn->p_sp_sb->sb_info;
|
|
arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
|
|
if (!sb_info) {
|
|
DP_ERR(p_hwfn->cdev,
|
|
"Status block is NULL - cannot ack interrupts\n");
|
|
return;
|
|
}
|
|
|
|
if (!p_hwfn->p_sb_attn) {
|
|
DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
|
|
return;
|
|
}
|
|
sb_attn = p_hwfn->p_sb_attn;
|
|
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
|
|
p_hwfn, p_hwfn->my_id);
|
|
|
|
/* Disable ack for def status block. Required both for msix +
|
|
* inta in non-mask mode, in inta does no harm.
|
|
*/
|
|
qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
|
|
|
|
/* Gather Interrupts/Attentions information */
|
|
if (!sb_info->sb_virt) {
|
|
DP_ERR(p_hwfn->cdev,
|
|
"Interrupt Status block is NULL - cannot check for new interrupts!\n");
|
|
} else {
|
|
u32 tmp_index = sb_info->sb_ack;
|
|
|
|
rc = qed_sb_update_sb_idx(sb_info);
|
|
DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
|
|
"Interrupt indices: 0x%08x --> 0x%08x\n",
|
|
tmp_index, sb_info->sb_ack);
|
|
}
|
|
|
|
if (!sb_attn || !sb_attn->sb_attn) {
|
|
DP_ERR(p_hwfn->cdev,
|
|
"Attentions Status block is NULL - cannot check for new attentions!\n");
|
|
} else {
|
|
u16 tmp_index = sb_attn->index;
|
|
|
|
rc |= qed_attn_update_idx(p_hwfn, sb_attn);
|
|
DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
|
|
"Attention indices: 0x%08x --> 0x%08x\n",
|
|
tmp_index, sb_attn->index);
|
|
}
|
|
|
|
/* Check if we expect interrupts at this time. if not just ack them */
|
|
if (!(rc & QED_SB_EVENT_MASK)) {
|
|
qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
|
|
return;
|
|
}
|
|
|
|
/* Check the validity of the DPC ptt. If not ack interrupts and fail */
|
|
if (!p_hwfn->p_dpc_ptt) {
|
|
DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
|
|
qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
|
|
return;
|
|
}
|
|
|
|
if (rc & QED_SB_ATT_IDX)
|
|
qed_int_attentions(p_hwfn);
|
|
|
|
if (rc & QED_SB_IDX) {
|
|
int pi;
|
|
|
|
/* Look for a free index */
|
|
for (pi = 0; pi < arr_size; pi++) {
|
|
pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
|
|
if (pi_info->comp_cb)
|
|
pi_info->comp_cb(p_hwfn, pi_info->cookie);
|
|
}
|
|
}
|
|
|
|
if (sb_attn && (rc & QED_SB_ATT_IDX))
|
|
/* This should be done before the interrupts are enabled,
|
|
* since otherwise a new attention will be generated.
|
|
*/
|
|
qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
|
|
|
|
qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
|
|
}
|
|
|
|
static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
|
|
|
|
if (!p_sb)
|
|
return;
|
|
|
|
if (p_sb->sb_attn)
|
|
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
|
|
SB_ATTN_ALIGNED_SIZE(p_hwfn),
|
|
p_sb->sb_attn, p_sb->sb_phys);
|
|
kfree(p_sb);
|
|
p_hwfn->p_sb_attn = NULL;
|
|
}
|
|
|
|
static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
|
|
|
|
memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
|
|
|
|
sb_info->index = 0;
|
|
sb_info->known_attn = 0;
|
|
|
|
/* Configure Attention Status Block in IGU */
|
|
qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
|
|
lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
|
|
qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
|
|
upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
|
|
}
|
|
|
|
static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
void *sb_virt_addr, dma_addr_t sb_phy_addr)
|
|
{
|
|
struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
|
|
int i, j, k;
|
|
|
|
sb_info->sb_attn = sb_virt_addr;
|
|
sb_info->sb_phys = sb_phy_addr;
|
|
|
|
/* Set the pointer to the AEU descriptors */
|
|
sb_info->p_aeu_desc = aeu_descs;
|
|
|
|
/* Calculate Parity Masks */
|
|
memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
|
|
for (i = 0; i < NUM_ATTN_REGS; i++) {
|
|
/* j is array index, k is bit index */
|
|
for (j = 0, k = 0; k < 32; j++) {
|
|
struct aeu_invert_reg_bit *p_aeu;
|
|
|
|
