linux/drivers/gpu/drm/amd/amdkfd/kfd_topology.c
Yong Zhao c181159a5b drm/amdkfd: Fill the name field in node topology with asic name v2
The name field in node topology has not been used. We re-purpose it to
hold the asic name, which can be queried by user space applications
through sysfs.

Signed-off-by: Yong Zhao <Yong.Zhao@amd.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2019-08-21 22:16:28 -05:00

1515 lines
41 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/acpi.h>
#include <linux/hash.h>
#include <linux/cpufreq.h>
#include <linux/log2.h>
#include <linux/dmi.h>
#include <linux/atomic.h>
#include "kfd_priv.h"
#include "kfd_crat.h"
#include "kfd_topology.h"
#include "kfd_device_queue_manager.h"
#include "kfd_iommu.h"
#include "amdgpu_amdkfd.h"
#include "amdgpu_ras.h"
/* topology_device_list - Master list of all topology devices */
static struct list_head topology_device_list;
static struct kfd_system_properties sys_props;
static DECLARE_RWSEM(topology_lock);
static atomic_t topology_crat_proximity_domain;
struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
uint32_t proximity_domain)
{
struct kfd_topology_device *top_dev;
struct kfd_topology_device *device = NULL;
down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list)
if (top_dev->proximity_domain == proximity_domain) {
device = top_dev;
break;
}
up_read(&topology_lock);
return device;
}
struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
{
struct kfd_topology_device *top_dev = NULL;
struct kfd_topology_device *ret = NULL;
down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list)
if (top_dev->gpu_id == gpu_id) {
ret = top_dev;
break;
}
up_read(&topology_lock);
return ret;
}
struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
{
struct kfd_topology_device *top_dev;
top_dev = kfd_topology_device_by_id(gpu_id);
if (!top_dev)
return NULL;
return top_dev->gpu;
}
struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
{
struct kfd_topology_device *top_dev;
struct kfd_dev *device = NULL;
down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list)
if (top_dev->gpu && top_dev->gpu->pdev == pdev) {
device = top_dev->gpu;
break;
}
up_read(&topology_lock);
return device;
}
struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd)
{
struct kfd_topology_device *top_dev;
struct kfd_dev *device = NULL;
down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list)
if (top_dev->gpu && top_dev->gpu->kgd == kgd) {
device = top_dev->gpu;
break;
}
up_read(&topology_lock);
return device;
}
/* Called with write topology_lock acquired */
static void kfd_release_topology_device(struct kfd_topology_device *dev)
{
struct kfd_mem_properties *mem;
struct kfd_cache_properties *cache;
struct kfd_iolink_properties *iolink;
struct kfd_perf_properties *perf;
list_del(&dev->list);
while (dev->mem_props.next != &dev->mem_props) {
mem = container_of(dev->mem_props.next,
struct kfd_mem_properties, list);
list_del(&mem->list);
kfree(mem);
}
while (dev->cache_props.next != &dev->cache_props) {
cache = container_of(dev->cache_props.next,
struct kfd_cache_properties, list);
list_del(&cache->list);
kfree(cache);
}
while (dev->io_link_props.next != &dev->io_link_props) {
iolink = container_of(dev->io_link_props.next,
struct kfd_iolink_properties, list);
list_del(&iolink->list);
kfree(iolink);
}
while (dev->perf_props.next != &dev->perf_props) {
perf = container_of(dev->perf_props.next,
struct kfd_perf_properties, list);
list_del(&perf->list);
kfree(perf);
}
kfree(dev);
}
void kfd_release_topology_device_list(struct list_head *device_list)
{
struct kfd_topology_device *dev;
while (!list_empty(device_list)) {
dev = list_first_entry(device_list,
struct kfd_topology_device, list);
kfd_release_topology_device(dev);
}
}
static void kfd_release_live_view(void)
{
kfd_release_topology_device_list(&topology_device_list);
memset(&sys_props, 0, sizeof(sys_props));
}
struct kfd_topology_device *kfd_create_topology_device(
struct list_head *device_list)
{
struct kfd_topology_device *dev;
dev = kfd_alloc_struct(dev);
if (!dev) {
pr_err("No memory to allocate a topology device");
return NULL;
}
INIT_LIST_HEAD(&dev->mem_props);
INIT_LIST_HEAD(&dev->cache_props);
INIT_LIST_HEAD(&dev->io_link_props);
INIT_LIST_HEAD(&dev->perf_props);
list_add_tail(&dev->list, device_list);
return dev;
}
#define sysfs_show_gen_prop(buffer, fmt, ...) \
snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
#define sysfs_show_32bit_prop(buffer, name, value) \
sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
#define sysfs_show_64bit_prop(buffer, name, value) \
sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
#define sysfs_show_32bit_val(buffer, value) \
