linux/kernel/bpf/sockmap.c
John Fastabend caac76a517 bpf: sockhash, add release routine
Add map_release_uref pointer to hashmap ops. This was dropped when
original sockhash code was ported into bpf-next before initial
commit.

Fixes: 8111038444 ("bpf: sockmap, add hash map support")
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-07-01 01:21:32 +02:00

2537 lines
59 KiB
C

/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
/* A BPF sock_map is used to store sock objects. This is primarly used
* for doing socket redirect with BPF helper routines.
*
* A sock map may have BPF programs attached to it, currently a program
* used to parse packets and a program to provide a verdict and redirect
* decision on the packet are supported. Any programs attached to a sock
* map are inherited by sock objects when they are added to the map. If
* no BPF programs are attached the sock object may only be used for sock
* redirect.
*
* A sock object may be in multiple maps, but can only inherit a single
* parse or verdict program. If adding a sock object to a map would result
* in having multiple parsing programs the update will return an EBUSY error.
*
* For reference this program is similar to devmap used in XDP context
* reviewing these together may be useful. For an example please review
* ./samples/bpf/sockmap/.
*/
#include <linux/bpf.h>
#include <net/sock.h>
#include <linux/filter.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/kernel.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/workqueue.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <net/strparser.h>
#include <net/tcp.h>
#include <linux/ptr_ring.h>
#include <net/inet_common.h>
#include <linux/sched/signal.h>
#define SOCK_CREATE_FLAG_MASK \
(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
struct bpf_sock_progs {
struct bpf_prog *bpf_tx_msg;
struct bpf_prog *bpf_parse;
struct bpf_prog *bpf_verdict;
};
struct bpf_stab {
struct bpf_map map;
struct sock **sock_map;
struct bpf_sock_progs progs;
};
struct bucket {
struct hlist_head head;
raw_spinlock_t lock;
};
struct bpf_htab {
struct bpf_map map;
struct bucket *buckets;
atomic_t count;
u32 n_buckets;
u32 elem_size;
struct bpf_sock_progs progs;
struct rcu_head rcu;
};
struct htab_elem {
struct rcu_head rcu;
struct hlist_node hash_node;
u32 hash;
struct sock *sk;
char key[0];
};
enum smap_psock_state {
SMAP_TX_RUNNING,
};
struct smap_psock_map_entry {
struct list_head list;
struct sock **entry;
struct htab_elem __rcu *hash_link;
struct bpf_htab __rcu *htab;
};
struct smap_psock {
struct rcu_head rcu;
refcount_t refcnt;
/* datapath variables */
struct sk_buff_head rxqueue;
bool strp_enabled;
/* datapath error path cache across tx work invocations */
int save_rem;
int save_off;
struct sk_buff *save_skb;
/* datapath variables for tx_msg ULP */
struct sock *sk_redir;
int apply_bytes;
int cork_bytes;
int sg_size;
int eval;
struct sk_msg_buff *cork;
struct list_head ingress;
struct strparser strp;
struct bpf_prog *bpf_tx_msg;
struct bpf_prog *bpf_parse;
struct bpf_prog *bpf_verdict;
struct list_head maps;
spinlock_t maps_lock;
/* Back reference used when sock callback trigger sockmap operations */
struct sock *sock;
unsigned long state;
struct work_struct tx_work;
struct work_struct gc_work;
struct proto *sk_proto;
void (*save_close)(struct sock *sk, long timeout);
void (*save_data_ready)(struct sock *sk);
void (*save_write_space)(struct sock *sk);
};
static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
int nonblock, int flags, int *addr_len);
static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
int offset, size_t size, int flags);
static void bpf_tcp_close(struct sock *sk, long timeout);
static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
{
return rcu_dereference_sk_user_data(sk);
}
static bool bpf_tcp_stream_read(const struct sock *sk)
{
struct smap_psock *psock;
bool empty = true;
rcu_read_lock();
psock = smap_psock_sk(sk);
if (unlikely(!psock))
goto out;
empty = list_empty(&psock->ingress);
out:
rcu_read_unlock();
return !empty;
}
enum {
SOCKMAP_IPV4,
SOCKMAP_IPV6,
SOCKMAP_NUM_PROTS,
};
enum {
SOCKMAP_BASE,
SOCKMAP_TX,
SOCKMAP_NUM_CONFIGS,
};
static struct proto *saved_tcpv6_prot __read_mostly;
static DEFINE_SPINLOCK(tcpv6_prot_lock);
static struct proto bpf_tcp_prots[SOCKMAP_NUM_PROTS][SOCKMAP_NUM_CONFIGS];
static void build_protos(struct proto prot[SOCKMAP_NUM_CONFIGS],
struct proto *base)
{
prot[SOCKMAP_BASE] = *base;
prot[SOCKMAP_BASE].close = bpf_tcp_close;
prot[SOCKMAP_BASE].recvmsg = bpf_tcp_recvmsg;
prot[SOCKMAP_BASE].stream_memory_read = bpf_tcp_stream_read;
prot[SOCKMAP_TX] = prot[SOCKMAP_BASE];
prot[SOCKMAP_TX].sendmsg = bpf_tcp_sendmsg;
prot[SOCKMAP_TX].sendpage = bpf_tcp_sendpage;
}
static void update_sk_prot(struct sock *sk, struct smap_psock *psock)
{
int family = sk->sk_family == AF_INET6 ? SOCKMAP_IPV6 : SOCKMAP_IPV4;
int conf = psock->bpf_tx_msg ? SOCKMAP_TX : SOCKMAP_BASE;
sk->sk_prot = &bpf_tcp_prots[family][conf];
}
static int bpf_tcp_init(struct sock *sk)
{
struct smap_psock *psock;
rcu_read_lock();
psock = smap_psock_sk(sk);
if (unlikely(!psock)) {
rcu_read_unlock();
return -EINVAL;
}
if (unlikely(psock->sk_proto)) {
rcu_read_unlock();
return -EBUSY;
}
psock->save_close = sk->sk_prot->close;
psock->sk_proto = sk->sk_prot;
/* Build IPv6 sockmap whenever the address of tcpv6_prot changes */
if (sk->sk_family == AF_INET6 &&
unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
spin_lock_bh(&tcpv6_prot_lock);
if (likely(sk->sk_prot != saved_tcpv6_prot)) {
build_protos(bpf_tcp_prots[SOCKMAP_IPV6], sk->sk_prot);
smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
}
spin_unlock_bh(&tcpv6_prot_lock);
}
update_sk_prot(sk, psock);
rcu_read_unlock();
return 0;
}
static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
static int free_start_sg(struct sock *sk, struct sk_msg_buff *md);
static void bpf_tcp_release(struct sock *sk)
{
struct smap_psock *psock;
rcu_read_lock();
psock = smap_psock_sk(sk);
if (unlikely(!psock))
goto out;
if (psock->cork) {
free_start_sg(psock->sock, psock->cork);
kfree(psock->cork);
psock->cork = NULL;
}
if (psock->sk_proto) {
sk->sk_prot = psock->sk_proto;
psock->sk_proto = NULL;
}
out:
rcu_read_unlock();
}
static struct htab_elem *lookup_elem_raw(struct hlist_head *head,
u32 hash, void *key, u32 key_size)
{
struct htab_elem *l;
hlist_for_each_entry_rcu(l, head, hash_node) {
if (l->hash == hash && !memcmp(&l->key, key, key_size))
return l;
}
return NULL;
}
static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
{
return &htab->buckets[hash & (htab->n_buckets - 1)];
}
static inline struct hlist_head *select_bucket(struct bpf_htab *htab, u32 hash)
{
return &__select_bucket(htab, hash)->head;
}
static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
{
atomic_dec(&htab->count);
kfree_rcu(l, rcu);
}
static struct smap_psock_map_entry *psock_map_pop(struct sock *sk,
struct smap_psock *psock)
{
struct smap_psock_map_entry *e;
spin_lock_bh(&psock->maps_lock);
e = list_first_entry_or_null(&psock->maps,
struct smap_psock_map_entry,
list);
if (e)
list_del(&e->list);
spin_unlock_bh(&psock->maps_lock);
return e;
}
static void bpf_tcp_close(struct sock *sk, long timeout)
{
void (*close_fun)(struct sock *sk, long timeout);
struct smap_psock_map_entry *e;
struct sk_msg_buff *md, *mtmp;
struct smap_psock *psock;
struct sock *osk;
rcu_read_lock();
psock = smap_psock_sk(sk);
if (unlikely(!psock)) {
rcu_read_unlock();
return sk->sk_prot->close(sk, timeout);
}
/* The psock may be destroyed anytime after exiting the RCU critial
* section so by the time we use close_fun the psock may no longer
* be valid. However, bpf_tcp_close is called with the sock lock
* held so the close hook and sk are still valid.
