forked from Minki/linux
18c3640cef
This sets up the machinery for switching a guest between HPT (hashed page table) and radix MMU modes, so that in future we can run a HPT guest on a radix host on POWER9 machines. * The KVM_PPC_CONFIGURE_V3_MMU ioctl can now specify either HPT or radix mode, on a radix host. * The KVM_CAP_PPC_MMU_HASH_V3 capability now returns 1 on POWER9 with HV KVM on a radix host. * The KVM_PPC_GET_SMMU_INFO returns information about the HPT MMU on a radix host. * The KVM_PPC_ALLOCATE_HTAB ioctl on a radix host will switch the guest to HPT mode and allocate a HPT. * For simplicity, we now allocate the rmap array for each memslot, even on a radix host, since it will be needed if the guest switches to HPT mode. * Since we cannot yet run a HPT guest on a radix host, the KVM_RUN ioctl will return an EINVAL error in that case. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
687 lines
17 KiB
C
687 lines
17 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s.h>
|
|
#include <asm/page.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pte-walk.h>
|
|
|
|
/*
|
|
* Supported radix tree geometry.
|
|
* Like p9, we support either 5 or 9 bits at the first (lowest) level,
|
|
* for a page size of 64k or 4k.
|
|
*/
|
|
static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
|
|
|
|
int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
|
|
struct kvmppc_pte *gpte, bool data, bool iswrite)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
u32 pid;
|
|
int ret, level, ps;
|
|
__be64 prte, rpte;
|
|
unsigned long ptbl;
|
|
unsigned long root, pte, index;
|
|
unsigned long rts, bits, offset;
|
|
unsigned long gpa;
|
|
unsigned long proc_tbl_size;
|
|
|
|
/* Work out effective PID */
|
|
switch (eaddr >> 62) {
|
|
case 0:
|
|
pid = vcpu->arch.pid;
|
|
break;
|
|
case 3:
|
|
pid = 0;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12);
|
|
if (pid * 16 >= proc_tbl_size)
|
|
return -EINVAL;
|
|
|
|
/* Read partition table to find root of tree for effective PID */
|
|
ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16);
|
|
ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte));
|
|
if (ret)
|
|
return ret;
|
|
|
|
root = be64_to_cpu(prte);
|
|
rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
|
|
((root & RTS2_MASK) >> RTS2_SHIFT);
|
|
bits = root & RPDS_MASK;
|
|
root = root & RPDB_MASK;
|
|
|
|
/* P9 DD1 interprets RTS (radix tree size) differently */
|
|
offset = rts + 31;
|
|
if (cpu_has_feature(CPU_FTR_POWER9_DD1))
|
|
offset -= 3;
|
|
|
|
/* current implementations only support 52-bit space */
|
|
if (offset != 52)
|
|
return -EINVAL;
|
|
|
|
for (level = 3; level >= 0; --level) {
|
|
if (level && bits != p9_supported_radix_bits[level])
|
|
return -EINVAL;
|
|
if (level == 0 && !(bits == 5 || bits == 9))
|
|
return -EINVAL;
|
|
offset -= bits;
|
|
index = (eaddr >> offset) & ((1UL << bits) - 1);
|
|
/* check that low bits of page table base are zero */
|
|
if (root & ((1UL << (bits + 3)) - 1))
|
|
return -EINVAL;
|
|
ret = kvm_read_guest(kvm, root + index * 8,
|
|
&rpte, sizeof(rpte));
|
|
if (ret)
|
|
return ret;
|
|
pte = __be64_to_cpu(rpte);
|
|
if (!(pte & _PAGE_PRESENT))
|
|
return -ENOENT;
|
|
if (pte & _PAGE_PTE)
|
|
break;
|
|
bits = pte & 0x1f;
|
|
root = pte & 0x0fffffffffffff00ul;
|
|
}
|
|
/* need a leaf at lowest level; 512GB pages not supported */
|
|
if (level < 0 || level == 3)
|
|
return -EINVAL;
|
|
|
|
/* offset is now log base 2 of the page size */
|
|
gpa = pte & 0x01fffffffffff000ul;
|
|
if (gpa & ((1ul << offset) - 1))
|
|
return -EINVAL;
|
|
gpa += eaddr & ((1ul << offset) - 1);
|
|
for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
|
|
if (offset == mmu_psize_defs[ps].shift)
|
|
break;
|
|
gpte->page_size = ps;
|
|
|
|
gpte->eaddr = eaddr;
|
|
gpte->raddr = gpa;
|
|
|
|
/* Work out permissions */
|
|
gpte->may_read = !!(pte & _PAGE_READ);
|
|
gpte->may_write = !!(pte & _PAGE_WRITE);
|
|
gpte->may_execute = !!(pte & _PAGE_EXEC);
|
|
