linux/fs/f2fs/inline.c
Chao Yu f247037120 f2fs: make max inline size changeable
This patch tries to make below macros calculating max inline size,
inline dentry field size considerring reserving size-changeable
space:
- MAX_INLINE_DATA
- NR_INLINE_DENTRY
- INLINE_DENTRY_BITMAP_SIZE
- INLINE_RESERVED_SIZE

Then, when inline_{data,dentry} options is enabled, it allows us to
reserve inline space with different size flexibly for adding newly
introduced inode attribute.

Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2017-07-31 16:48:29 -07:00

676 lines
16 KiB
C

/*
* fs/f2fs/inline.c
* Copyright (c) 2013, Intel Corporation
* Authors: Huajun Li <huajun.li@intel.com>
* Haicheng Li <haicheng.li@intel.com>
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include "f2fs.h"
#include "node.h"
bool f2fs_may_inline_data(struct inode *inode)
{
if (f2fs_is_atomic_file(inode))
return false;
if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
return false;
if (i_size_read(inode) > MAX_INLINE_DATA(inode))
return false;
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
return false;
return true;
}
bool f2fs_may_inline_dentry(struct inode *inode)
{
if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
return false;
if (!S_ISDIR(inode->i_mode))
return false;
return true;
}
void read_inline_data(struct page *page, struct page *ipage)
{
struct inode *inode = page->mapping->host;
void *src_addr, *dst_addr;
if (PageUptodate(page))
return;
f2fs_bug_on(F2FS_P_SB(page), page->index);
zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE);
/* Copy the whole inline data block */
src_addr = inline_data_addr(inode, ipage);
dst_addr = kmap_atomic(page);
memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
flush_dcache_page(page);
kunmap_atomic(dst_addr);
if (!PageUptodate(page))
SetPageUptodate(page);
}
void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from)
{
void *addr;
if (from >= MAX_INLINE_DATA(inode))
return;
addr = inline_data_addr(inode, ipage);
f2fs_wait_on_page_writeback(ipage, NODE, true);
memset(addr + from, 0, MAX_INLINE_DATA(inode) - from);
set_page_dirty(ipage);
if (from == 0)
clear_inode_flag(inode, FI_DATA_EXIST);
}
int f2fs_read_inline_data(struct inode *inode, struct page *page)
{
struct page *ipage;
ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
if (IS_ERR(ipage)) {
unlock_page(page);
return PTR_ERR(ipage);
}
if (!f2fs_has_inline_data(inode)) {
f2fs_put_page(ipage, 1);
return -EAGAIN;
}
if (page->index)
zero_user_segment(page, 0, PAGE_SIZE);
else
read_inline_data(page, ipage);
if (!PageUptodate(page))
SetPageUptodate(page);
f2fs_put_page(ipage, 1);
unlock_page(page);
return 0;
}
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
{
struct f2fs_io_info fio = {
.sbi = F2FS_I_SB(dn->inode),
.type = DATA,
.op = REQ_OP_WRITE,
.op_flags = REQ_SYNC | REQ_PRIO,
.page = page,
.encrypted_page = NULL,
};
int dirty, err;
if (!f2fs_exist_data(dn->inode))
goto clear_out;
err = f2fs_reserve_block(dn, 0);
if (err)
return err;
f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
read_inline_data(page, dn->inode_page);
set_page_dirty(page);
/* clear dirty state */
dirty = clear_page_dirty_for_io(page);
/* write data page to try to make data consistent */
set_page_writeback(page);
fio.old_blkaddr = dn->data_blkaddr;
set_inode_flag(dn->inode, FI_HOT_DATA);
write_data_page(dn, &fio);
f2fs_wait_on_page_writeback(page, DATA, true);
if (dirty) {
inode_dec_dirty_pages(dn->inode);
remove_dirty_inode(dn->inode);
}
/* this converted inline_data should be recovered. */
set_inode_flag(dn->inode, FI_APPEND_WRITE);
/* clear inline data and flag after data writeback */
truncate_inline_inode(dn->inode, dn->inode_page, 0);
clear_inline_node(dn->inode_page);
clear_out:
stat_dec_inline_inode(dn->inode);
clear_inode_flag(dn->inode, FI_INLINE_DATA);
f2fs_put_dnode(dn);
return 0;
}