p_aeu = &aeu_descs[i].bits[j];
|
|
if (qed_int_is_parity_flag(p_hwfn, p_aeu))
|
|
sb_info->parity_mask[i] |= 1 << k;
|
|
|
|
k += ATTENTION_LENGTH(p_aeu->flags);
|
|
}
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
|
|
"Attn Mask [Reg %d]: 0x%08x\n",
|
|
i, sb_info->parity_mask[i]);
|
|
}
|
|
|
|
/* Set the address of cleanup for the mcp attention */
|
|
sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
|
|
MISC_REG_AEU_GENERAL_ATTN_0;
|
|
|
|
qed_int_sb_attn_setup(p_hwfn, p_ptt);
|
|
}
|
|
|
|
static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
struct qed_dev *cdev = p_hwfn->cdev;
|
|
struct qed_sb_attn_info *p_sb;
|
|
dma_addr_t p_phys = 0;
|
|
void *p_virt;
|
|
|
|
/* SB struct */
|
|
p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
|
|
if (!p_sb)
|
|
return -ENOMEM;
|
|
|
|
/* SB ring */
|
|
p_virt = dma_alloc_coherent(&cdev->pdev->dev,
|
|
SB_ATTN_ALIGNED_SIZE(p_hwfn),
|
|
&p_phys, GFP_KERNEL);
|
|
|
|
if (!p_virt) {
|
|
kfree(p_sb);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Attention setup */
|
|
p_hwfn->p_sb_attn = p_sb;
|
|
qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* coalescing timeout = timeset << (timer_res + 1) */
|
|
#define QED_CAU_DEF_RX_USECS 24
|
|
#define QED_CAU_DEF_TX_USECS 48
|
|
|
|
void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
|
|
struct cau_sb_entry *p_sb_entry,
|
|
u8 pf_id, u16 vf_number, u8 vf_valid)
|
|
{
|
|
struct qed_dev *cdev = p_hwfn->cdev;
|
|
u32 cau_state;
|
|
u8 timer_res;
|
|
|
|
memset(p_sb_entry, 0, sizeof(*p_sb_entry));
|
|
|
|
SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
|
|
SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
|
|
SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
|
|
SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
|
|
SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
|
|
|
|
cau_state = CAU_HC_DISABLE_STATE;
|
|
|
|
if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
|
|
cau_state = CAU_HC_ENABLE_STATE;
|
|
if (!cdev->rx_coalesce_usecs)
|
|
cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
|
|
if (!cdev->tx_coalesce_usecs)
|
|
cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
|
|
}
|
|
|
|
/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
|
|
if (cdev->rx_coalesce_usecs <= 0x7F)
|
|
timer_res = 0;
|
|
else if (cdev->rx_coalesce_usecs <= 0xFF)
|
|
timer_res = 1;
|
|
else
|
|
timer_res = 2;
|
|
SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
|
|
|
|
if (cdev->tx_coalesce_usecs <= 0x7F)
|
|
timer_res = 0;
|
|
else if (cdev->tx_coalesce_usecs <= 0xFF)
|
|
timer_res = 1;
|
|
else
|
|
timer_res = 2;
|
|
SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
|
|
|
|
SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
|
|
SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
|
|
}
|
|
|
|
static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u16 igu_sb_id,
|
|
u32 pi_index,
|
|
enum qed_coalescing_fsm coalescing_fsm,
|
|
u8 timeset)
|
|
{
|
|
struct cau_pi_entry pi_entry;
|
|
u32 sb_offset, pi_offset;
|
|
|
|
if (IS_VF(p_hwfn->cdev))
|
|
return;
|
|
|
|
sb_offset = igu_sb_id * PIS_PER_SB_E4;
|
|
memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
|
|
|
|
SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
|
|
if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
|
|
SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
|
|
else
|
|
SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
|
|
|
|
pi_offset = sb_offset + pi_index;
|
|
if (p_hwfn->hw_init_done) {
|
|
qed_wr(p_hwfn, p_ptt,
|
|
CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
|
|
*((u32 *)&(pi_entry)));
|
|
} else {
|
|
STORE_RT_REG(p_hwfn,
|
|
CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
|
|
*((u32 *)&(pi_entry)));
|
|
}
|
|
}
|
|
|
|
void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
dma_addr_t sb_phys,
|
|
u16 igu_sb_id, u16 vf_number, u8 vf_valid)
|
|
{
|
|
struct cau_sb_entry sb_entry;