sysfs_show_gen_prop(buffer, "%u\n", value)
#define sysfs_show_str_val(buffer, value) \
sysfs_show_gen_prop(buffer, "%s\n", value)
static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
ssize_t ret;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
if (attr == &sys_props.attr_genid) {
ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
} else if (attr == &sys_props.attr_props) {
sysfs_show_64bit_prop(buffer, "platform_oem",
sys_props.platform_oem);
sysfs_show_64bit_prop(buffer, "platform_id",
sys_props.platform_id);
ret = sysfs_show_64bit_prop(buffer, "platform_rev",
sys_props.platform_rev);
} else {
ret = -EINVAL;
}
return ret;
}
static void kfd_topology_kobj_release(struct kobject *kobj)
{
kfree(kobj);
}
static const struct sysfs_ops sysprops_ops = {
.show = sysprops_show,
};
static struct kobj_type sysprops_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &sysprops_ops,
};
static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
ssize_t ret;
struct kfd_iolink_properties *iolink;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
iolink = container_of(attr, struct kfd_iolink_properties, attr);
sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
iolink->rec_transfer_size);
ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);
return ret;
}
static const struct sysfs_ops iolink_ops = {
.show = iolink_show,
};
static struct kobj_type iolink_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &iolink_ops,
};
static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
ssize_t ret;
struct kfd_mem_properties *mem;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
mem = container_of(attr, struct kfd_mem_properties, attr);
sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
sysfs_show_32bit_prop(buffer, "flags", mem->flags);
sysfs_show_32bit_prop(buffer, "width", mem->width);
ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);
return ret;
}
static const struct sysfs_ops mem_ops = {
.show = mem_show,
};
static struct kobj_type mem_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &mem_ops,
};
static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
ssize_t ret;
uint32_t i, j;
struct kfd_cache_properties *cache;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
cache = container_of(attr, struct kfd_cache_properties, attr);
sysfs_show_32bit_prop(buffer, "processor_id_low",
cache->processor_id_low);
sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
cache->cachelines_per_tag);
sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
for (i = 0; i < CRAT_SIBLINGMAP_SIZE; i++)
for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++) {
/* Check each bit */
if (cache->sibling_map[i] & (1 << j))
ret = snprintf(buffer, PAGE_SIZE,
"%s%d%s", buffer, 1, ",");
else
ret = snprintf(buffer, PAGE_SIZE,
"%s%d%s", buffer, 0, ",");
}
/* Replace the last "," with end of line */
*(buffer + strlen(buffer) - 1) = 0xA;
return ret;
}
static const struct sysfs_ops cache_ops = {
.show = kfd_cache_show,
};
static struct kobj_type cache_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &cache_ops,
};
/****** Sysfs of Performance Counters ******/
struct kfd_perf_attr {
struct kobj_attribute attr;
uint32_t data;
};
static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
char *buf)
{
struct kfd_perf_attr *attr;
buf[0] = 0;
attr = container_of(attrs, struct kfd_perf_attr, attr);
if (!attr->data) /* invalid data for PMC */
return 0;
else
return sysfs_show_32bit_val(buf, attr->data);
}
#define KFD_PERF_DESC(_name, _data) \
{ \
.attr = __ATTR(_name, 0444, perf_show, NULL), \
.data = _data, \
}
static struct kfd_perf_attr perf_attr_iommu[] = {
KFD_PERF_DESC(max_concurrent, 0),
KFD_PERF_DESC(num_counters, 0),
KFD_PERF_DESC(counter_ids, 0),
};
/****************************************/
static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
struct kfd_topology_device *dev;
uint32_t log_max_watch_addr;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
if (strcmp(attr->name, "gpu_id") == 0) {
dev = container_of(attr, struct kfd_topology_device,
attr_gpuid);
return sysfs_show_32bit_val(buffer, dev->gpu_id);
}
if (strcmp(attr->name, "name") == 0) {
dev = container_of(attr, struct kfd_topology_device,
attr_name);
return sysfs_show_str_val(buffer, dev->node_props.name);
}
dev = container_of(attr, struct kfd_topology_device,
attr_props);
sysfs_show_32bit_prop(buffer, "cpu_cores_count",
dev->node_props.cpu_cores_count);
sysfs_show_32bit_prop(buffer, "simd_count",
dev->node_props.simd_count);
sysfs_show_32bit_prop(buffer, "mem_banks_count",
dev->node_props.mem_banks_count);
sysfs_show_32bit_prop(buffer, "caches_count",
dev->node_props.caches_count);