int f2fs_convert_inline_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct dnode_of_data dn;
struct page *ipage, *page;
int err = 0;
if (!f2fs_has_inline_data(inode))
return 0;
page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
if (!page)
return -ENOMEM;
f2fs_lock_op(sbi);
ipage = get_node_page(sbi, inode->i_ino);
if (IS_ERR(ipage)) {
err = PTR_ERR(ipage);
goto out;
}
set_new_dnode(&dn, inode, ipage, ipage, 0);
if (f2fs_has_inline_data(inode))
err = f2fs_convert_inline_page(&dn, page);
f2fs_put_dnode(&dn);
out:
f2fs_unlock_op(sbi);
f2fs_put_page(page, 1);
f2fs_balance_fs(sbi, dn.node_changed);
return err;
}
int f2fs_write_inline_data(struct inode *inode, struct page *page)
{
void *src_addr, *dst_addr;
struct dnode_of_data dn;
int err;
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
if (err)
return err;
if (!f2fs_has_inline_data(inode)) {
f2fs_put_dnode(&dn);
return -EAGAIN;
}
f2fs_bug_on(F2FS_I_SB(inode), page->index);
f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
src_addr = kmap_atomic(page);
dst_addr = inline_data_addr(inode, dn.inode_page);
memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
kunmap_atomic(src_addr);
set_page_dirty(dn.inode_page);
set_inode_flag(inode, FI_APPEND_WRITE);
set_inode_flag(inode, FI_DATA_EXIST);
clear_inline_node(dn.inode_page);
f2fs_put_dnode(&dn);
return 0;
}
bool recover_inline_data(struct inode *inode, struct page *npage)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode *ri = NULL;
void *src_addr, *dst_addr;
struct page *ipage;
/*
* The inline_data recovery policy is as follows.
* [prev.] [next] of inline_data flag
* o o -> recover inline_data
* o x -> remove inline_data, and then recover data blocks
* x o -> remove inline_data, and then recover inline_data
* x x -> recover data blocks
*/
if (IS_INODE(npage))
ri = F2FS_INODE(npage);
if (f2fs_has_inline_data(inode) &&
ri && (ri->i_inline & F2FS_INLINE_DATA)) {
process_inline:
ipage = get_node_page(sbi, inode->i_ino);
f2fs_bug_on(sbi, IS_ERR(ipage));
f2fs_wait_on_page_writeback(ipage, NODE, true);
src_addr = inline_data_addr(inode, npage);
dst_addr = inline_data_addr(inode, ipage);
memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
set_inode_flag(inode, FI_INLINE_DATA);
set_inode_flag(inode, FI_DATA_EXIST);
set_page_dirty(ipage);
f2fs_put_page(ipage, 1);
return true;
}
if (f2fs_has_inline_data(inode)) {
ipage = get_node_page(sbi, inode->i_ino);
f2fs_bug_on(sbi, IS_ERR(ipage));
truncate_inline_inode(inode, ipage, 0);
clear_inode_flag(inode, FI_INLINE_DATA);
f2fs_put_page(ipage, 1);
} else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
if (truncate_blocks(inode, 0, false))
return false;
goto process_inline;
}
return false;
}
struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
struct fscrypt_name *fname, struct page **res_page)
{
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
struct f2fs_dir_entry *de;
struct f2fs_dentry_ptr d;
struct page *ipage;
void *inline_dentry;
f2fs_hash_t namehash;
ipage = get_node_page(sbi, dir->i_ino);
if (IS_ERR(ipage)) {
*res_page = ipage;
return NULL;
}
namehash = f2fs_dentry_hash(&name, fname);
inline_dentry = inline_data_addr(dir, ipage);
make_dentry_ptr_inline(dir, &d, inline_dentry);
de = find_target_dentry(fname, namehash, NULL, &d);
unlock_page(ipage);
if (de)
*res_page = ipage;
else
f2fs_put_page(ipage, 0);
return de;
}
int make_empty_inline_dir(struct inode *inode, struct inode *parent,
struct page *ipage)
{
struct f2fs_dentry_ptr d;
void *inline_dentry;
inline_dentry = inline_data_addr(inode, ipage);
make_dentry_ptr_inline(inode, &d, inline_dentry);
do_make_empty_dir(inode, parent, &d);
set_page_dirty(ipage);
/* update i_size to MAX_INLINE_DATA */
if (i_size_read(inode) < MAX_INLINE_DATA(inode))
f2fs_i_size_write(inode, MAX_INLINE_DATA(inode));
return 0;
}
/*
* NOTE: ipage is grabbed by caller, but if any error occurs, we should
* release ipage in this function.