|
|
|
|
qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
|
|
vf_number, vf_valid);
|
|
|
|
if (p_hwfn->hw_init_done) {
|
|
/* Wide-bus, initialize via DMAE */
|
|
u64 phys_addr = (u64)sb_phys;
|
|
|
|
qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
|
|
CAU_REG_SB_ADDR_MEMORY +
|
|
igu_sb_id * sizeof(u64), 2, 0);
|
|
qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
|
|
CAU_REG_SB_VAR_MEMORY +
|
|
igu_sb_id * sizeof(u64), 2, 0);
|
|
} else {
|
|
/* Initialize Status Block Address */
|
|
STORE_RT_REG_AGG(p_hwfn,
|
|
CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
|
|
igu_sb_id * 2,
|
|
sb_phys);
|
|
|
|
STORE_RT_REG_AGG(p_hwfn,
|
|
CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
|
|
igu_sb_id * 2,
|
|
sb_entry);
|
|
}
|
|
|
|
/* Configure pi coalescing if set */
|
|
if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
|
|
u8 num_tc = p_hwfn->hw_info.num_hw_tc;
|
|
u8 timeset, timer_res;
|
|
u8 i;
|
|
|
|
/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
|
|
if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
|
|
timer_res = 0;
|
|
else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
|
|
timer_res = 1;
|
|
else
|
|
timer_res = 2;
|
|
timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
|
|
qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
|
|
QED_COAL_RX_STATE_MACHINE, timeset);
|
|
|
|
if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
|
|
timer_res = 0;
|
|
else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
|
|
timer_res = 1;
|
|
else
|
|
timer_res = 2;
|
|
timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
|
|
for (i = 0; i < num_tc; i++) {
|
|
qed_int_cau_conf_pi(p_hwfn, p_ptt,
|
|
igu_sb_id, TX_PI(i),
|
|
QED_COAL_TX_STATE_MACHINE,
|
|
timeset);
|
|
}
|
|
}
|
|
}
|
|
|
|
void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
|
|
{
|
|
/* zero status block and ack counter */
|
|
sb_info->sb_ack = 0;
|
|
memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
|
|
|
|
if (IS_PF(p_hwfn->cdev))
|
|
qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
|
|
sb_info->igu_sb_id, 0, 0);
|
|
}
|
|
|
|
struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
|
|
{
|
|
struct qed_igu_block *p_block;
|
|
u16 igu_id;
|
|
|
|
for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
|
|
igu_id++) {
|
|
p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
|
|
|
|
if (!(p_block->status & QED_IGU_STATUS_VALID) ||
|
|
!(p_block->status & QED_IGU_STATUS_FREE))
|
|
continue;
|
|
|
|
if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
|
|
return p_block;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
|
|
{
|
|
struct qed_igu_block *p_block;
|
|
u16 igu_id;
|
|
|
|
for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
|
|
igu_id++) {
|
|
p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
|
|
|
|
if (!(p_block->status & QED_IGU_STATUS_VALID) ||
|
|
!p_block->is_pf ||
|
|
p_block->vector_number != vector_id)
|
|
continue;
|
|
|
|
return igu_id;
|
|
}
|
|
|
|
return QED_SB_INVALID_IDX;
|
|
}
|
|
|
|
u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
|
|
{
|
|
u16 igu_sb_id;
|
|
|
|
/* Assuming continuous set of IGU SBs dedicated for given PF */
|
|
if (sb_id == QED_SP_SB_ID)
|
|
igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
|
|
else if (IS_PF(p_hwfn->cdev))
|
|
igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
|
|
else
|
|
igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
|
|
|
|
if (sb_id == QED_SP_SB_ID)
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
|
|
"Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
|
|
else
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
|
|
"SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
|
|
|
|
return igu_sb_id;
|
|
}
|
|
|
|
int qed_int_sb_init(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
struct qed_sb_info *sb_info,
|
|
void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
|
|
{
|
|