sysfs_show_32bit_prop(buffer, "io_links_count",
dev->node_props.io_links_count);
sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
dev->node_props.cpu_core_id_base);
sysfs_show_32bit_prop(buffer, "simd_id_base",
dev->node_props.simd_id_base);
sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
dev->node_props.max_waves_per_simd);
sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
dev->node_props.lds_size_in_kb);
sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
dev->node_props.gds_size_in_kb);
sysfs_show_32bit_prop(buffer, "num_gws",
dev->node_props.num_gws);
sysfs_show_32bit_prop(buffer, "wave_front_size",
dev->node_props.wave_front_size);
sysfs_show_32bit_prop(buffer, "array_count",
dev->node_props.array_count);
sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
dev->node_props.simd_arrays_per_engine);
sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
dev->node_props.cu_per_simd_array);
sysfs_show_32bit_prop(buffer, "simd_per_cu",
dev->node_props.simd_per_cu);
sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
dev->node_props.max_slots_scratch_cu);
sysfs_show_32bit_prop(buffer, "vendor_id",
dev->node_props.vendor_id);
sysfs_show_32bit_prop(buffer, "device_id",
dev->node_props.device_id);
sysfs_show_32bit_prop(buffer, "location_id",
dev->node_props.location_id);
sysfs_show_32bit_prop(buffer, "drm_render_minor",
dev->node_props.drm_render_minor);
sysfs_show_64bit_prop(buffer, "hive_id",
dev->node_props.hive_id);
sysfs_show_32bit_prop(buffer, "num_sdma_engines",
dev->node_props.num_sdma_engines);
sysfs_show_32bit_prop(buffer, "num_sdma_xgmi_engines",
dev->node_props.num_sdma_xgmi_engines);
if (dev->gpu) {
log_max_watch_addr =
__ilog2_u32(dev->gpu->device_info->num_of_watch_points);
if (log_max_watch_addr) {
dev->node_props.capability |=
HSA_CAP_WATCH_POINTS_SUPPORTED;
dev->node_props.capability |=
((log_max_watch_addr <<
HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
}
if (dev->gpu->device_info->asic_family == CHIP_TONGA)
dev->node_props.capability |=
HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
dev->node_props.max_engine_clk_fcompute);
sysfs_show_64bit_prop(buffer, "local_mem_size",
(unsigned long long int) 0);
sysfs_show_32bit_prop(buffer, "fw_version",
dev->gpu->mec_fw_version);
sysfs_show_32bit_prop(buffer, "capability",
dev->node_props.capability);
sysfs_show_32bit_prop(buffer, "sdma_fw_version",
dev->gpu->sdma_fw_version);
}
return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
cpufreq_quick_get_max(0)/1000);
}
static const struct sysfs_ops node_ops = {
.show = node_show,
};
static struct kobj_type node_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &node_ops,
};
static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
{
sysfs_remove_file(kobj, attr);
kobject_del(kobj);
kobject_put(kobj);
}
static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
{
struct kfd_iolink_properties *iolink;
struct kfd_cache_properties *cache;
struct kfd_mem_properties *mem;
struct kfd_perf_properties *perf;
if (dev->kobj_iolink) {
list_for_each_entry(iolink, &dev->io_link_props, list)
if (iolink->kobj) {
kfd_remove_sysfs_file(iolink->kobj,
&iolink->attr);
iolink->kobj = NULL;
}
kobject_del(dev->kobj_iolink);
kobject_put(dev->kobj_iolink);
dev->kobj_iolink = NULL;
}
if (dev->kobj_cache) {
list_for_each_entry(cache, &dev->cache_props, list)
if (cache->kobj) {
kfd_remove_sysfs_file(cache->kobj,
&cache->attr);
cache->kobj = NULL;
}
kobject_del(dev->kobj_cache);
kobject_put(dev->kobj_cache);
dev->kobj_cache = NULL;
}
if (dev->kobj_mem) {
list_for_each_entry(mem, &dev->mem_props, list)
if (mem->kobj) {
kfd_remove_sysfs_file(mem->kobj, &mem->attr);
mem->kobj = NULL;
}
kobject_del(dev->kobj_mem);
kobject_put(dev->kobj_mem);
dev->kobj_mem = NULL;
}
if (dev->kobj_perf) {
list_for_each_entry(perf, &dev->perf_props, list) {
kfree(perf->attr_group);
perf->attr_group = NULL;
}
kobject_del(dev->kobj_perf);
kobject_put(dev->kobj_perf);
dev->kobj_perf = NULL;
}
if (dev->kobj_node) {
sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
sysfs_remove_file(dev->kobj_node, &dev->attr_name);
sysfs_remove_file(dev->kobj_node, &dev->attr_props);
kobject_del(dev->kobj_node);
kobject_put(dev->kobj_node);
dev->kobj_node = NULL;
}
}
static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
uint32_t id)
{
struct kfd_iolink_properties *iolink;
struct kfd_cache_properties *cache;
struct kfd_mem_properties *mem;
struct kfd_perf_properties *perf;
int ret;
uint32_t i, num_attrs;
struct attribute **attrs;
if (WARN_ON(dev->kobj_node))
return -EEXIST;
/*
* Creating the sysfs folders
*/
dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
if (!dev->kobj_node)
return -ENOMEM;