*/
close_fun = psock->save_close;
if (psock->cork) {
free_start_sg(psock->sock, psock->cork);
kfree(psock->cork);
psock->cork = NULL;
}
list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
list_del(&md->list);
free_start_sg(psock->sock, md);
kfree(md);
}
e = psock_map_pop(sk, psock);
while (e) {
if (e->entry) {
osk = cmpxchg(e->entry, sk, NULL);
if (osk == sk) {
smap_release_sock(psock, sk);
}
} else {
struct htab_elem *link = rcu_dereference(e->hash_link);
struct bpf_htab *htab = rcu_dereference(e->htab);
struct hlist_head *head;
struct htab_elem *l;
struct bucket *b;
b = __select_bucket(htab, link->hash);
head = &b->head;
raw_spin_lock_bh(&b->lock);
l = lookup_elem_raw(head,
link->hash, link->key,
htab->map.key_size);
/* If another thread deleted this object skip deletion.
* The refcnt on psock may or may not be zero.
*/
if (l) {
hlist_del_rcu(&link->hash_node);
smap_release_sock(psock, link->sk);
free_htab_elem(htab, link);
}
raw_spin_unlock_bh(&b->lock);
}
e = psock_map_pop(sk, psock);
}
rcu_read_unlock();
close_fun(sk, timeout);
}
enum __sk_action {
__SK_DROP = 0,
__SK_PASS,
__SK_REDIRECT,
__SK_NONE,
};
static struct tcp_ulp_ops bpf_tcp_ulp_ops __read_mostly = {
.name = "bpf_tcp",
.uid = TCP_ULP_BPF,
.user_visible = false,
.owner = NULL,
.init = bpf_tcp_init,
.release = bpf_tcp_release,
};
static int memcopy_from_iter(struct sock *sk,
struct sk_msg_buff *md,
struct iov_iter *from, int bytes)
{
struct scatterlist *sg = md->sg_data;
int i = md->sg_curr, rc = -ENOSPC;
do {
int copy;
char *to;
if (md->sg_copybreak >= sg[i].length) {
md->sg_copybreak = 0;
if (++i == MAX_SKB_FRAGS)
i = 0;
if (i == md->sg_end)
break;
}
copy = sg[i].length - md->sg_copybreak;
to = sg_virt(&sg[i]) + md->sg_copybreak;
md->sg_copybreak += copy;
if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
rc = copy_from_iter_nocache(to, copy, from);
else
rc = copy_from_iter(to, copy, from);
if (rc != copy) {
rc = -EFAULT;
goto out;
}
bytes -= copy;
if (!bytes)
break;
md->sg_copybreak = 0;
if (++i == MAX_SKB_FRAGS)
i = 0;
} while (i != md->sg_end);
out:
md->sg_curr = i;
return rc;
}
static int bpf_tcp_push(struct sock *sk, int apply_bytes,
struct sk_msg_buff *md,
int flags, bool uncharge)
{
bool apply = apply_bytes;
struct scatterlist *sg;
int offset, ret = 0;
struct page *p;
size_t size;
while (1) {
sg = md->sg_data + md->sg_start;
size = (apply && apply_bytes < sg->length) ?
apply_bytes : sg->length;
offset = sg->offset;
tcp_rate_check_app_limited(sk);
p = sg_page(sg);
retry:
ret = do_tcp_sendpages(sk, p, offset, size, flags);
if (ret != size) {
if (ret > 0) {
if (apply)
apply_bytes -= ret;
sg->offset += ret;
sg->length -= ret;
size -= ret;
offset += ret;
if (uncharge)
sk_mem_uncharge(sk, ret);
goto retry;
}
return ret;
}
if (apply)
apply_bytes -= ret;
sg->offset += ret;
sg->length -= ret;
if (uncharge)
sk_mem_uncharge(sk, ret);
if (!sg->length) {
put_page(p);
md->sg_start++;
if (md->sg_start == MAX_SKB_FRAGS)
md->sg_start = 0;
sg_init_table(sg, 1);
if (md->sg_start == md->sg_end)
break;
}
if (apply && !apply_bytes)
break;
}
return 0;
}
static inline void bpf_compute_data_pointers_sg(struct sk_msg_buff *md)
{
struct scatterlist *sg = md->sg_data + md->sg_start;
if (md->sg_copy[md->sg_start]) {
md->data = md->data_end = 0;
} else {
md->data = sg_virt(sg);
md->data_end = md->data + sg->length;
}
}
static void return_mem_sg(struct sock *sk, int bytes, struct sk_msg_buff *md)
{
struct scatterlist *sg = md->sg_data;
int i = md->sg_start;
do {
int uncharge = (bytes < sg[i].length) ? bytes : sg[i].length;
sk_mem_uncharge(sk, uncharge);
bytes -= uncharge;
if (!bytes)
break;
i++;
if (i == MAX_SKB_FRAGS)
i = 0;
} while (i != md->sg_end);
}
static void free_bytes_sg(struct sock *sk, int bytes,
struct sk_msg_buff *md, bool charge)
{
struct scatterlist *sg = md->sg_data;
int i = md->sg_start, free;
while (bytes && sg[i].length) {
free = sg[i].length;
if (bytes < free) {
sg[i].length -= bytes;
sg[i].offset += bytes;
if (charge)
sk_mem_uncharge(sk, bytes);
break;
}
if (charge)
sk_mem_uncharge(sk, sg[i].length);
put_page(sg_page(&sg[i]));
bytes -= sg[i].length;
sg[i].length = 0;
sg[i].page_link = 0;
sg[i].offset = 0;
i++;
if (i == MAX_SKB_FRAGS)
i = 0;
}
md->sg_start = i;
}
static int free_sg(struct sock *sk, int start, struct sk_msg_buff *md)
{
struct scatterlist *sg = md->sg_data;
int i = start, free = 0;
while (sg[i].length) {
free += sg[i].length;
sk_mem_uncharge(sk, sg[i].length);
put_page(sg_page(&sg[i]));
sg[i].length = 0;
sg[i].page_link = 0;
sg[i].offset = 0;
i++;
if (i == MAX_SKB_FRAGS)
i = 0;
}
return free;
}
static int free_start_sg(struct sock *sk, struct sk_msg_buff *md)
{
int free = free_sg(sk, md->sg_start, md);
md->sg_start = md->sg_end;
return free;
}
static int free_curr_sg(struct sock *sk, struct sk_msg_buff *md)
{
return free_sg(sk, md->sg_curr, md);
}
static int bpf_map_msg_verdict(int _rc, struct sk_msg_buff *md)
{
return ((_rc == SK_PASS) ?
(md->sk_redir ? __SK_REDIRECT : __SK_PASS) :
__SK_DROP);
}
static unsigned int smap_do_tx_msg(struct sock *sk,
struct smap_psock *psock,
struct sk_msg_buff *md)
{
struct bpf_prog *prog;
unsigned int rc, _rc;
preempt_disable();
rcu_read_lock();
/* If the policy was removed mid-send then default to 'accept' */
prog = READ_ONCE(psock->bpf_tx_msg);
if (unlikely(!prog)) {
_rc = SK_PASS;
goto verdict;
}
bpf_compute_data_pointers_sg(md);
md->sk = sk;
rc = (*prog->bpf_func)(md, prog->insnsi);
psock->apply_bytes = md->apply_bytes;
/* Moving return codes from UAPI namespace into internal namespace */
_rc = bpf_map_msg_verdict(rc, md);
/* The psock has a refcount on the sock but not on the map and because
* we need to drop rcu read lock here its possible the map could be
* removed between here and when we need it to execute the sock
* redirect. So do the map lookup now for future use.