sb_info->sb_virt = sb_virt_addr;
|
|
sb_info->sb_phys = sb_phy_addr;
|
|
|
|
sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
|
|
|
|
if (sb_id != QED_SP_SB_ID) {
|
|
if (IS_PF(p_hwfn->cdev)) {
|
|
struct qed_igu_info *p_info;
|
|
struct qed_igu_block *p_block;
|
|
|
|
p_info = p_hwfn->hw_info.p_igu_info;
|
|
p_block = &p_info->entry[sb_info->igu_sb_id];
|
|
|
|
p_block->sb_info = sb_info;
|
|
p_block->status &= ~QED_IGU_STATUS_FREE;
|
|
p_info->usage.free_cnt--;
|
|
} else {
|
|
qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
|
|
}
|
|
}
|
|
|
|
sb_info->cdev = p_hwfn->cdev;
|
|
|
|
/* The igu address will hold the absolute address that needs to be
|
|
* written to for a specific status block
|
|
*/
|
|
if (IS_PF(p_hwfn->cdev)) {
|
|
sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
|
|
GTT_BAR0_MAP_REG_IGU_CMD +
|
|
(sb_info->igu_sb_id << 3);
|
|
} else {
|
|
sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
|
|
PXP_VF_BAR0_START_IGU +
|
|
((IGU_CMD_INT_ACK_BASE +
|
|
sb_info->igu_sb_id) << 3);
|
|
}
|
|
|
|
sb_info->flags |= QED_SB_INFO_INIT;
|
|
|
|
qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qed_int_sb_release(struct qed_hwfn *p_hwfn,
|
|
struct qed_sb_info *sb_info, u16 sb_id)
|
|
{
|
|
struct qed_igu_block *p_block;
|
|
struct qed_igu_info *p_info;
|
|
|
|
if (!sb_info)
|
|
return 0;
|
|
|
|
/* zero status block and ack counter */
|
|
sb_info->sb_ack = 0;
|
|
memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
|
|
|
|
if (IS_VF(p_hwfn->cdev)) {
|
|
qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
|
|
return 0;
|
|
}
|
|
|
|
p_info = p_hwfn->hw_info.p_igu_info;
|
|
p_block = &p_info->entry[sb_info->igu_sb_id];
|
|
|
|
/* Vector 0 is reserved to Default SB */
|
|
if (!p_block->vector_number) {
|
|
DP_ERR(p_hwfn, "Do Not free sp sb using this function");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Lose reference to client's SB info, and fix counters */
|
|
p_block->sb_info = NULL;
|
|
p_block->status |= QED_IGU_STATUS_FREE;
|
|
p_info->usage.free_cnt++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
|
|
|
|
if (!p_sb)
|
|
return;
|
|
|
|
if (p_sb->sb_info.sb_virt)
|
|
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
|
|
SB_ALIGNED_SIZE(p_hwfn),
|
|
p_sb->sb_info.sb_virt,
|
|
p_sb->sb_info.sb_phys);
|
|
kfree(p_sb);
|
|
p_hwfn->p_sp_sb = NULL;
|
|
}
|
|
|
|
static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
struct qed_sb_sp_info *p_sb;
|
|
dma_addr_t p_phys = 0;
|
|
void *p_virt;
|
|
|
|
/* SB struct */
|
|
p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
|
|
if (!p_sb)
|
|
return -ENOMEM;
|
|
|
|
/* SB ring */
|
|
p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
|
|
SB_ALIGNED_SIZE(p_hwfn),
|
|
&p_phys, GFP_KERNEL);
|
|
if (!p_virt) {
|
|
kfree(p_sb);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Status Block setup */
|
|
p_hwfn->p_sp_sb = p_sb;
|
|
qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
|
|
p_phys, QED_SP_SB_ID);
|
|
|
|
memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qed_int_register_cb(struct qed_hwfn *p_hwfn,
|
|
qed_int_comp_cb_t comp_cb,
|
|
void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
|
|
{
|
|
struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
|
|
int rc = -ENOMEM;
|
|
u8 pi;
|
|
|
|
/* Look for a free index */
|
|
for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
|
|
if (p_sp_sb->pi_info_arr[pi].comp_cb)
|
|
continue;
|
|
|
|
p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
|
|
p_sp_sb->pi_info_arr[pi].cookie = cookie;
|
|
*sb_idx = pi;
|
|
*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
|
|
rc = 0;
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
|
|
{
|
|
struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
|
|
|
|
if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
|
|
return -ENOMEM;
|
|
|
|
p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
|
|