ret = kobject_init_and_add(dev->kobj_node, &node_type,
sys_props.kobj_nodes, "%d", id);
if (ret < 0)
return ret;
dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
if (!dev->kobj_mem)
return -ENOMEM;
dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
if (!dev->kobj_cache)
return -ENOMEM;
dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
if (!dev->kobj_iolink)
return -ENOMEM;
dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
if (!dev->kobj_perf)
return -ENOMEM;
/*
* Creating sysfs files for node properties
*/
dev->attr_gpuid.name = "gpu_id";
dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&dev->attr_gpuid);
dev->attr_name.name = "name";
dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&dev->attr_name);
dev->attr_props.name = "properties";
dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&dev->attr_props);
ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
if (ret < 0)
return ret;
ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
if (ret < 0)
return ret;
ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
if (ret < 0)
return ret;
i = 0;
list_for_each_entry(mem, &dev->mem_props, list) {
mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!mem->kobj)
return -ENOMEM;
ret = kobject_init_and_add(mem->kobj, &mem_type,
dev->kobj_mem, "%d", i);
if (ret < 0)
return ret;
mem->attr.name = "properties";
mem->attr.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&mem->attr);
ret = sysfs_create_file(mem->kobj, &mem->attr);
if (ret < 0)
return ret;
i++;
}
i = 0;
list_for_each_entry(cache, &dev->cache_props, list) {
cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!cache->kobj)
return -ENOMEM;
ret = kobject_init_and_add(cache->kobj, &cache_type,
dev->kobj_cache, "%d", i);
if (ret < 0)
return ret;
cache->attr.name = "properties";
cache->attr.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&cache->attr);
ret = sysfs_create_file(cache->kobj, &cache->attr);
if (ret < 0)
return ret;
i++;
}
i = 0;
list_for_each_entry(iolink, &dev->io_link_props, list) {
iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!iolink->kobj)
return -ENOMEM;
ret = kobject_init_and_add(iolink->kobj, &iolink_type,
dev->kobj_iolink, "%d", i);
if (ret < 0)
return ret;
iolink->attr.name = "properties";
iolink->attr.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&iolink->attr);
ret = sysfs_create_file(iolink->kobj, &iolink->attr);
if (ret < 0)
return ret;
i++;
}
/* All hardware blocks have the same number of attributes. */
num_attrs = ARRAY_SIZE(perf_attr_iommu);
list_for_each_entry(perf, &dev->perf_props, list) {
perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
* num_attrs + sizeof(struct attribute_group),
GFP_KERNEL);
if (!perf->attr_group)
return -ENOMEM;
attrs = (struct attribute **)(perf->attr_group + 1);
if (!strcmp(perf->block_name, "iommu")) {
/* Information of IOMMU's num_counters and counter_ids is shown
* under /sys/bus/event_source/devices/amd_iommu. We don't
* duplicate here.
*/
perf_attr_iommu[0].data = perf->max_concurrent;
for (i = 0; i < num_attrs; i++)
attrs[i] = &perf_attr_iommu[i].attr.attr;
}
perf->attr_group->name = perf->block_name;
perf->attr_group->attrs = attrs;
ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
if (ret < 0)
return ret;
}
return 0;
}
/* Called with write topology lock acquired */
static int kfd_build_sysfs_node_tree(void)
{
struct kfd_topology_device *dev;
int ret;
uint32_t i = 0;
list_for_each_entry(dev, &topology_device_list, list) {
ret = kfd_build_sysfs_node_entry(dev, i);
if (ret < 0)
return ret;
i++;
}
return 0;
}
/* Called with write topology lock acquired */
static void kfd_remove_sysfs_node_tree(void)
{
struct kfd_topology_device *dev;
list_for_each_entry(dev, &topology_device_list, list)
kfd_remove_sysfs_node_entry(dev);
}
static int kfd_topology_update_sysfs(void)
{
int ret;
pr_info("Creating topology SYSFS entries\n");
if (!sys_props.kobj_topology) {
sys_props.kobj_topology =
kfd_alloc_struct(sys_props.kobj_topology);
if (!sys_props.kobj_topology)
return -ENOMEM;
ret = kobject_init_and_add(sys_props.kobj_topology,
&sysprops_type, &kfd_device->kobj,
"topology");
if (ret < 0)
return ret;
sys_props.kobj_nodes = kobject_create_and_add("nodes",
sys_props.kobj_topology);
if (!sys_props.kobj_nodes)
return -ENOMEM;
sys_props.attr_genid.name = "generation_id";
sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&sys_props.attr_genid);
ret = sysfs_create_file(sys_props.kobj_topology,
&sys_props.attr_genid);
if (ret < 0)
return ret;
sys_props.attr_props.name = "system_properties";
sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&sys_props.attr_props);
ret = sysfs_create_file(sys_props.kobj_topology,