*/
if (_rc == __SK_REDIRECT) {
if (psock->sk_redir)
sock_put(psock->sk_redir);
psock->sk_redir = do_msg_redirect_map(md);
if (!psock->sk_redir) {
_rc = __SK_DROP;
goto verdict;
}
sock_hold(psock->sk_redir);
}
verdict:
rcu_read_unlock();
preempt_enable();
return _rc;
}
static int bpf_tcp_ingress(struct sock *sk, int apply_bytes,
struct smap_psock *psock,
struct sk_msg_buff *md, int flags)
{
bool apply = apply_bytes;
size_t size, copied = 0;
struct sk_msg_buff *r;
int err = 0, i;
r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_KERNEL);
if (unlikely(!r))
return -ENOMEM;
lock_sock(sk);
r->sg_start = md->sg_start;
i = md->sg_start;
do {
size = (apply && apply_bytes < md->sg_data[i].length) ?
apply_bytes : md->sg_data[i].length;
if (!sk_wmem_schedule(sk, size)) {
if (!copied)
err = -ENOMEM;
break;
}
sk_mem_charge(sk, size);
r->sg_data[i] = md->sg_data[i];
r->sg_data[i].length = size;
md->sg_data[i].length -= size;
md->sg_data[i].offset += size;
copied += size;
if (md->sg_data[i].length) {
get_page(sg_page(&r->sg_data[i]));
r->sg_end = (i + 1) == MAX_SKB_FRAGS ? 0 : i + 1;
} else {
i++;
if (i == MAX_SKB_FRAGS)
i = 0;
r->sg_end = i;
}
if (apply) {
apply_bytes -= size;
if (!apply_bytes)
break;
}
} while (i != md->sg_end);
md->sg_start = i;
if (!err) {
list_add_tail(&r->list, &psock->ingress);
sk->sk_data_ready(sk);
} else {
free_start_sg(sk, r);
kfree(r);
}
release_sock(sk);
return err;
}
static int bpf_tcp_sendmsg_do_redirect(struct sock *sk, int send,
struct sk_msg_buff *md,
int flags)
{
bool ingress = !!(md->flags & BPF_F_INGRESS);
struct smap_psock *psock;
struct scatterlist *sg;
int err = 0;
sg = md->sg_data;
rcu_read_lock();
psock = smap_psock_sk(sk);
if (unlikely(!psock))
goto out_rcu;
if (!refcount_inc_not_zero(&psock->refcnt))
goto out_rcu;
rcu_read_unlock();
if (ingress) {
err = bpf_tcp_ingress(sk, send, psock, md, flags);
} else {
lock_sock(sk);
err = bpf_tcp_push(sk, send, md, flags, false);
release_sock(sk);
}
smap_release_sock(psock, sk);
if (unlikely(err))
goto out;
return 0;
out_rcu:
rcu_read_unlock();
out:
free_bytes_sg(NULL, send, md, false);
return err;
}
static inline void bpf_md_init(struct smap_psock *psock)
{
if (!psock->apply_bytes) {
psock->eval = __SK_NONE;
if (psock->sk_redir) {
sock_put(psock->sk_redir);
psock->sk_redir = NULL;
}
}
}
static void apply_bytes_dec(struct smap_psock *psock, int i)
{
if (psock->apply_bytes) {
if (psock->apply_bytes < i)
psock->apply_bytes = 0;
else
psock->apply_bytes -= i;
}
}
static int bpf_exec_tx_verdict(struct smap_psock *psock,
struct sk_msg_buff *m,
struct sock *sk,
int *copied, int flags)
{
bool cork = false, enospc = (m->sg_start == m->sg_end);
struct sock *redir;
int err = 0;
int send;
more_data:
if (psock->eval == __SK_NONE)
psock->eval = smap_do_tx_msg(sk, psock, m);
if (m->cork_bytes &&
m->cork_bytes > psock->sg_size && !enospc) {
psock->cork_bytes = m->cork_bytes - psock->sg_size;
if (!psock->cork) {
psock->cork = kcalloc(1,
sizeof(struct sk_msg_buff),
GFP_ATOMIC | __GFP_NOWARN);
if (!psock->cork) {
err = -ENOMEM;
goto out_err;
}
}
memcpy(psock->cork, m, sizeof(*m));
goto out_err;
}
send = psock->sg_size;
if (psock->apply_bytes && psock->apply_bytes < send)
send = psock->apply_bytes;
switch (psock->eval) {
case __SK_PASS:
err = bpf_tcp_push(sk, send, m, flags, true);
if (unlikely(err)) {
*copied -= free_start_sg(sk, m);
break;
}
apply_bytes_dec(psock, send);
psock->sg_size -= send;
break;
case __SK_REDIRECT:
redir = psock->sk_redir;
apply_bytes_dec(psock, send);
if (psock->cork) {
cork = true;
psock->cork = NULL;
}
return_mem_sg(sk, send, m);
release_sock(sk);
err = bpf_tcp_sendmsg_do_redirect(redir, send, m, flags);
lock_sock(sk);
if (unlikely(err < 0)) {
free_start_sg(sk, m);
psock->sg_size = 0;
if (!cork)
*copied -= send;
} else {
psock->sg_size -= send;
}
if (cork) {
free_start_sg(sk, m);
psock->sg_size = 0;
kfree(m);
m = NULL;
err = 0;
}
break;
case __SK_DROP:
default:
free_bytes_sg(sk, send, m, true);
apply_bytes_dec(psock, send);
*copied -= send;
psock->sg_size -= send;
err = -EACCES;
break;
}
if (likely(!err)) {
bpf_md_init(psock);
if (m &&
m->sg_data[m->sg_start].page_link &&
m->sg_data[m->sg_start].length)
goto more_data;
}
out_err:
return err;
}
static int bpf_wait_data(struct sock *sk,
struct smap_psock *psk, int flags,
long timeo, int *err)
{
int rc;
DEFINE_WAIT_FUNC(wait, woken_wake_function);
add_wait_queue(sk_sleep(sk), &wait);
sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
rc = sk_wait_event(sk, &timeo,
!list_empty(&psk->ingress) ||
!skb_queue_empty(&sk->sk_receive_queue),
&wait);
sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
remove_wait_queue(sk_sleep(sk), &wait);
return rc;
}
static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
int nonblock, int flags, int *addr_len)
{
struct iov_iter *iter = &msg->msg_iter;
struct smap_psock *psock;
int copied = 0;
if (unlikely(flags & MSG_ERRQUEUE))
return inet_recv_error(sk, msg, len, addr_len);
rcu_read_lock();
psock = smap_psock_sk(sk);
if (unlikely(!psock))
goto out;
if (unlikely(!refcount_inc_not_zero(&psock->refcnt)))
goto out;
rcu_read_unlock();
if (!skb_queue_empty(&sk->sk_receive_queue))
return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
lock_sock(sk);
bytes_ready:
while (copied != len) {
struct scatterlist *sg;
struct sk_msg_buff *md;
int i;
md = list_first_entry_or_null(&psock->ingress,
struct sk_msg_buff, list);
if (unlikely(!md))
break;
i = md->sg_start;
do {
struct page *page;
int n, copy;
sg = &md->sg_data[i];
copy = sg->length;
page = sg_page(sg);
if (copied + copy > len)
copy = len - copied;
n = copy_page_to_iter(page, sg->offset, copy, iter);
if (n != copy) {
md->sg_start = i;
release_sock(sk);
smap_release_sock(psock, sk);
return -EFAULT;
}
copied += copy;
sg->offset += copy;
sg->length -= copy;
sk_mem_uncharge(sk, copy);
if (!sg->length) {
i++;
if (i == MAX_SKB_FRAGS)
i = 0;
if (!md->skb)
put_page(page);
}
if (copied == len)
break;
} while (i != md->sg_end);
md->sg_start = i;
if (!sg->length && md->sg_start == md->sg_end) {
list_del(&md->list);
if (md->skb)
consume_skb(md->skb);
kfree(md);
}
}
if (!copied) {
long timeo;
int data;
int err = 0;
timeo = sock_rcvtimeo(sk, nonblock);
data = bpf_wait_data(sk, psock, flags, timeo, &err);
if (data) {
if (!skb_queue_empty(&sk->sk_receive_queue)) {
release_sock(sk);
smap_release_sock(psock, sk);
copied = tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
return copied;
}
goto bytes_ready;
}
if (err)
copied = err;
}
release_sock(sk);
smap_release_sock(psock, sk);
return copied;
out:
rcu_read_unlock();
return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
}
static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
{
int flags = msg->msg_flags | MSG_NO_SHARED_FRAGS;
struct sk_msg_buff md = {0};
unsigned int sg_copy = 0;
struct smap_psock *psock;
int copied = 0, err = 0;
struct scatterlist *sg;
long timeo;
/* Its possible a sock event or user removed the psock _but_ the ops
* have not been reprogrammed yet so we get here. In this case fallback
* to tcp_sendmsg. Note this only works because we _only_ ever allow
* a single ULP there is no hierarchy here.
