linux/drivers/crypto/vmx/ghashp8-ppc.pl
Leonidas S. Barbosa 5c380d623e crypto: vmx - Add support for VMS instructions by ASM
OpenSSL implements optimized ASM algorithms which support
VMX instructions on Power 8 CPU.

These scripts generate an endian-agnostic ASM implementation
in order to support both big and little-endian.
	- aesp8-ppc.pl: implements suport for AES instructions
	implemented by POWER8 processor.
	- ghashp8-ppc.pl: implements support for  GHASH for Power8.
	- ppc-xlate.pl:  ppc assembler distiller.

These code has been adopted from OpenSSL project in collaboration
with the original author (Andy Polyakov <appro@openssl.org>).

Signed-off-by: Leonidas S. Barbosa <leosilva@linux.vnet.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-02-28 23:13:46 +13:00

235 lines
5.1 KiB
Raku
Executable File
Raw Blame History

#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# GHASH for for PowerISA v2.07.
#
# July 2014
#
# Accurate performance measurements are problematic, because it's
# always virtualized setup with possibly throttled processor.
# Relative comparison is therefore more informative. This initial
# version is ~2.1x slower than hardware-assisted AES-128-CTR, ~12x
# faster than "4-bit" integer-only compiler-generated 64-bit code.
# "Initial version" means that there is room for futher improvement.
$flavour=shift;
$output =shift;
if ($flavour =~ /64/) {
$SIZE_T=8;
$LRSAVE=2*$SIZE_T;
$STU="stdu";
$POP="ld";
$PUSH="std";
} elsif ($flavour =~ /32/) {
$SIZE_T=4;
$LRSAVE=$SIZE_T;
$STU="stwu";
$POP="lwz";
$PUSH="stw";
} else { die "nonsense $flavour"; }
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or
die "can't locate ppc-xlate.pl";
open STDOUT,"| $^X $xlate $flavour $output" || die "can't call $xlate: $!";
my ($Xip,$Htbl,$inp,$len)=map("r$_",(3..6)); # argument block
my ($Xl,$Xm,$Xh,$IN)=map("v$_",(0..3));
my ($zero,$t0,$t1,$t2,$xC2,$H,$Hh,$Hl,$lemask)=map("v$_",(4..12));
my $vrsave="r12";
$code=<<___;
.machine "any"
.text
.globl .gcm_init_p8
.align 5
.gcm_init_p8:
lis r0,0xfff0
li r8,0x10
mfspr $vrsave,256
li r9,0x20
mtspr 256,r0
li r10,0x30
lvx_u $H,0,r4 # load H
vspltisb $xC2,-16 # 0xf0
vspltisb $t0,1 # one
vaddubm $xC2,$xC2,$xC2 # 0xe0
vxor $zero,$zero,$zero
vor $xC2,$xC2,$t0 # 0xe1
vsldoi $xC2,$xC2,$zero,15 # 0xe1...
vsldoi $t1,$zero,$t0,1 # ...1
vaddubm $xC2,$xC2,$xC2 # 0xc2...
vspltisb $t2,7
vor $xC2,$xC2,$t1 # 0xc2....01
vspltb $t1,$H,0 # most significant byte
vsl $H,$H,$t0 # H<<=1
vsrab $t1,$t1,$t2 # broadcast carry bit
vand $t1,$t1,$xC2
vxor $H,$H,$t1 # twisted H
vsldoi $H,$H,$H,8 # twist even more ...
vsldoi $xC2,$zero,$xC2,8 # 0xc2.0