&sys_props.attr_props);
if (ret < 0)
return ret;
}
kfd_remove_sysfs_node_tree();
return kfd_build_sysfs_node_tree();
}
static void kfd_topology_release_sysfs(void)
{
kfd_remove_sysfs_node_tree();
if (sys_props.kobj_topology) {
sysfs_remove_file(sys_props.kobj_topology,
&sys_props.attr_genid);
sysfs_remove_file(sys_props.kobj_topology,
&sys_props.attr_props);
if (sys_props.kobj_nodes) {
kobject_del(sys_props.kobj_nodes);
kobject_put(sys_props.kobj_nodes);
sys_props.kobj_nodes = NULL;
}
kobject_del(sys_props.kobj_topology);
kobject_put(sys_props.kobj_topology);
sys_props.kobj_topology = NULL;
}
}
/* Called with write topology_lock acquired */
static void kfd_topology_update_device_list(struct list_head *temp_list,
struct list_head *master_list)
{
while (!list_empty(temp_list)) {
list_move_tail(temp_list->next, master_list);
sys_props.num_devices++;
}
}
static void kfd_debug_print_topology(void)
{
struct kfd_topology_device *dev;
down_read(&topology_lock);
dev = list_last_entry(&topology_device_list,
struct kfd_topology_device, list);
if (dev) {
if (dev->node_props.cpu_cores_count &&
dev->node_props.simd_count) {
pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
dev->node_props.device_id,
dev->node_props.vendor_id);
} else if (dev->node_props.cpu_cores_count)
pr_info("Topology: Add CPU node\n");
else if (dev->node_props.simd_count)
pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
dev->node_props.device_id,
dev->node_props.vendor_id);
}
up_read(&topology_lock);
}
/* Helper function for intializing platform_xx members of
* kfd_system_properties. Uses OEM info from the last CPU/APU node.
*/
static void kfd_update_system_properties(void)
{
struct kfd_topology_device *dev;
down_read(&topology_lock);
dev = list_last_entry(&topology_device_list,
struct kfd_topology_device, list);
if (dev) {
sys_props.platform_id =
(*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
sys_props.platform_rev = dev->oem_revision;
}
up_read(&topology_lock);
}
static void find_system_memory(const struct dmi_header *dm,
void *private)
{
struct kfd_mem_properties *mem;
u16 mem_width, mem_clock;
struct kfd_topology_device *kdev =
(struct kfd_topology_device *)private;
const u8 *dmi_data = (const u8 *)(dm + 1);
if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
list_for_each_entry(mem, &kdev->mem_props, list) {
if (mem_width != 0xFFFF && mem_width != 0)
mem->width = mem_width;
if (mem_clock != 0)
mem->mem_clk_max = mem_clock;
}
}
}
/*
* Performance counters information is not part of CRAT but we would like to
* put them in the sysfs under topology directory for Thunk to get the data.
* This function is called before updating the sysfs.
*/
static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev)
{
/* These are the only counters supported so far */
return kfd_iommu_add_perf_counters(kdev);
}
/* kfd_add_non_crat_information - Add information that is not currently
* defined in CRAT but is necessary for KFD topology
* @dev - topology device to which addition info is added
*/
static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
{
/* Check if CPU only node. */
if (!kdev->gpu) {
/* Add system memory information */
dmi_walk(find_system_memory, kdev);
}
/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
}
/* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices.
* Ignore CRAT for all other devices. AMD APU is identified if both CPU
* and GPU cores are present.
* @device_list - topology device list created by parsing ACPI CRAT table.
* @return - TRUE if invalid, FALSE is valid.
*/
static bool kfd_is_acpi_crat_invalid(struct list_head *device_list)
{
struct kfd_topology_device *dev;
list_for_each_entry(dev, device_list, list) {
if (dev->node_props.cpu_cores_count &&
dev->node_props.simd_count)
return false;
}
pr_info("Ignoring ACPI CRAT on non-APU system\n");
return true;
}
int kfd_topology_init(void)
{
void *crat_image = NULL;
size_t image_size = 0;
int ret;
struct list_head temp_topology_device_list;
int cpu_only_node = 0;
struct kfd_topology_device *kdev;
int proximity_domain;
/* topology_device_list - Master list of all topology devices
* temp_topology_device_list - temporary list created while parsing CRAT
* or VCRAT. Once parsing is complete the contents of list is moved to
* topology_device_list
*/
/* Initialize the head for the both the lists */
INIT_LIST_HEAD(&topology_device_list);
INIT_LIST_HEAD(&temp_topology_device_list);
init_rwsem(&topology_lock);
memset(&sys_props, 0, sizeof(sys_props));
/* Proximity domains in ACPI CRAT tables start counting at
* 0. The same should be true for virtual CRAT tables created
* at this stage. GPUs added later in kfd_topology_add_device
* use a counter.