*/
rcu_read_lock();
psock = smap_psock_sk(sk);
if (unlikely(!psock)) {
rcu_read_unlock();
return tcp_sendmsg(sk, msg, size);
}
/* Increment the psock refcnt to ensure its not released while sending a
* message. Required because sk lookup and bpf programs are used in
* separate rcu critical sections. Its OK if we lose the map entry
* but we can't lose the sock reference.
*/
if (!refcount_inc_not_zero(&psock->refcnt)) {
rcu_read_unlock();
return tcp_sendmsg(sk, msg, size);
}
sg = md.sg_data;
sg_init_marker(sg, MAX_SKB_FRAGS);
rcu_read_unlock();
lock_sock(sk);
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
while (msg_data_left(msg)) {
struct sk_msg_buff *m;
bool enospc = false;
int copy;
if (sk->sk_err) {
err = sk->sk_err;
goto out_err;
}
copy = msg_data_left(msg);
if (!sk_stream_memory_free(sk))
goto wait_for_sndbuf;
m = psock->cork_bytes ? psock->cork : &md;
m->sg_curr = m->sg_copybreak ? m->sg_curr : m->sg_end;
err = sk_alloc_sg(sk, copy, m->sg_data,
m->sg_start, &m->sg_end, &sg_copy,
m->sg_end - 1);
if (err) {
if (err != -ENOSPC)
goto wait_for_memory;
enospc = true;
copy = sg_copy;
}
err = memcopy_from_iter(sk, m, &msg->msg_iter, copy);
if (err < 0) {
free_curr_sg(sk, m);
goto out_err;
}
psock->sg_size += copy;
copied += copy;
sg_copy = 0;
/* When bytes are being corked skip running BPF program and
* applying verdict unless there is no more buffer space. In
* the ENOSPC case simply run BPF prorgram with currently
* accumulated data. We don't have much choice at this point
* we could try extending the page frags or chaining complex
* frags but even in these cases _eventually_ we will hit an
* OOM scenario. More complex recovery schemes may be
* implemented in the future, but BPF programs must handle
* the case where apply_cork requests are not honored. The
* canonical method to verify this is to check data length.
*/
if (psock->cork_bytes) {
if (copy > psock->cork_bytes)
psock->cork_bytes = 0;
else
psock->cork_bytes -= copy;
if (psock->cork_bytes && !enospc)
goto out_cork;
/* All cork bytes accounted for re-run filter */
psock->eval = __SK_NONE;
psock->cork_bytes = 0;
}
err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
if (unlikely(err < 0))
goto out_err;
continue;
wait_for_sndbuf:
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
wait_for_memory:
err = sk_stream_wait_memory(sk, &timeo);
if (err)
goto out_err;
}
out_err:
if (err < 0)
err = sk_stream_error(sk, msg->msg_flags, err);
out_cork:
release_sock(sk);
smap_release_sock(psock, sk);
return copied ? copied : err;
}
static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
int offset, size_t size, int flags)
{
struct sk_msg_buff md = {0}, *m = NULL;
int err = 0, copied = 0;
struct smap_psock *psock;
struct scatterlist *sg;
bool enospc = false;
rcu_read_lock();
psock = smap_psock_sk(sk);
if (unlikely(!psock))
goto accept;
if (!refcount_inc_not_zero(&psock->refcnt))
goto accept;
rcu_read_unlock();
lock_sock(sk);
if (psock->cork_bytes) {
m = psock->cork;
sg = &m->sg_data[m->sg_end];
} else {
m = &md;
sg = m->sg_data;
sg_init_marker(sg, MAX_SKB_FRAGS);
}
/* Catch case where ring is full and sendpage is stalled. */
if (unlikely(m->sg_end == m->sg_start &&
m->sg_data[m->sg_end].length))
goto out_err;
psock->sg_size += size;
sg_set_page(sg, page, size, offset);
get_page(page);
m->sg_copy[m->sg_end] = true;
sk_mem_charge(sk, size);
m->sg_end++;
copied = size;
if (m->sg_end == MAX_SKB_FRAGS)
m->sg_end = 0;
if (m->sg_end == m->sg_start)
enospc = true;
if (psock->cork_bytes) {
if (size > psock->cork_bytes)
psock->cork_bytes = 0;
else
psock->cork_bytes -= size;
if (psock->cork_bytes && !enospc)
goto out_err;
/* All cork bytes accounted for re-run filter */
psock->eval = __SK_NONE;
psock->cork_bytes = 0;
}
err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
out_err:
release_sock(sk);
smap_release_sock(psock, sk);
return copied ? copied : err;
accept:
rcu_read_unlock();
return tcp_sendpage(sk, page, offset, size, flags);
}
static void bpf_tcp_msg_add(struct smap_psock *psock,
struct sock *sk,
struct bpf_prog *tx_msg)
{
struct bpf_prog *orig_tx_msg;
orig_tx_msg = xchg(&psock->bpf_tx_msg, tx_msg);
if (orig_tx_msg)
bpf_prog_put(orig_tx_msg);
}
static int bpf_tcp_ulp_register(void)
{
build_protos(bpf_tcp_prots[SOCKMAP_IPV4], &tcp_prot);
/* Once BPF TX ULP is registered it is never unregistered. It
* will be in the ULP list for the lifetime of the system. Doing
* duplicate registers is not a problem.
*/
return tcp_register_ulp(&bpf_tcp_ulp_ops);
}
static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
{
struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
int rc;
if (unlikely(!prog))
return __SK_DROP;
skb_orphan(skb);
/* We need to ensure that BPF metadata for maps is also cleared
* when we orphan the skb so that we don't have the possibility
* to reference a stale map.
*/
TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
skb->sk = psock->sock;
bpf_compute_data_pointers(skb);
preempt_disable();
rc = (*prog->bpf_func)(skb, prog->insnsi);
preempt_enable();
skb->sk = NULL;
/* Moving return codes from UAPI namespace into internal namespace */
return rc == SK_PASS ?