*/
static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
void *inline_dentry)
{
struct page *page;
struct dnode_of_data dn;
struct f2fs_dentry_block *dentry_blk;
struct f2fs_dentry_ptr src, dst;
int err;
page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
if (!page) {
f2fs_put_page(ipage, 1);
return -ENOMEM;
}
set_new_dnode(&dn, dir, ipage, NULL, 0);
err = f2fs_reserve_block(&dn, 0);
if (err)
goto out;
f2fs_wait_on_page_writeback(page, DATA, true);
zero_user_segment(page, MAX_INLINE_DATA(dir), PAGE_SIZE);
dentry_blk = kmap_atomic(page);
make_dentry_ptr_inline(dir, &src, inline_dentry);
make_dentry_ptr_block(dir, &dst, dentry_blk);
/* copy data from inline dentry block to new dentry block */
memcpy(dst.bitmap, src.bitmap, src.nr_bitmap);
memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap);
/*
* we do not need to zero out remainder part of dentry and filename
* field, since we have used bitmap for marking the usage status of
* them, besides, we can also ignore copying/zeroing reserved space
* of dentry block, because them haven't been used so far.
*/
memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max);
memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN);
kunmap_atomic(dentry_blk);
if (!PageUptodate(page))
SetPageUptodate(page);
set_page_dirty(page);
/* clear inline dir and flag after data writeback */
truncate_inline_inode(dir, ipage, 0);
stat_dec_inline_dir(dir);
clear_inode_flag(dir, FI_INLINE_DENTRY);
f2fs_i_depth_write(dir, 1);
if (i_size_read(dir) < PAGE_SIZE)
f2fs_i_size_write(dir, PAGE_SIZE);
out:
f2fs_put_page(page, 1);
return err;
}
static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry)
{
struct f2fs_dentry_ptr d;
unsigned long bit_pos = 0;
int err = 0;
make_dentry_ptr_inline(dir, &d, inline_dentry);
while (bit_pos < d.max) {
struct f2fs_dir_entry *de;
struct qstr new_name;
nid_t ino;
umode_t fake_mode;
if (!test_bit_le(bit_pos, d.bitmap)) {
bit_pos++;
continue;
}
de = &d.dentry[bit_pos];
if (unlikely(!de->name_len)) {
bit_pos++;
continue;
}
new_name.name = d.filename[bit_pos];
new_name.len = le16_to_cpu(de->name_len);
ino = le32_to_cpu(de->ino);
fake_mode = get_de_type(de) << S_SHIFT;
err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL,
ino, fake_mode);
if (err)
goto punch_dentry_pages;
bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
}
return 0;
punch_dentry_pages:
truncate_inode_pages(&dir->i_data, 0);
truncate_blocks(dir, 0, false);
remove_dirty_inode(dir);
return err;
}
static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
void *inline_dentry)
{
void *backup_dentry;
int err;
backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
MAX_INLINE_DATA(dir), GFP_F2FS_ZERO);
if (!backup_dentry) {
f2fs_put_page(ipage, 1);
return -ENOMEM;
}
memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir));
truncate_inline_inode(dir, ipage, 0);
unlock_page(ipage);
err = f2fs_add_inline_entries(dir, backup_dentry);
if (err)
goto recover;
lock_page(ipage);
stat_dec_inline_dir(dir);
clear_inode_flag(dir, FI_INLINE_DENTRY);
kfree(backup_dentry);
return 0;
recover:
lock_page(ipage);
memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir));
f2fs_i_depth_write(dir, 0);
f2fs_i_size_write(dir, MAX_INLINE_DATA(dir));
set_page_dirty(ipage);
f2fs_put_page(ipage, 1);
kfree(backup_dentry);
return err;
}
static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
void *inline_dentry)
{
if (!F2FS_I(dir)->i_dir_level)
return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
else
return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
}
int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
const struct qstr *orig_name,
struct inode *inode, nid_t ino, umode_t mode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