*/
proximity_domain = 0;
/*
* Get the CRAT image from the ACPI. If ACPI doesn't have one
* or if ACPI CRAT is invalid create a virtual CRAT.
* NOTE: The current implementation expects all AMD APUs to have
* CRAT. If no CRAT is available, it is assumed to be a CPU
*/
ret = kfd_create_crat_image_acpi(&crat_image, &image_size);
if (!ret) {
ret = kfd_parse_crat_table(crat_image,
&temp_topology_device_list,
proximity_domain);
if (ret ||
kfd_is_acpi_crat_invalid(&temp_topology_device_list)) {
kfd_release_topology_device_list(
&temp_topology_device_list);
kfd_destroy_crat_image(crat_image);
crat_image = NULL;
}
}
if (!crat_image) {
ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
COMPUTE_UNIT_CPU, NULL,
proximity_domain);
cpu_only_node = 1;
if (ret) {
pr_err("Error creating VCRAT table for CPU\n");
return ret;
}
ret = kfd_parse_crat_table(crat_image,
&temp_topology_device_list,
proximity_domain);
if (ret) {
pr_err("Error parsing VCRAT table for CPU\n");
goto err;
}
}
kdev = list_first_entry(&temp_topology_device_list,
struct kfd_topology_device, list);
kfd_add_perf_to_topology(kdev);
down_write(&topology_lock);
kfd_topology_update_device_list(&temp_topology_device_list,
&topology_device_list);
atomic_set(&topology_crat_proximity_domain, sys_props.num_devices-1);
ret = kfd_topology_update_sysfs();
up_write(&topology_lock);
if (!ret) {
sys_props.generation_count++;
kfd_update_system_properties();
kfd_debug_print_topology();
pr_info("Finished initializing topology\n");
} else
pr_err("Failed to update topology in sysfs ret=%d\n", ret);
/* For nodes with GPU, this information gets added
* when GPU is detected (kfd_topology_add_device).
*/
if (cpu_only_node) {
/* Add additional information to CPU only node created above */
down_write(&topology_lock);
kdev = list_first_entry(&topology_device_list,
struct kfd_topology_device, list);
up_write(&topology_lock);
kfd_add_non_crat_information(kdev);
}
err:
kfd_destroy_crat_image(crat_image);
return ret;
}
void kfd_topology_shutdown(void)
{
down_write(&topology_lock);
kfd_topology_release_sysfs();
kfd_release_live_view();
up_write(&topology_lock);
}
static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
{
uint32_t hashout;
uint32_t buf[7];
uint64_t local_mem_size;
int i;
struct kfd_local_mem_info local_mem_info;
if (!gpu)
return 0;
amdgpu_amdkfd_get_local_mem_info(gpu->kgd, &local_mem_info);
local_mem_size = local_mem_info.local_mem_size_private +
local_mem_info.local_mem_size_public;
buf[0] = gpu->pdev->devfn;
buf[1] = gpu->pdev->subsystem_vendor |
(gpu->pdev->subsystem_device << 16);
buf[2] = pci_domain_nr(gpu->pdev->bus);
buf[3] = gpu->pdev->device;
buf[4] = gpu->pdev->bus->number;
buf[5] = lower_32_bits(local_mem_size);
buf[6] = upper_32_bits(local_mem_size);
for (i = 0, hashout = 0; i < 7; i++)
hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
return hashout;
}
/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
* the GPU device is not already present in the topology device
* list then return NULL. This means a new topology device has to
* be created for this GPU.
*/
static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
{
struct kfd_topology_device *dev;
struct kfd_topology_device *out_dev = NULL;
down_write(&topology_lock);
list_for_each_entry(dev, &topology_device_list, list) {
/* Discrete GPUs need their own topology device list
* entries. Don't assign them to CPU/APU nodes.
*/
if (!gpu->device_info->needs_iommu_device &&
dev->node_props.cpu_cores_count)
continue;
if (!dev->gpu && (dev->node_props.simd_count > 0)) {
dev->gpu = gpu;
out_dev = dev;
break;
}
}
up_write(&topology_lock);
return out_dev;
}
static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
{
/*
* TODO: Generate an event for thunk about the arrival/removal
* of the GPU
*/
}
/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
* patch this after CRAT parsing.
*/
static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
{
struct kfd_mem_properties *mem;
struct kfd_local_mem_info local_mem_info;
if (!dev)
return;
/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
* single bank of VRAM local memory.