(TCP_SKB_CB(skb)->bpf.sk_redir ? __SK_REDIRECT : __SK_PASS) :
__SK_DROP;
}
static int smap_do_ingress(struct smap_psock *psock, struct sk_buff *skb)
{
struct sock *sk = psock->sock;
int copied = 0, num_sg;
struct sk_msg_buff *r;
r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_ATOMIC);
if (unlikely(!r))
return -EAGAIN;
if (!sk_rmem_schedule(sk, skb, skb->len)) {
kfree(r);
return -EAGAIN;
}
sg_init_table(r->sg_data, MAX_SKB_FRAGS);
num_sg = skb_to_sgvec(skb, r->sg_data, 0, skb->len);
if (unlikely(num_sg < 0)) {
kfree(r);
return num_sg;
}
sk_mem_charge(sk, skb->len);
copied = skb->len;
r->sg_start = 0;
r->sg_end = num_sg == MAX_SKB_FRAGS ? 0 : num_sg;
r->skb = skb;
list_add_tail(&r->list, &psock->ingress);
sk->sk_data_ready(sk);
return copied;
}
static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
{
struct smap_psock *peer;
struct sock *sk;
__u32 in;
int rc;
rc = smap_verdict_func(psock, skb);
switch (rc) {
case __SK_REDIRECT:
sk = do_sk_redirect_map(skb);
if (!sk) {
kfree_skb(skb);
break;
}
peer = smap_psock_sk(sk);
in = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
if (unlikely(!peer || sock_flag(sk, SOCK_DEAD) ||
!test_bit(SMAP_TX_RUNNING, &peer->state))) {
kfree_skb(skb);
break;
}
if (!in && sock_writeable(sk)) {
skb_set_owner_w(skb, sk);
skb_queue_tail(&peer->rxqueue, skb);
schedule_work(&peer->tx_work);
break;
} else if (in &&
atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
skb_queue_tail(&peer->rxqueue, skb);
schedule_work(&peer->tx_work);
break;
}
/* Fall through and free skb otherwise */
case __SK_DROP:
default:
kfree_skb(skb);
}
}
static void smap_report_sk_error(struct smap_psock *psock, int err)
{
struct sock *sk = psock->sock;
sk->sk_err = err;
sk->sk_error_report(sk);
}
static void smap_read_sock_strparser(struct strparser *strp,
struct sk_buff *skb)
{
struct smap_psock *psock;
rcu_read_lock();
psock = container_of(strp, struct smap_psock, strp);
smap_do_verdict(psock, skb);
rcu_read_unlock();
}
/* Called with lock held on socket */
static void smap_data_ready(struct sock *sk)
{
struct smap_psock *psock;
rcu_read_lock();
psock = smap_psock_sk(sk);
if (likely(psock)) {
write_lock_bh(&sk->sk_callback_lock);
strp_data_ready(&psock->strp);
write_unlock_bh(&sk->sk_callback_lock);
}
rcu_read_unlock();
}
static void smap_tx_work(struct work_struct *w)
{
struct smap_psock *psock;
struct sk_buff *skb;
int rem, off, n;
psock = container_of(w, struct smap_psock, tx_work);
/* lock sock to avoid losing sk_socket at some point during loop */
lock_sock(psock->sock);
if (psock->save_skb) {
skb = psock->save_skb;
rem = psock->save_rem;
off = psock->save_off;
psock->save_skb = NULL;
goto start;
}
while ((skb = skb_dequeue(&psock->rxqueue))) {
__u32 flags;
rem = skb->len;
off = 0;
start:
flags = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
do {
if (likely(psock->sock->sk_socket)) {
if (flags)
n = smap_do_ingress(psock, skb);
else
n = skb_send_sock_locked(psock->sock,
skb, off, rem);
} else {
n = -EINVAL;
}
if (n <= 0) {
if (n == -EAGAIN) {
/* Retry when space is available */
psock->save_skb = skb;
psock->save_rem = rem;
psock->save_off = off;
goto out;
}
/* Hard errors break pipe and stop xmit */
smap_report_sk_error(psock, n ? -n : EPIPE);
clear_bit(SMAP_TX_RUNNING, &psock->state);
kfree_skb(skb);
goto out;
}
rem -= n;
off += n;
} while (rem);
if (!flags)
kfree_skb(skb);
}
out:
release_sock(psock->sock);
}
static void smap_write_space(struct sock *sk)
{
struct smap_psock *psock;
rcu_read_lock();
psock = smap_psock_sk(sk);
if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
schedule_work(&psock->tx_work);
rcu_read_unlock();
}
static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
{
if (!psock->strp_enabled)
return;
sk->sk_data_ready = psock->save_data_ready;
sk->sk_write_space = psock->save_write_space;
psock->save_data_ready = NULL;
psock->save_write_space = NULL;
strp_stop(&psock->strp);
psock->strp_enabled = false;
}
static void smap_destroy_psock(struct rcu_head *rcu)
{
struct smap_psock *psock = container_of(rcu,
struct smap_psock, rcu);
/* Now that a grace period has passed there is no longer
* any reference to this sock in the sockmap so we can
* destroy the psock, strparser, and bpf programs. But,
* because we use workqueue sync operations we can not
* do it in rcu context
*/
schedule_work(&psock->gc_work);
}
static void smap_release_sock(struct smap_psock *psock, struct sock *sock)
{
if (refcount_dec_and_test(&psock->refcnt)) {
tcp_cleanup_ulp(sock);
write_lock_bh(&sock->sk_callback_lock);
smap_stop_sock(psock, sock);
write_unlock_bh(&sock->sk_callback_lock);
clear_bit(SMAP_TX_RUNNING, &psock->state);
rcu_assign_sk_user_data(sock, NULL);
call_rcu_sched(&psock->rcu, smap_destroy_psock);
}
}
static int smap_parse_func_strparser(struct strparser *strp,
struct sk_buff *skb)
{
struct smap_psock *psock;
struct bpf_prog *prog;
int rc;
rcu_read_lock();
psock = container_of(strp, struct smap_psock, strp);
prog = READ_ONCE(psock->bpf_parse);
if (unlikely(!prog)) {
rcu_read_unlock();
return skb->len;
}
/* Attach socket for bpf program to use if needed we can do this
* because strparser clones the skb before handing it to a upper
* layer, meaning skb_orphan has been called. We NULL sk on the
* way out to ensure we don't trigger a BUG_ON in skb/sk operations
* later and because we are not charging the memory of this skb to
* any socket yet.
*/
skb->sk = psock->sock;
bpf_compute_data_pointers(skb);
rc = (*prog->bpf_func)(skb, prog->insnsi);
skb->sk = NULL;
rcu_read_unlock();
return rc;
}
static int smap_read_sock_done(struct strparser *strp, int err)
{
return err;
}
static int smap_init_sock(struct smap_psock *psock,
struct sock *sk)
{
static const struct strp_callbacks cb = {
.rcv_msg = smap_read_sock_strparser,
.parse_msg = smap_parse_func_strparser,
.read_sock_done = smap_read_sock_done,
};
return strp_init(&psock->strp, sk, &cb);
}
static void smap_init_progs(struct smap_psock *psock,
struct bpf_prog *verdict,
struct bpf_prog *parse)
{
struct bpf_prog *orig_parse, *orig_verdict;
orig_parse = xchg(&psock->bpf_parse, parse);
orig_verdict = xchg(&psock->bpf_verdict, verdict);
if (orig_verdict)
bpf_prog_put(orig_verdict);
if (orig_parse)
bpf_prog_put(orig_parse);
}
static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
{
if (sk->sk_data_ready == smap_data_ready)
return;
psock->save_data_ready = sk->sk_data_ready;
psock->save_write_space = sk->sk_write_space;
sk->sk_data_ready = smap_data_ready;
sk->sk_write_space = smap_write_space;
psock->strp_enabled = true;
}
static void sock_map_remove_complete(struct bpf_stab *stab)
{
bpf_map_area_free(stab->sock_map);
kfree(stab);
}
static void smap_gc_work(struct work_struct *w)
{
struct smap_psock_map_entry *e, *tmp;
struct sk_msg_buff *md, *mtmp;
struct smap_psock *psock;
psock = container_of(w, struct smap_psock, gc_work);
/* no callback lock needed because we already detached sockmap ops */
if (psock->strp_enabled)
strp_done(&psock->strp);
cancel_work_sync(&psock->tx_work);
__skb_queue_purge(&psock->rxqueue);
/* At this point all strparser and xmit work must be complete */
if (psock->bpf_parse)
bpf_prog_put(psock->bpf_parse);
if (psock->bpf_verdict)
bpf_prog_put(psock->bpf_verdict);
if (psock->bpf_tx_msg)
bpf_prog_put(psock->bpf_tx_msg);
if (psock->cork) {
free_start_sg(psock->sock, psock->cork);
kfree(psock->cork);
}
list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
list_del(&md->list);
free_start_sg(psock->sock, md);
kfree(md);
}
list_for_each_entry_safe(e, tmp, &psock->maps, list) {
list_del(&e->list);
kfree(e);
}
if (psock->sk_redir)
sock_put(psock->sk_redir);
sock_put(psock->sock);
kfree(psock);
}
static struct smap_psock *smap_init_psock(struct sock *sock, int node)
{
struct smap_psock *psock;
psock = kzalloc_node(sizeof(struct smap_psock),
GFP_ATOMIC | __GFP_NOWARN,
node);
if (!psock)
return ERR_PTR(-ENOMEM);
psock->eval = __SK_NONE;
psock->sock = sock;
skb_queue_head_init(&psock->rxqueue);
INIT_WORK(&psock->tx_work, smap_tx_work);
INIT_WORK(&psock->gc_work, smap_gc_work);
INIT_LIST_HEAD(&psock->maps);
INIT_LIST_HEAD(&psock->ingress);
refcount_set(&psock->refcnt, 1);
spin_lock_init(&psock->maps_lock);
rcu_assign_sk_user_data(sock, psock);
sock_hold(sock);
return psock;
}
static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
{
struct bpf_stab *stab;
u64 cost;
int err;
if (!capable(CAP_NET_ADMIN))
return ERR_PTR(-EPERM);
/* check sanity of attributes */
if (attr->max_entries == 0 || attr->key_size != 4 ||
attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
return ERR_PTR(-EINVAL);
err = bpf_tcp_ulp_register();
if (err && err != -EEXIST)
return ERR_PTR(err);
stab = kzalloc(sizeof(*stab), GFP_USER);
if (!stab)
return ERR_PTR(-ENOMEM);
bpf_map_init_from_attr(&stab->map, attr);
/* make sure page count doesn't overflow */
cost = (u64) stab->map.max_entries * sizeof(struct sock *);
err = -EINVAL;
if (cost >= U32_MAX - PAGE_SIZE)
goto free_stab;
stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
/* if map size is larger than memlock limit, reject it early */
err = bpf_map_precharge_memlock(stab->map.pages);
if (err)
goto free_stab;
err = -ENOMEM;
stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
sizeof(struct sock *),
stab->map.numa_node);
if (!stab->sock_map)
goto free_stab;
return &stab->map;
free_stab:
kfree(stab);
return ERR_PTR(err);
}
static void smap_list_map_remove(struct smap_psock *psock,
struct sock **entry)
{
struct smap_psock_map_entry *e, *tmp;
spin_lock_bh(&psock->maps_lock);
list_for_each_entry_safe(e, tmp, &psock->maps, list) {
if (e->entry == entry)
list_del(&e->list);
}
spin_unlock_bh(&psock->maps_lock);
}
static void smap_list_hash_remove(struct smap_psock *psock,
struct htab_elem *hash_link)
{
struct smap_psock_map_entry *e, *tmp;
spin_lock_bh(&psock->maps_lock);
list_for_each_entry_safe(e, tmp, &psock->maps, list) {
struct htab_elem *c = rcu_dereference(e->hash_link);
if (c == hash_link)
list_del(&e->list);
}
spin_unlock_bh(&psock->maps_lock);
}
static void sock_map_free(struct bpf_map *map)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
int i;
synchronize_rcu();
/* At this point no update, lookup or delete operations can happen.