p_sp_sb->pi_info_arr[pi].cookie = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
|
|
{
|
|
return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
|
|
}
|
|
|
|
void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
|
|
{
|
|
u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
|
|
|
|
p_hwfn->cdev->int_mode = int_mode;
|
|
switch (p_hwfn->cdev->int_mode) {
|
|
case QED_INT_MODE_INTA:
|
|
igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
|
|
igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
|
|
break;
|
|
|
|
case QED_INT_MODE_MSI:
|
|
igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
|
|
igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
|
|
break;
|
|
|
|
case QED_INT_MODE_MSIX:
|
|
igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
|
|
break;
|
|
case QED_INT_MODE_POLL:
|
|
break;
|
|
}
|
|
|
|
qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
|
|
}
|
|
|
|
static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
|
|
/* Configure AEU signal change to produce attentions */
|
|
qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
|
|
qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
|
|
qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
|
|
qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
|
|
|
|
/* Flush the writes to IGU */
|
|
mmiowb();
|
|
|
|
/* Unmask AEU signals toward IGU */
|
|
qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
|
|
}
|
|
|
|
int
|
|
qed_int_igu_enable(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
|
|
{
|
|
int rc = 0;
|
|
|
|
qed_int_igu_enable_attn(p_hwfn, p_ptt);
|
|
|
|
if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
|
|
rc = qed_slowpath_irq_req(p_hwfn);
|
|
if (rc) {
|
|
DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
|
|
return -EINVAL;
|
|
}
|
|
p_hwfn->b_int_requested = true;
|
|
}
|
|
/* Enable interrupt Generation */
|
|
qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
|
|
p_hwfn->b_int_enabled = 1;
|
|
|
|
return rc;
|
|
}
|
|
|
|
void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
p_hwfn->b_int_enabled = 0;
|
|
|
|
if (IS_VF(p_hwfn->cdev))
|
|
return;
|
|
|
|
qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
|
|
}
|
|
|
|
#define IGU_CLEANUP_SLEEP_LENGTH (1000)
|
|
static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u16 igu_sb_id,
|
|
bool cleanup_set, u16 opaque_fid)
|
|
{
|
|
u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
|
|
u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
|
|
u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
|
|
|
|
/* Set the data field */
|
|
SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
|
|
SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
|
|
SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
|
|
|
|
/* Set the control register */
|
|
SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
|
|
SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
|
|
SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
|
|
|
|
qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
|
|
|
|
barrier();
|
|
|
|
qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
|
|
|
|
/* Flush the write to IGU */
|
|
mmiowb();
|
|
|
|
/* calculate where to read the status bit from */
|
|
sb_bit = 1 << (igu_sb_id % 32);
|
|
sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
|
|
|
|
sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
|
|
|
|
/* Now wait for the command to complete */
|
|
do {
|
|
val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
|
|
|
|
if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
|
|
break;
|
|
|
|
usleep_range(5000, 10000);
|
|
} while (--sleep_cnt);
|
|
|
|
if (!sleep_cnt)
|
|
DP_NOTICE(p_hwfn,
|
|
"Timeout waiting for clear status 0x%08x [for sb %d]\n",
|
|
val, igu_sb_id);
|
|
}
|
|
|
|
void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u16 igu_sb_id, u16 opaque, bool b_set)
|
|
{
|
|
struct qed_igu_block *p_block;
|
|
int pi, i;
|
|
|
|