* for dGPUs - VCRAT reports only one bank of Local Memory
* for APUs - If CRAT from ACPI reports more than one bank, then
* all the banks will report the same mem_clk_max information
*/
amdgpu_amdkfd_get_local_mem_info(dev->gpu->kgd, &local_mem_info);
list_for_each_entry(mem, &dev->mem_props, list)
mem->mem_clk_max = local_mem_info.mem_clk_max;
}
static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
{
struct kfd_iolink_properties *link, *cpu_link;
struct kfd_topology_device *cpu_dev;
uint32_t cap;
uint32_t cpu_flag = CRAT_IOLINK_FLAGS_ENABLED;
uint32_t flag = CRAT_IOLINK_FLAGS_ENABLED;
if (!dev || !dev->gpu)
return;
pcie_capability_read_dword(dev->gpu->pdev,
PCI_EXP_DEVCAP2, &cap);
if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
cpu_flag |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
if (!dev->gpu->pci_atomic_requested ||
dev->gpu->device_info->asic_family == CHIP_HAWAII)
flag |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
/* GPU only creates direct links so apply flags setting to all */
list_for_each_entry(link, &dev->io_link_props, list) {
link->flags = flag;
cpu_dev = kfd_topology_device_by_proximity_domain(
link->node_to);
if (cpu_dev) {
list_for_each_entry(cpu_link,
&cpu_dev->io_link_props, list)
if (cpu_link->node_to == link->node_from)
cpu_link->flags = cpu_flag;
}
}
}
int kfd_topology_add_device(struct kfd_dev *gpu)
{
uint32_t gpu_id;
struct kfd_topology_device *dev;
struct kfd_cu_info cu_info;
int res = 0;
struct list_head temp_topology_device_list;
void *crat_image = NULL;
size_t image_size = 0;
int proximity_domain;
struct amdgpu_ras *ctx;
INIT_LIST_HEAD(&temp_topology_device_list);
gpu_id = kfd_generate_gpu_id(gpu);
pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
proximity_domain = atomic_inc_return(&topology_crat_proximity_domain);
/* Check to see if this gpu device exists in the topology_device_list.
* If so, assign the gpu to that device,
* else create a Virtual CRAT for this gpu device and then parse that
* CRAT to create a new topology device. Once created assign the gpu to
* that topology device
*/
dev = kfd_assign_gpu(gpu);
if (!dev) {
res = kfd_create_crat_image_virtual(&crat_image, &image_size,
COMPUTE_UNIT_GPU, gpu,
proximity_domain);
if (res) {
pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
gpu_id);
return res;
}
res = kfd_parse_crat_table(crat_image,
&temp_topology_device_list,
proximity_domain);
if (res) {
pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
gpu_id);
goto err;
}
down_write(&topology_lock);
kfd_topology_update_device_list(&temp_topology_device_list,
&topology_device_list);
/* Update the SYSFS tree, since we added another topology
* device
*/
res = kfd_topology_update_sysfs();
up_write(&topology_lock);
if (!res)
sys_props.generation_count++;
else
pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
gpu_id, res);
dev = kfd_assign_gpu(gpu);
if (WARN_ON(!dev)) {
res = -ENODEV;
goto err;
}
}
dev->gpu_id = gpu_id;
gpu->id = gpu_id;
/* TODO: Move the following lines to function
* kfd_add_non_crat_information
*/
/* Fill-in additional information that is not available in CRAT but
* needed for the topology
*/
amdgpu_amdkfd_get_cu_info(dev->gpu->kgd, &cu_info);
strncpy(dev->node_props.name, gpu->device_info->asic_name,
KFD_TOPOLOGY_PUBLIC_NAME_SIZE);
dev->node_props.simd_arrays_per_engine =
cu_info.num_shader_arrays_per_engine;
dev->node_props.vendor_id = gpu->pdev->vendor;
dev->node_props.device_id = gpu->pdev->device;
dev->node_props.location_id = pci_dev_id(gpu->pdev);
dev->node_props.max_engine_clk_fcompute =
amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->kgd);
dev->node_props.max_engine_clk_ccompute =
cpufreq_quick_get_max(0) / 1000;
dev->node_props.drm_render_minor =
gpu->shared_resources.drm_render_minor;
dev->node_props.hive_id = gpu->hive_id;
dev->node_props.num_sdma_engines = gpu->device_info->num_sdma_engines;
dev->node_props.num_sdma_xgmi_engines =
gpu->device_info->num_xgmi_sdma_engines;
dev->node_props.num_gws = (hws_gws_support &&
dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
amdgpu_amdkfd_get_num_gws(dev->gpu->kgd) : 0;
kfd_fill_mem_clk_max_info(dev);
kfd_fill_iolink_non_crat_info(dev);
switch (dev->gpu->device_info->asic_family) {
case CHIP_KAVERI:
case CHIP_HAWAII:
case CHIP_TONGA:
dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
break;
case CHIP_CARRIZO:
case CHIP_FIJI:
case CHIP_POLARIS10:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
case CHIP_VEGAM:
pr_debug("Adding doorbell packet type capability\n");
dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
break;
case CHIP_VEGA10:
case CHIP_VEGA12:
case CHIP_VEGA20:
case CHIP_RAVEN:
case CHIP_ARCTURUS:
case CHIP_NAVI10:
dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
break;
default:
WARN(1, "Unexpected ASIC family %u",
dev->gpu->device_info->asic_family);
}
/*
* Overwrite ATS capability according to needs_iommu_device to fix
* potential missing corresponding bit in CRAT of BIOS.