vsldoi $Hl,$zero,$H,8 # ... and split
vsldoi $Hh,$H,$zero,8
stvx_u $xC2,0,r3 # save pre-computed table
stvx_u $Hl,r8,r3
stvx_u $H, r9,r3
stvx_u $Hh,r10,r3
mtspr 256,$vrsave
blr
.long 0
.byte 0,12,0x14,0,0,0,2,0
.long 0
.size .gcm_init_p8,.-.gcm_init_p8
.globl .gcm_gmult_p8
.align 5
.gcm_gmult_p8:
lis r0,0xfff8
li r8,0x10
mfspr $vrsave,256
li r9,0x20
mtspr 256,r0
li r10,0x30
lvx_u $IN,0,$Xip # load Xi
lvx_u $Hl,r8,$Htbl # load pre-computed table
le?lvsl $lemask,r0,r0
lvx_u $H, r9,$Htbl
le?vspltisb $t0,0x07
lvx_u $Hh,r10,$Htbl
le?vxor $lemask,$lemask,$t0
lvx_u $xC2,0,$Htbl
le?vperm $IN,$IN,$IN,$lemask
vxor $zero,$zero,$zero
vpmsumd $Xl,$IN,$Hl # H.lo<6C>Xi.lo
vpmsumd $Xm,$IN,$H # H.hi<68>Xi.lo+H.lo<6C>Xi.hi
vpmsumd $Xh,$IN,$Hh # H.hi<68>Xi.hi
vpmsumd $t2,$Xl,$xC2 # 1st phase
vsldoi $t0,$Xm,$zero,8
vsldoi $t1,$zero,$Xm,8
vxor $Xl,$Xl,$t0
vxor $Xh,$Xh,$t1
vsldoi $Xl,$Xl,$Xl,8
vxor $Xl,$Xl,$t2
vsldoi $t1,$Xl,$Xl,8 # 2nd phase
vpmsumd $Xl,$Xl,$xC2
vxor $t1,$t1,$Xh
vxor $Xl,$Xl,$t1
le?vperm $Xl,$Xl,$Xl,$lemask
stvx_u $Xl,0,$Xip # write out Xi
mtspr 256,$vrsave
blr
.long 0
.byte 0,12,0x14,0,0,0,2,0
.long 0
.size .gcm_gmult_p8,.-.gcm_gmult_p8
.globl .gcm_ghash_p8
.align 5
.gcm_ghash_p8:
lis r0,0xfff8
li r8,0x10
mfspr $vrsave,256
li r9,0x20
mtspr 256,r0
li r10,0x30
lvx_u $Xl,0,$Xip # load Xi
lvx_u $Hl,r8,$Htbl # load pre-computed table
le?lvsl $lemask,r0,r0
lvx_u $H, r9,$Htbl
le?vspltisb $t0,0x07
lvx_u $Hh,r10,$Htbl
le?vxor $lemask,$lemask,$t0
lvx_u $xC2,0,$Htbl
le?vperm $Xl,$Xl,$Xl,$lemask
vxor $zero,$zero,$zero
lvx_u $IN,0,$inp
addi $inp,$inp,16
subi $len,$len,16
le?vperm $IN,$IN,$IN,$lemask
vxor $IN,$IN,$Xl
b Loop
.align 5
Loop:
subic $len,$len,16
vpmsumd $Xl,$IN,$Hl # H.lo<6C>Xi.lo
subfe. r0,r0,r0 # borrow?-1:0
vpmsumd $Xm,$IN,$H # H.hi<68>Xi.lo+H.lo<6C>Xi.hi
and r0,r0,$len
vpmsumd $Xh,$IN,$Hh # H.hi<68>Xi.hi
add $inp,$inp,r0
vpmsumd $t2,$Xl,$xC2 # 1st phase
vsldoi $t0,$Xm,$zero,8
vsldoi $t1,$zero,$Xm,8
vxor $Xl,$Xl,$t0
vxor $Xh,$Xh,$t1
vsldoi $Xl,$Xl,$Xl,8
vxor $Xl,$Xl,$t2
lvx_u $IN,0,$inp
addi $inp,$inp,16
vsldoi $t1,$Xl,$Xl,8 # 2nd phase
vpmsumd $Xl,$Xl,$xC2
le?vperm $IN,$IN,$IN,$lemask
vxor $t1,$t1,$Xh
vxor $IN,$IN,$t1
vxor $IN,$IN,$Xl
beq Loop # did $len-=16 borrow?
vxor $Xl,$Xl,$t1
le?vperm $Xl,$Xl,$Xl,$lemask
stvx_u $Xl,0,$Xip # write out Xi
mtspr 256,$vrsave
blr
.long 0
.byte 0,12,0x14,0,0,0,4,0
.long 0
.size .gcm_ghash_p8,.-.gcm_ghash_p8
.asciz "GHASH for PowerISA 2.07, CRYPTOGAMS by <appro\@openssl.org>"
.align 2
___
foreach (split("\n",$code)) {
if ($flavour =~ /le$/o) { # little-endian
s/le\?//o or
s/be\?/#be#/o;
} else {
s/le\?/#le#/o or
s/be\?//o;
}
print $_,"\n";
}
close STDOUT; # enforce flush