p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
|
|
"Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
|
|
igu_sb_id,
|
|
p_block->function_id,
|
|
p_block->is_pf, p_block->vector_number);
|
|
|
|
/* Set */
|
|
if (b_set)
|
|
qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
|
|
|
|
/* Clear */
|
|
qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
|
|
|
|
/* Wait for the IGU SB to cleanup */
|
|
for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
|
|
u32 val;
|
|
|
|
val = qed_rd(p_hwfn, p_ptt,
|
|
IGU_REG_WRITE_DONE_PENDING +
|
|
((igu_sb_id / 32) * 4));
|
|
if (val & BIT((igu_sb_id % 32)))
|
|
usleep_range(10, 20);
|
|
else
|
|
break;
|
|
}
|
|
if (i == IGU_CLEANUP_SLEEP_LENGTH)
|
|
DP_NOTICE(p_hwfn,
|
|
"Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
|
|
igu_sb_id);
|
|
|
|
/* Clear the CAU for the SB */
|
|
for (pi = 0; pi < 12; pi++)
|
|
qed_wr(p_hwfn, p_ptt,
|
|
CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
|
|
}
|
|
|
|
void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
bool b_set, bool b_slowpath)
|
|
{
|
|
struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
|
|
struct qed_igu_block *p_block;
|
|
u16 igu_sb_id = 0;
|
|
u32 val = 0;
|
|
|
|
val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
|
|
val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
|
|
val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
|
|
qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
|
|
|
|
for (igu_sb_id = 0;
|
|
igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
|
|
p_block = &p_info->entry[igu_sb_id];
|
|
|
|
if (!(p_block->status & QED_IGU_STATUS_VALID) ||
|
|
!p_block->is_pf ||
|
|
(p_block->status & QED_IGU_STATUS_DSB))
|
|
continue;
|
|
|
|
qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
|
|
p_hwfn->hw_info.opaque_fid,
|
|
b_set);
|
|
}
|
|
|
|
if (b_slowpath)
|
|
qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
|
|
p_info->igu_dsb_id,
|
|
p_hwfn->hw_info.opaque_fid,
|
|
b_set);
|
|
}
|
|
|
|
int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
|
|
struct qed_igu_block *p_block;
|
|
int pf_sbs, vf_sbs;
|
|
u16 igu_sb_id;
|
|
u32 val, rval;
|
|
|
|
if (!RESC_NUM(p_hwfn, QED_SB)) {
|
|
p_info->b_allow_pf_vf_change = false;
|
|
} else {
|
|
/* Use the numbers the MFW have provided -
|
|
* don't forget MFW accounts for the default SB as well.
|
|
*/
|
|
p_info->b_allow_pf_vf_change = true;
|
|
|
|
if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
|
|
DP_INFO(p_hwfn,
|
|
"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
|
|
RESC_NUM(p_hwfn, QED_SB) - 1,
|
|
p_info->usage.cnt);
|
|
p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
|
|
}
|
|
|
|
if (IS_PF_SRIOV(p_hwfn)) {
|
|
u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
|
|
|
|
if (vfs != p_info->usage.iov_cnt)
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_INTR,
|
|
"0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
|
|
p_info->usage.iov_cnt, vfs);
|
|
|
|
/* At this point we know how many SBs we have totally
|
|
* in IGU + number of PF SBs. So we can validate that
|
|
* we'd have sufficient for VF.
|
|
*/
|
|
if (vfs > p_info->usage.free_cnt +
|
|
p_info->usage.free_cnt_iov - p_info->usage.cnt) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
|
|
p_info->usage.free_cnt +
|
|
p_info->usage.free_cnt_iov,
|
|
p_info->usage.cnt, vfs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Currently cap the number of VFs SBs by the
|
|
* number of VFs.
|
|
*/
|
|
p_info->usage.iov_cnt = vfs;
|
|
}
|
|
}
|
|
|
|
/* Mark all SBs as free, now in the right PF/VFs division */
|
|
p_info->usage.free_cnt = p_info->usage.cnt;
|
|
p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
|
|
p_info->usage.orig = p_info->usage.cnt;
|
|
p_info->usage.iov_orig = p_info->usage.iov_cnt;
|
|
|
|
/* We now proceed to re-configure the IGU cam to reflect the initial
|
|
* configuration. We can start with the Default SB.