*/
if (dev->gpu->device_info->needs_iommu_device)
dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
else
dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
/* Fix errors in CZ CRAT.
* simd_count: Carrizo CRAT reports wrong simd_count, probably
* because it doesn't consider masked out CUs
* max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
*/
if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) {
dev->node_props.simd_count =
cu_info.simd_per_cu * cu_info.cu_active_number;
dev->node_props.max_waves_per_simd = 10;
}
ctx = amdgpu_ras_get_context((struct amdgpu_device *)(dev->gpu->kgd));
if (ctx) {
/* kfd only concerns sram ecc on GFX/SDMA and HBM ecc on UMC */
dev->node_props.capability |=
(((ctx->features & BIT(AMDGPU_RAS_BLOCK__SDMA)) != 0) ||
((ctx->features & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0)) ?
HSA_CAP_SRAM_EDCSUPPORTED : 0;
dev->node_props.capability |= ((ctx->features & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
HSA_CAP_MEM_EDCSUPPORTED : 0;
dev->node_props.capability |= (ctx->features != 0) ?
HSA_CAP_RASEVENTNOTIFY : 0;
}
kfd_debug_print_topology();
if (!res)
kfd_notify_gpu_change(gpu_id, 1);
err:
kfd_destroy_crat_image(crat_image);
return res;
}
int kfd_topology_remove_device(struct kfd_dev *gpu)
{
struct kfd_topology_device *dev, *tmp;
uint32_t gpu_id;
int res = -ENODEV;
down_write(&topology_lock);
list_for_each_entry_safe(dev, tmp, &topology_device_list, list)
if (dev->gpu == gpu) {
gpu_id = dev->gpu_id;
kfd_remove_sysfs_node_entry(dev);
kfd_release_topology_device(dev);
sys_props.num_devices--;
res = 0;
if (kfd_topology_update_sysfs() < 0)
kfd_topology_release_sysfs();
break;
}
up_write(&topology_lock);
if (!res)
kfd_notify_gpu_change(gpu_id, 0);
return res;
}
/* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
* topology. If GPU device is found @idx, then valid kfd_dev pointer is
* returned through @kdev
* Return - 0: On success (@kdev will be NULL for non GPU nodes)
* -1: If end of list
*/
int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev)
{
struct kfd_topology_device *top_dev;
uint8_t device_idx = 0;
*kdev = NULL;
down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list) {
if (device_idx == idx) {
*kdev = top_dev->gpu;
up_read(&topology_lock);
return 0;
}
device_idx++;
}
up_read(&topology_lock);
return -1;
}
static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
{
int first_cpu_of_numa_node;
if (!cpumask || cpumask == cpu_none_mask)
return -1;
first_cpu_of_numa_node = cpumask_first(cpumask);
if (first_cpu_of_numa_node >= nr_cpu_ids)
return -1;
#ifdef CONFIG_X86_64
return cpu_data(first_cpu_of_numa_node).apicid;
#else
return first_cpu_of_numa_node;
#endif
}
/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
* of the given NUMA node (numa_node_id)
* Return -1 on failure
*/
int kfd_numa_node_to_apic_id(int numa_node_id)
{
if (numa_node_id == -1) {
pr_warn("Invalid NUMA Node. Use online CPU mask\n");
return kfd_cpumask_to_apic_id(cpu_online_mask);
}
return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
}
#if defined(CONFIG_DEBUG_FS)
int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
{
struct kfd_topology_device *dev;
unsigned int i = 0;
int r = 0;
down_read(&topology_lock);
list_for_each_entry(dev, &topology_device_list, list) {
if (!dev->gpu) {
i++;
continue;
}
seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
r = dqm_debugfs_hqds(m, dev->gpu->dqm);
if (r)
break;
}
up_read(&topology_lock);
return r;
}
int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
{
struct kfd_topology_device *dev;
unsigned int i = 0;
int r = 0;
down_read(&topology_lock);
list_for_each_entry(dev, &topology_device_list, list) {
if (!dev->gpu) {
i++;
continue;
}
seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
r = pm_debugfs_runlist(m, &dev->gpu->dqm->packets);
if (r)
break;
}
up_read(&topology_lock);
return r;
}
#endif