struct page *ipage;
unsigned int bit_pos;
f2fs_hash_t name_hash;
void *inline_dentry = NULL;
struct f2fs_dentry_ptr d;
int slots = GET_DENTRY_SLOTS(new_name->len);
struct page *page = NULL;
int err = 0;
ipage = get_node_page(sbi, dir->i_ino);
if (IS_ERR(ipage))
return PTR_ERR(ipage);
inline_dentry = inline_data_addr(dir, ipage);
make_dentry_ptr_inline(dir, &d, inline_dentry);
bit_pos = room_for_filename(d.bitmap, slots, d.max);
if (bit_pos >= d.max) {
err = f2fs_convert_inline_dir(dir, ipage, inline_dentry);
if (err)
return err;
err = -EAGAIN;
goto out;
}
if (inode) {
down_write(&F2FS_I(inode)->i_sem);
page = init_inode_metadata(inode, dir, new_name,
orig_name, ipage);
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto fail;
}
}
f2fs_wait_on_page_writeback(ipage, NODE, true);
name_hash = f2fs_dentry_hash(new_name, NULL);
f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos);
set_page_dirty(ipage);
/* we don't need to mark_inode_dirty now */
if (inode) {
f2fs_i_pino_write(inode, dir->i_ino);
f2fs_put_page(page, 1);
}
update_parent_metadata(dir, inode, 0);
fail:
if (inode)
up_write(&F2FS_I(inode)->i_sem);
out:
f2fs_put_page(ipage, 1);
return err;
}
void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
struct inode *dir, struct inode *inode)
{
struct f2fs_dentry_ptr d;
void *inline_dentry;
int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
unsigned int bit_pos;
int i;
lock_page(page);
f2fs_wait_on_page_writeback(page, NODE, true);
inline_dentry = inline_data_addr(dir, page);
make_dentry_ptr_inline(dir, &d, inline_dentry);
bit_pos = dentry - d.dentry;
for (i = 0; i < slots; i++)
__clear_bit_le(bit_pos + i, d.bitmap);
set_page_dirty(page);
f2fs_put_page(page, 1);
dir->i_ctime = dir->i_mtime = current_time(dir);
f2fs_mark_inode_dirty_sync(dir, false);
if (inode)
f2fs_drop_nlink(dir, inode);
}
bool f2fs_empty_inline_dir(struct inode *dir)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
struct page *ipage;
unsigned int bit_pos = 2;
void *inline_dentry;
struct f2fs_dentry_ptr d;
ipage = get_node_page(sbi, dir->i_ino);
if (IS_ERR(ipage))
return false;
inline_dentry = inline_data_addr(dir, ipage);
make_dentry_ptr_inline(dir, &d, inline_dentry);
bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos);
f2fs_put_page(ipage, 1);
if (bit_pos < d.max)
return false;
return true;
}
int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
struct fscrypt_str *fstr)
{
struct inode *inode = file_inode(file);
struct page *ipage = NULL;
struct f2fs_dentry_ptr d;
void *inline_dentry = NULL;
int err;
make_dentry_ptr_inline(inode, &d, inline_dentry);
if (ctx->pos == d.max)
return 0;
ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
if (IS_ERR(ipage))
return PTR_ERR(ipage);
inline_dentry = inline_data_addr(inode, ipage);
make_dentry_ptr_inline(inode, &d, inline_dentry);
err = f2fs_fill_dentries(ctx, &d, 0, fstr);
if (!err)
ctx->pos = d.max;
f2fs_put_page(ipage, 1);
return err < 0 ? err : 0;
}
int f2fs_inline_data_fiemap(struct inode *inode,
struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
{
__u64 byteaddr, ilen;
__u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
FIEMAP_EXTENT_LAST;
struct node_info ni;
struct page *ipage;
int err = 0;
ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
if (IS_ERR(ipage))
return PTR_ERR(ipage);
if (!f2fs_has_inline_data(inode)) {
err = -EAGAIN;
goto out;
}
ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode));
if (start >= ilen)
goto out;
if (start + len < ilen)
ilen = start + len;
ilen -= start;
get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
byteaddr += (char *)inline_data_addr(inode, ipage) -
(char *)F2FS_INODE(ipage);
err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
out:
f2fs_put_page(ipage, 1);
return err;
}