|
|
*/
|
|
pf_sbs = p_info->usage.cnt;
|
|
vf_sbs = p_info->usage.iov_cnt;
|
|
|
|
for (igu_sb_id = p_info->igu_dsb_id;
|
|
igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
|
|
p_block = &p_info->entry[igu_sb_id];
|
|
val = 0;
|
|
|
|
if (!(p_block->status & QED_IGU_STATUS_VALID))
|
|
continue;
|
|
|
|
if (p_block->status & QED_IGU_STATUS_DSB) {
|
|
p_block->function_id = p_hwfn->rel_pf_id;
|
|
p_block->is_pf = 1;
|
|
p_block->vector_number = 0;
|
|
p_block->status = QED_IGU_STATUS_VALID |
|
|
QED_IGU_STATUS_PF |
|
|
QED_IGU_STATUS_DSB;
|
|
} else if (pf_sbs) {
|
|
pf_sbs--;
|
|
p_block->function_id = p_hwfn->rel_pf_id;
|
|
p_block->is_pf = 1;
|
|
p_block->vector_number = p_info->usage.cnt - pf_sbs;
|
|
p_block->status = QED_IGU_STATUS_VALID |
|
|
QED_IGU_STATUS_PF |
|
|
QED_IGU_STATUS_FREE;
|
|
} else if (vf_sbs) {
|
|
p_block->function_id =
|
|
p_hwfn->cdev->p_iov_info->first_vf_in_pf +
|
|
p_info->usage.iov_cnt - vf_sbs;
|
|
p_block->is_pf = 0;
|
|
p_block->vector_number = 0;
|
|
p_block->status = QED_IGU_STATUS_VALID |
|
|
QED_IGU_STATUS_FREE;
|
|
vf_sbs--;
|
|
} else {
|
|
p_block->function_id = 0;
|
|
p_block->is_pf = 0;
|
|
p_block->vector_number = 0;
|
|
}
|
|
|
|
SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
|
|
p_block->function_id);
|
|
SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
|
|
SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
|
|
p_block->vector_number);
|
|
|
|
/* VF entries would be enabled when VF is initializaed */
|
|
SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
|
|
|
|
rval = qed_rd(p_hwfn, p_ptt,
|
|
IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
|
|
|
|
if (rval != val) {
|
|
qed_wr(p_hwfn, p_ptt,
|
|
IGU_REG_MAPPING_MEMORY +
|
|
sizeof(u32) * igu_sb_id, val);
|
|
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_INTR,
|
|
"IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
|
|
igu_sb_id,
|
|
p_block->function_id,
|
|
p_block->is_pf,
|
|
p_block->vector_number, rval, val);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt, u16 igu_sb_id)
|
|
{
|
|
u32 val = qed_rd(p_hwfn, p_ptt,
|
|
IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
|
|
struct qed_igu_block *p_block;
|
|
|
|
p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
|
|
|
|
/* Fill the block information */
|
|
p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
|
|
p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
|
|
p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
|
|
p_block->igu_sb_id = igu_sb_id;
|
|
}
|
|
|
|
int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
struct qed_igu_info *p_igu_info;
|
|
struct qed_igu_block *p_block;
|
|
u32 min_vf = 0, max_vf = 0;
|
|
u16 igu_sb_id;
|
|
|
|
p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
|
|
if (!p_hwfn->hw_info.p_igu_info)
|
|
return -ENOMEM;
|
|
|
|
p_igu_info = p_hwfn->hw_info.p_igu_info;
|
|
|
|
/* Distinguish between existent and non-existent default SB */
|
|
p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
|
|
|
|
/* Find the range of VF ids whose SB belong to this PF */
|
|
if (p_hwfn->cdev->p_iov_info) {
|
|
struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
|
|
|
|
min_vf = p_iov->first_vf_in_pf;
|
|
max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
|
|
}
|
|
|
|
for (igu_sb_id = 0;
|
|
igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
|
|
/* Read current entry; Notice it might not belong to this PF */
|
|
qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
|
|
p_block = &p_igu_info->entry[igu_sb_id];
|
|
|
|
if ((p_block->is_pf) &&
|
|
(p_block->function_id == p_hwfn->rel_pf_id)) {
|
|
p_block->status = QED_IGU_STATUS_PF |
|
|
QED_IGU_STATUS_VALID |
|
|
QED_IGU_STATUS_FREE;
|
|
|
|
if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
|
|
p_igu_info->usage.cnt++;
|
|
} else if (!(p_block->is_pf) &&
|
|
(p_block->function_id >= min_vf) &&
|
|
(p_block->function_id < max_vf)) {
|
|
/* Available for VFs of this PF */
|
|
p_block->status = QED_IGU_STATUS_VALID |
|
|
QED_IGU_STATUS_FREE;
|
|
|
|
if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
|
|
p_igu_info->usage.iov_cnt++;
|
|
}
|
|
|
|
/* Mark the First entry belonging to the PF or its VFs
|
|
* as the default SB [we'll reset IGU prior to first usage].
|
|
*/
|
|
if ((p_block->status & QED_IGU_STATUS_VALID) &&
|
|
(p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
|
|
p_igu_info->igu_dsb_id = igu_sb_id;
|
|
p_block->status |= QED_IGU_STATUS_DSB;
|
|
}
|
|
|
|
/* limit number of prints by having each PF print only its
|
|
* entries with the exception of PF0 which would print
|
|
* everything.