* However, be aware we can still get a socket state event updates,
* and data ready callabacks that reference the psock from sk_user_data
* Also psock worker threads are still in-flight. So smap_release_sock
* will only free the psock after cancel_sync on the worker threads
* and a grace period expire to ensure psock is really safe to remove.
*/
rcu_read_lock();
for (i = 0; i < stab->map.max_entries; i++) {
struct smap_psock *psock;
struct sock *sock;
sock = xchg(&stab->sock_map[i], NULL);
if (!sock)
continue;
psock = smap_psock_sk(sock);
/* This check handles a racing sock event that can get the
* sk_callback_lock before this case but after xchg happens
* causing the refcnt to hit zero and sock user data (psock)
* to be null and queued for garbage collection.
*/
if (likely(psock)) {
smap_list_map_remove(psock, &stab->sock_map[i]);
smap_release_sock(psock, sock);
}
}
rcu_read_unlock();
sock_map_remove_complete(stab);
}
static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
u32 i = key ? *(u32 *)key : U32_MAX;
u32 *next = (u32 *)next_key;
if (i >= stab->map.max_entries) {
*next = 0;
return 0;
}
if (i == stab->map.max_entries - 1)
return -ENOENT;
*next = i + 1;
return 0;
}
struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
if (key >= map->max_entries)
return NULL;
return READ_ONCE(stab->sock_map[key]);
}
static int sock_map_delete_elem(struct bpf_map *map, void *key)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
struct smap_psock *psock;
int k = *(u32 *)key;
struct sock *sock;
if (k >= map->max_entries)
return -EINVAL;
sock = xchg(&stab->sock_map[k], NULL);
if (!sock)
return -EINVAL;
psock = smap_psock_sk(sock);
if (!psock)
goto out;
if (psock->bpf_parse)
smap_stop_sock(psock, sock);
smap_list_map_remove(psock, &stab->sock_map[k]);
smap_release_sock(psock, sock);
out:
return 0;
}
/* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
* done inside rcu critical sections. This ensures on updates that the psock
* will not be released via smap_release_sock() until concurrent updates/deletes
* complete. All operations operate on sock_map using cmpxchg and xchg
* operations to ensure we do not get stale references. Any reads into the
* map must be done with READ_ONCE() because of this.
*
* A psock is destroyed via call_rcu and after any worker threads are cancelled
* and syncd so we are certain all references from the update/lookup/delete
* operations as well as references in the data path are no longer in use.
*
* Psocks may exist in multiple maps, but only a single set of parse/verdict
* programs may be inherited from the maps it belongs to. A reference count
* is kept with the total number of references to the psock from all maps. The
* psock will not be released until this reaches zero. The psock and sock
* user data data use the sk_callback_lock to protect critical data structures
* from concurrent access. This allows us to avoid two updates from modifying
* the user data in sock and the lock is required anyways for modifying
* callbacks, we simply increase its scope slightly.
*
* Rules to follow,
* - psock must always be read inside RCU critical section
* - sk_user_data must only be modified inside sk_callback_lock and read
* inside RCU critical section.
* - psock->maps list must only be read & modified inside sk_callback_lock
* - sock_map must use READ_ONCE and (cmp)xchg operations
* - BPF verdict/parse programs must use READ_ONCE and xchg operations
*/
static int __sock_map_ctx_update_elem(struct bpf_map *map,
struct bpf_sock_progs *progs,
struct sock *sock,
struct sock **map_link,
void *key)
{
struct bpf_prog *verdict, *parse, *tx_msg;
struct smap_psock_map_entry *e = NULL;
struct smap_psock *psock;
bool new = false;
int err = 0;
/* 1. If sock map has BPF programs those will be inherited by the
* sock being added. If the sock is already attached to BPF programs
* this results in an error.
*/
verdict = READ_ONCE(progs->bpf_verdict);
parse = READ_ONCE(progs->bpf_parse);
tx_msg = READ_ONCE(progs->bpf_tx_msg);
if (parse && verdict) {
/* bpf prog refcnt may be zero if a concurrent attach operation
* removes the program after the above READ_ONCE() but before
* we increment the refcnt. If this is the case abort with an
* error.
*/
verdict = bpf_prog_inc_not_zero(verdict);
if (IS_ERR(verdict))
return PTR_ERR(verdict);
parse = bpf_prog_inc_not_zero(parse);
if (IS_ERR(parse)) {
bpf_prog_put(verdict);
return PTR_ERR(parse);
}
}
if (tx_msg) {
tx_msg = bpf_prog_inc_not_zero(tx_msg);
if (IS_ERR(tx_msg)) {
if (parse && verdict) {
bpf_prog_put(parse);
bpf_prog_put(verdict);
}
return PTR_ERR(tx_msg);
}
}
psock = smap_psock_sk(sock);
/* 2. Do not allow inheriting programs if psock exists and has
* already inherited programs. This would create confusion on
* which parser/verdict program is running. If no psock exists
* create one. Inside sk_callback_lock to ensure concurrent create
* doesn't update user data.
*/
if (psock) {
if (READ_ONCE(psock->bpf_parse) && parse) {
err = -EBUSY;
goto out_progs;
}
if (READ_ONCE(psock->bpf_tx_msg) && tx_msg) {
err = -EBUSY;
goto out_progs;
}
if (!refcount_inc_not_zero(&psock->refcnt)) {
err = -EAGAIN;
goto out_progs;
}
} else {
psock = smap_init_psock(sock, map->numa_node);
if (IS_ERR(psock)) {
err = PTR_ERR(psock);
goto out_progs;
}
set_bit(SMAP_TX_RUNNING, &psock->state);
new = true;
}
if (map_link) {
e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
if (!e) {
err = -ENOMEM;
goto out_progs;
}
}
/* 3. At this point we have a reference to a valid psock that is
* running. Attach any BPF programs needed.
*/
if (tx_msg)
bpf_tcp_msg_add(psock, sock, tx_msg);
if (new) {
err = tcp_set_ulp_id(sock, TCP_ULP_BPF);
if (err)
goto out_free;
}
if (parse && verdict && !psock->strp_enabled) {
err = smap_init_sock(psock, sock);
if (err)
goto out_free;
smap_init_progs(psock, verdict, parse);
write_lock_bh(&sock->sk_callback_lock);
smap_start_sock(psock, sock);
write_unlock_bh(&sock->sk_callback_lock);
}
/* 4. Place psock in sockmap for use and stop any programs on
* the old sock assuming its not the same sock we are replacing
* it with. Because we can only have a single set of programs if
* old_sock has a strp we can stop it.
*/
if (map_link) {
e->entry = map_link;
spin_lock_bh(&psock->maps_lock);
list_add_tail(&e->list, &psock->maps);
spin_unlock_bh(&psock->maps_lock);
}
return err;
out_free:
smap_release_sock(psock, sock);
out_progs:
if (parse && verdict) {
bpf_prog_put(parse);
bpf_prog_put(verdict);
}
if (tx_msg)
bpf_prog_put(tx_msg);
kfree(e);
return err;
}
static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
struct bpf_map *map,
void *key, u64 flags)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
struct bpf_sock_progs *progs = &stab->progs;
struct sock *osock, *sock;
u32 i = *(u32 *)key;
int err;
if (unlikely(flags > BPF_EXIST))
return -EINVAL;
if (unlikely(i >= stab->map.max_entries))
return -E2BIG;
sock = READ_ONCE(stab->sock_map[i]);
if (flags == BPF_EXIST && !sock)
return -ENOENT;
else if (flags == BPF_NOEXIST && sock)
return -EEXIST;
sock = skops->sk;
err = __sock_map_ctx_update_elem(map, progs, sock, &stab->sock_map[i],
key);
if (err)
goto out;
osock = xchg(&stab->sock_map[i], sock);
if (osock) {
struct smap_psock *opsock = smap_psock_sk(osock);
smap_list_map_remove(opsock, &stab->sock_map[i]);
smap_release_sock(opsock, osock);
}
out:
return err;
}
int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type)
{
struct bpf_sock_progs *progs;
struct bpf_prog *orig;
if (map->map_type == BPF_MAP_TYPE_SOCKMAP) {
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
progs = &stab->progs;
} else if (map->map_type == BPF_MAP_TYPE_SOCKHASH) {
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
progs = &htab->progs;
} else {
return -EINVAL;
}
switch (type) {
case BPF_SK_MSG_VERDICT:
orig = xchg(&progs->bpf_tx_msg, prog);
break;
case BPF_SK_SKB_STREAM_PARSER:
orig = xchg(&progs->bpf_parse, prog);
break;
case BPF_SK_SKB_STREAM_VERDICT:
orig = xchg(&progs->bpf_verdict, prog);
break;
default:
return -EOPNOTSUPP;
}
if (orig)
bpf_prog_put(orig);
return 0;
}
int sockmap_get_from_fd(const union bpf_attr *attr, int type,
struct bpf_prog *prog)
{
int ufd = attr->target_fd;
struct bpf_map *map;
struct fd f;
int err;
f = fdget(ufd);
map = __bpf_map_get(f);
if (IS_ERR(map))
return PTR_ERR(map);
err = sock_map_prog(map, prog, attr->attach_type);
fdput(f);
return err;
}
static void *sock_map_lookup(struct bpf_map *map, void *key)
{
return NULL;
}
static int sock_map_update_elem(struct bpf_map *map,
void *key, void *value, u64 flags)
{
struct bpf_sock_ops_kern skops;
u32 fd = *(u32 *)value;
struct socket *socket;
int err;
socket = sockfd_lookup(fd, &err);
if (!socket)
return err;
skops.sk = socket->sk;
if (!skops.sk) {
fput(socket->file);
return -EINVAL;
}
if (skops.sk->sk_type != SOCK_STREAM ||
skops.sk->sk_protocol != IPPROTO_TCP) {
fput(socket->file);
return -EOPNOTSUPP;
}
err = sock_map_ctx_update_elem(&skops, map, key, flags);
fput(socket->file);
return err;
}
static void sock_map_release(struct bpf_map *map)
{
struct bpf_sock_progs *progs;
struct bpf_prog *orig;
if (map->map_type == BPF_MAP_TYPE_SOCKMAP) {
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
progs = &stab->progs;
} else {
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
progs = &htab->progs;
}
orig = xchg(&progs->bpf_parse, NULL);
if (orig)
bpf_prog_put(orig);
orig = xchg(&progs->bpf_verdict, NULL);
if (orig)
bpf_prog_put(orig);
orig = xchg(&progs->bpf_tx_msg, NULL);
if (orig)
bpf_prog_put(orig);
}
static struct bpf_map *sock_hash_alloc(union bpf_attr *attr)
{
struct bpf_htab *htab;
int i, err;
u64 cost;
if (!capable(CAP_NET_ADMIN))
return ERR_PTR(-EPERM);
/* check sanity of attributes */
if (attr->max_entries == 0 || attr->value_size != 4 ||
attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
return ERR_PTR(-EINVAL);
if (attr->key_size > MAX_BPF_STACK)
/* eBPF programs initialize keys on stack, so they cannot be
* larger than max stack size
*/
return ERR_PTR(-E2BIG);
err = bpf_tcp_ulp_register();
if (err && err != -EEXIST)
return ERR_PTR(err);
htab = kzalloc(sizeof(*htab), GFP_USER);
if (!htab)
return ERR_PTR(-ENOMEM);
bpf_map_init_from_attr(&htab->map, attr);
htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
htab->elem_size = sizeof(struct htab_elem) +
round_up(htab->map.key_size, 8);
err = -EINVAL;
if (htab->n_buckets == 0 ||
htab->n_buckets > U32_MAX / sizeof(struct bucket))
goto free_htab;
cost = (u64) htab->n_buckets * sizeof(struct bucket) +
(u64) htab->elem_size * htab->map.max_entries;
if (cost >= U32_MAX - PAGE_SIZE)
goto free_htab;
htab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
err = bpf_map_precharge_memlock(htab->map.pages);
if (err)
goto free_htab;
err = -ENOMEM;
htab->buckets = bpf_map_area_alloc(
htab->n_buckets * sizeof(struct bucket),
htab->map.numa_node);
if (!htab->buckets)
goto free_htab;
for (i = 0; i < htab->n_buckets; i++) {
INIT_HLIST_HEAD(&htab->buckets[i].head);
raw_spin_lock_init(&htab->buckets[i].lock);
}
return &htab->map;
free_htab:
kfree(htab);
return ERR_PTR(err);
}
static void __bpf_htab_free(struct rcu_head *rcu)
{
struct bpf_htab *htab;
htab = container_of(rcu, struct bpf_htab, rcu);
bpf_map_area_free(htab->buckets);
kfree(htab);
}
static void sock_hash_free(struct bpf_map *map)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
int i;
synchronize_rcu();
/* At this point no update, lookup or delete operations can happen.
* However, be aware we can still get a socket state event updates,
* and data ready callabacks that reference the psock from sk_user_data
* Also psock worker threads are still in-flight. So smap_release_sock
* will only free the psock after cancel_sync on the worker threads
* and a grace period expire to ensure psock is really safe to remove.
*/
rcu_read_lock();
for (i = 0; i < htab->n_buckets; i++) {
struct bucket *b = __select_bucket(htab, i);
struct hlist_head *head;
struct hlist_node *n;
struct htab_elem *l;
raw_spin_lock_bh(&b->lock);
head = &b->head;
hlist_for_each_entry_safe(l, n, head, hash_node) {
struct sock *sock = l->sk;
struct smap_psock *psock;
hlist_del_rcu(&l->hash_node);
psock = smap_psock_sk(sock);
/* This check handles a racing sock event that can get
* the sk_callback_lock before this case but after xchg
* causing the refcnt to hit zero and sock user data
* (psock) to be null and queued for garbage collection.