|
|
*/
|
|
if ((p_block->status & QED_IGU_STATUS_VALID) ||
|
|
(p_hwfn->abs_pf_id == 0)) {
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
|
|
"IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
|
|
igu_sb_id, p_block->function_id,
|
|
p_block->is_pf, p_block->vector_number);
|
|
}
|
|
}
|
|
|
|
if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
|
|
DP_NOTICE(p_hwfn,
|
|
"IGU CAM returned invalid values igu_dsb_id=0x%x\n",
|
|
p_igu_info->igu_dsb_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* All non default SB are considered free at this point */
|
|
p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
|
|
p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
|
|
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
|
|
"igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
|
|
p_igu_info->igu_dsb_id,
|
|
p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize igu runtime registers
|
|
*
|
|
* @param p_hwfn
|
|
*/
|
|
void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
|
|
|
|
STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
|
|
}
|
|
|
|
u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
|
|
IGU_CMD_INT_ACK_BASE;
|
|
u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
|
|
IGU_CMD_INT_ACK_BASE;
|
|
u32 intr_status_hi = 0, intr_status_lo = 0;
|
|
u64 intr_status = 0;
|
|
|
|
intr_status_lo = REG_RD(p_hwfn,
|
|
GTT_BAR0_MAP_REG_IGU_CMD +
|
|
lsb_igu_cmd_addr * 8);
|
|
intr_status_hi = REG_RD(p_hwfn,
|
|
GTT_BAR0_MAP_REG_IGU_CMD +
|
|
msb_igu_cmd_addr * 8);
|
|
intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
|
|
|
|
return intr_status;
|
|
}
|
|
|
|
static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
|
|
{
|
|
tasklet_init(p_hwfn->sp_dpc,
|
|
qed_int_sp_dpc, (unsigned long)p_hwfn);
|
|
p_hwfn->b_sp_dpc_enabled = true;
|
|
}
|
|
|
|
static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
|
|
{
|
|
p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
|
|
if (!p_hwfn->sp_dpc)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
|
|
{
|
|
kfree(p_hwfn->sp_dpc);
|
|
p_hwfn->sp_dpc = NULL;
|
|
}
|
|
|
|
int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
int rc = 0;
|
|
|
|
rc = qed_int_sp_dpc_alloc(p_hwfn);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void qed_int_free(struct qed_hwfn *p_hwfn)
|
|
{
|
|
qed_int_sp_sb_free(p_hwfn);
|
|
qed_int_sb_attn_free(p_hwfn);
|
|
qed_int_sp_dpc_free(p_hwfn);
|
|
}
|
|
|
|
void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
|
|
{
|
|
qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
|
|
qed_int_sb_attn_setup(p_hwfn, p_ptt);
|
|
qed_int_sp_dpc_setup(p_hwfn);
|
|
}
|
|
|
|
void qed_int_get_num_sbs(struct qed_hwfn *p_hwfn,
|
|
struct qed_sb_cnt_info *p_sb_cnt_info)
|
|
{
|
|
struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
|
|
|
|
if (!info || !p_sb_cnt_info)
|
|
return;
|
|
|
|
memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
|
|
}
|
|
|
|
void qed_int_disable_post_isr_release(struct qed_dev *cdev)
|
|
{
|
|
int i;
|
|
|
|
for_each_hwfn(cdev, i)
|
|
cdev->hwfns[i].b_int_requested = false;
|
|
}
|
|
|
|
int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
|
|
u8 timer_res, u16 sb_id, bool tx)
|
|
{
|
|
struct cau_sb_entry sb_entry;
|
|
int rc;
|
|
|
|
if (!p_hwfn->hw_init_done) {
|
|
DP_ERR(p_hwfn, "hardware not initialized yet\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
|
|
sb_id * sizeof(u64),
|
|
(u64)(uintptr_t)&sb_entry, 2, 0);
|
|
if (rc) {
|
|
DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
if (tx)
|
|
SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
|
|
else
|
|
SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
|
|
|
|
rc = qed_dmae_host2grc(p_hwfn, p_ptt,
|
|
(u64)(uintptr_t)&sb_entry,
|
|
CAU_REG_SB_VAR_MEMORY +
|
|
sb_id * sizeof(u64), 2, 0);
|
|
if (rc) {
|
|
DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
return rc;
|
|
}
|