*/
if (likely(psock)) {
smap_list_hash_remove(psock, l);
smap_release_sock(psock, sock);
}
free_htab_elem(htab, l);
}
raw_spin_unlock_bh(&b->lock);
}
rcu_read_unlock();
call_rcu(&htab->rcu, __bpf_htab_free);
}
static struct htab_elem *alloc_sock_hash_elem(struct bpf_htab *htab,
void *key, u32 key_size, u32 hash,
struct sock *sk,
struct htab_elem *old_elem)
{
struct htab_elem *l_new;
if (atomic_inc_return(&htab->count) > htab->map.max_entries) {
if (!old_elem) {
atomic_dec(&htab->count);
return ERR_PTR(-E2BIG);
}
}
l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
htab->map.numa_node);
if (!l_new)
return ERR_PTR(-ENOMEM);
memcpy(l_new->key, key, key_size);
l_new->sk = sk;
l_new->hash = hash;
return l_new;
}
static inline u32 htab_map_hash(const void *key, u32 key_len)
{
return jhash(key, key_len, 0);
}
static int sock_hash_get_next_key(struct bpf_map *map,
void *key, void *next_key)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct htab_elem *l, *next_l;
struct hlist_head *h;
u32 hash, key_size;
int i = 0;
WARN_ON_ONCE(!rcu_read_lock_held());
key_size = map->key_size;
if (!key)
goto find_first_elem;
hash = htab_map_hash(key, key_size);
h = select_bucket(htab, hash);
l = lookup_elem_raw(h, hash, key, key_size);
if (!l)
goto find_first_elem;
next_l = hlist_entry_safe(
rcu_dereference_raw(hlist_next_rcu(&l->hash_node)),
struct htab_elem, hash_node);
if (next_l) {
memcpy(next_key, next_l->key, key_size);
return 0;
}
/* no more elements in this hash list, go to the next bucket */
i = hash & (htab->n_buckets - 1);
i++;
find_first_elem:
/* iterate over buckets */
for (; i < htab->n_buckets; i++) {
h = select_bucket(htab, i);
/* pick first element in the bucket */
next_l = hlist_entry_safe(
rcu_dereference_raw(hlist_first_rcu(h)),
struct htab_elem, hash_node);
if (next_l) {
/* if it's not empty, just return it */
memcpy(next_key, next_l->key, key_size);
return 0;
}
}
/* iterated over all buckets and all elements */
return -ENOENT;
}
static int sock_hash_ctx_update_elem(struct bpf_sock_ops_kern *skops,
struct bpf_map *map,
void *key, u64 map_flags)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct bpf_sock_progs *progs = &htab->progs;
struct htab_elem *l_new = NULL, *l_old;
struct smap_psock_map_entry *e = NULL;
struct hlist_head *head;
struct smap_psock *psock;
u32 key_size, hash;
struct sock *sock;
struct bucket *b;
int err;
sock = skops->sk;
if (sock->sk_type != SOCK_STREAM ||
sock->sk_protocol != IPPROTO_TCP)
return -EOPNOTSUPP;
if (unlikely(map_flags > BPF_EXIST))
return -EINVAL;
e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
if (!e)
return -ENOMEM;
WARN_ON_ONCE(!rcu_read_lock_held());
key_size = map->key_size;
hash = htab_map_hash(key, key_size);
b = __select_bucket(htab, hash);
head = &b->head;
err = __sock_map_ctx_update_elem(map, progs, sock, NULL, key);
if (err)
goto err;
/* bpf_map_update_elem() can be called in_irq() */
raw_spin_lock_bh(&b->lock);
l_old = lookup_elem_raw(head, hash, key, key_size);
if (l_old && map_flags == BPF_NOEXIST) {
err = -EEXIST;
goto bucket_err;
}
if (!l_old && map_flags == BPF_EXIST) {
err = -ENOENT;
goto bucket_err;
}
l_new = alloc_sock_hash_elem(htab, key, key_size, hash, sock, l_old);
if (IS_ERR(l_new)) {
err = PTR_ERR(l_new);
goto bucket_err;
}
psock = smap_psock_sk(sock);
if (unlikely(!psock)) {
err = -EINVAL;
goto bucket_err;
}
rcu_assign_pointer(e->hash_link, l_new);
rcu_assign_pointer(e->htab,
container_of(map, struct bpf_htab, map));
spin_lock_bh(&psock->maps_lock);
list_add_tail(&e->list, &psock->maps);
spin_unlock_bh(&psock->maps_lock);
/* add new element to the head of the list, so that
* concurrent search will find it before old elem
*/
hlist_add_head_rcu(&l_new->hash_node, head);
if (l_old) {
psock = smap_psock_sk(l_old->sk);
hlist_del_rcu(&l_old->hash_node);
smap_list_hash_remove(psock, l_old);
smap_release_sock(psock, l_old->sk);
free_htab_elem(htab, l_old);
}
raw_spin_unlock_bh(&b->lock);
return 0;
bucket_err:
raw_spin_unlock_bh(&b->lock);
err:
kfree(e);
psock = smap_psock_sk(sock);
if (psock)
smap_release_sock(psock, sock);
return err;
}
static int sock_hash_update_elem(struct bpf_map *map,
void *key, void *value, u64 flags)
{
struct bpf_sock_ops_kern skops;
u32 fd = *(u32 *)value;
struct socket *socket;
int err;
socket = sockfd_lookup(fd, &err);
if (!socket)
return err;
skops.sk = socket->sk;
if (!skops.sk) {
fput(socket->file);
return -EINVAL;
}
err = sock_hash_ctx_update_elem(&skops, map, key, flags);
fput(socket->file);
return err;
}
static int sock_hash_delete_elem(struct bpf_map *map, void *key)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct hlist_head *head;
struct bucket *b;
struct htab_elem *l;
u32 hash, key_size;
int ret = -ENOENT;
key_size = map->key_size;
hash = htab_map_hash(key, key_size);
b = __select_bucket(htab, hash);
head = &b->head;
raw_spin_lock_bh(&b->lock);
l = lookup_elem_raw(head, hash, key, key_size);
if (l) {
struct sock *sock = l->sk;
struct smap_psock *psock;
hlist_del_rcu(&l->hash_node);
psock = smap_psock_sk(sock);
/* This check handles a racing sock event that can get the
* sk_callback_lock before this case but after xchg happens
* causing the refcnt to hit zero and sock user data (psock)
* to be null and queued for garbage collection.
*/
if (likely(psock)) {
smap_list_hash_remove(psock, l);
smap_release_sock(psock, sock);
}
free_htab_elem(htab, l);
ret = 0;
}
raw_spin_unlock_bh(&b->lock);
return ret;
}
struct sock *__sock_hash_lookup_elem(struct bpf_map *map, void *key)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct hlist_head *head;
struct htab_elem *l;
u32 key_size, hash;
struct bucket *b;
struct sock *sk;
key_size = map->key_size;
hash = htab_map_hash(key, key_size);
b = __select_bucket(htab, hash);
head = &b->head;
raw_spin_lock_bh(&b->lock);
l = lookup_elem_raw(head, hash, key, key_size);
sk = l ? l->sk : NULL;
raw_spin_unlock_bh(&b->lock);
return sk;
}
const struct bpf_map_ops sock_map_ops = {
.map_alloc = sock_map_alloc,
.map_free = sock_map_free,
.map_lookup_elem = sock_map_lookup,
.map_get_next_key = sock_map_get_next_key,
.map_update_elem = sock_map_update_elem,
.map_delete_elem = sock_map_delete_elem,
.map_release_uref = sock_map_release,
};
const struct bpf_map_ops sock_hash_ops = {
.map_alloc = sock_hash_alloc,
.map_free = sock_hash_free,
.map_lookup_elem = sock_map_lookup,
.map_get_next_key = sock_hash_get_next_key,
.map_update_elem = sock_hash_update_elem,
.map_delete_elem = sock_hash_delete_elem,
.map_release_uref = sock_map_release,
};
BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
struct bpf_map *, map, void *, key, u64, flags)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return sock_map_ctx_update_elem(bpf_sock, map, key, flags);
}
const struct bpf_func_proto bpf_sock_map_update_proto = {
.func = bpf_sock_map_update,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_PTR_TO_MAP_KEY,
.arg4_type = ARG_ANYTHING,
};
BPF_CALL_4(bpf_sock_hash_update, struct bpf_sock_ops_kern *, bpf_sock,
struct bpf_map *, map, void *, key, u64, flags)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return sock_hash_ctx_update_elem(bpf_sock, map, key, flags);
}
const struct bpf_func_proto bpf_sock_hash_update_proto = {
.func = bpf_sock_hash_update,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_PTR_TO_MAP_KEY,
.arg4_type = ARG_ANYTHING,
};