if (kvmppc_get_msr(vcpu) & MSR_PR) {
|
|
if (pte & _PAGE_PRIVILEGED) {
|
|
gpte->may_read = 0;
|
|
gpte->may_write = 0;
|
|
gpte->may_execute = 0;
|
|
}
|
|
} else {
|
|
if (!(pte & _PAGE_PRIVILEGED)) {
|
|
/* Check AMR/IAMR to see if strict mode is in force */
|
|
if (vcpu->arch.amr & (1ul << 62))
|
|
gpte->may_read = 0;
|
|
if (vcpu->arch.amr & (1ul << 63))
|
|
gpte->may_write = 0;
|
|
if (vcpu->arch.iamr & (1ul << 62))
|
|
gpte->may_execute = 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
#define MMU_BASE_PSIZE MMU_PAGE_64K
|
|
#else
|
|
#define MMU_BASE_PSIZE MMU_PAGE_4K
|
|
#endif
|
|
|
|
static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
|
|
unsigned int pshift)
|
|
{
|
|
int psize = MMU_BASE_PSIZE;
|
|
|
|
if (pshift >= PMD_SHIFT)
|
|
psize = MMU_PAGE_2M;
|
|
addr &= ~0xfffUL;
|
|
addr |= mmu_psize_defs[psize].ap << 5;
|
|
asm volatile("ptesync": : :"memory");
|
|
asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1)
|
|
: : "r" (addr), "r" (kvm->arch.lpid) : "memory");
|
|
asm volatile("ptesync": : :"memory");
|
|
}
|
|
|
|
unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
|
|
unsigned long clr, unsigned long set,
|
|
unsigned long addr, unsigned int shift)
|
|
{
|
|
unsigned long old = 0;
|
|
|
|
if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) &&
|
|
pte_present(*ptep)) {
|
|
/* have to invalidate it first */
|
|
old = __radix_pte_update(ptep, _PAGE_PRESENT, 0);
|
|
kvmppc_radix_tlbie_page(kvm, addr, shift);
|
|
set |= _PAGE_PRESENT;
|
|
old &= _PAGE_PRESENT;
|
|
}
|
|
return __radix_pte_update(ptep, clr, set) | old;
|
|
}
|
|
|
|
void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
|
|
pte_t *ptep, pte_t pte)
|
|
{
|
|
radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
|
|
}
|
|
|
|
static struct kmem_cache *kvm_pte_cache;
|
|
|
|
static pte_t *kvmppc_pte_alloc(void)
|
|
{
|
|
return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
|
|
}
|
|
|
|
static void kvmppc_pte_free(pte_t *ptep)
|
|
{
|
|
kmem_cache_free(kvm_pte_cache, ptep);
|
|
}
|
|
|
|
static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
|
|
unsigned int level, unsigned long mmu_seq)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud, *new_pud = NULL;
|
|
pmd_t *pmd, *new_pmd = NULL;
|
|
pte_t *ptep, *new_ptep = NULL;
|
|
unsigned long old;
|
|
int ret;
|
|
|
|
/* Traverse the guest's 2nd-level tree, allocate new levels needed */
|
|
pgd = kvm->arch.pgtable + pgd_index(gpa);
|
|
pud = NULL;
|
|
if (pgd_present(*pgd))
|
|
pud = pud_offset(pgd, gpa);
|
|
else
|
|
new_pud = pud_alloc_one(kvm->mm, gpa);
|
|
|
|
pmd = NULL;
|
|
if (pud && pud_present(*pud))
|
|
pmd = pmd_offset(pud, gpa);
|
|
else
|
|
new_pmd = pmd_alloc_one(kvm->mm, gpa);
|
|
|
|
if (level == 0 && !(pmd && pmd_present(*pmd)))
|
|
new_ptep = kvmppc_pte_alloc();
|
|
|
|
/* Check if we might have been invalidated; let the guest retry if so */
|
|
spin_lock(&kvm->mmu_lock);
|
|
ret = -EAGAIN;
|
|
if (mmu_notifier_retry(kvm, mmu_seq))
|
|
goto out_unlock;
|
|
|
|
/* Now traverse again under the lock and change the tree */
|
|
ret = -ENOMEM;
|
|
if (pgd_none(*pgd)) {
|
|
if (!new_pud)
|
|
goto out_unlock;
|
|
pgd_populate(kvm->mm, pgd, new_pud);
|
|
new_pud = NULL;
|
|
}
|
|
pud = pud_offset(pgd, gpa);
|
|
if (pud_none(*pud)) {
|
|
if (!new_pmd)
|
|
goto out_unlock;
|
|
pud_populate(kvm->mm, pud, new_pmd);
|
|
new_pmd = NULL;
|
|
}
|
|
pmd = pmd_offset(pud, gpa);
|
|
if (pmd_large(*pmd)) {
|
|
/* Someone else has instantiated a large page here; retry */
|
|
ret = -EAGAIN;
|
|
goto out_unlock;
|
|
}
|
|
if (level == 1 && !pmd_none(*pmd)) {
|
|
/*
|
|
* There's a page table page here, but we wanted
|
|
* to install a large page. Tell the caller and let
|
|
* it try installing a normal page if it wants.
|
|
*/
|
|
ret = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
if (level == 0) {
|
|
if (pmd_none(*pmd)) {
|
|
if (!new_ptep)
|
|
goto out_unlock;
|
|
pmd_populate(kvm->mm, pmd, new_ptep);
|
|
new_ptep = NULL;
|
|
}
|
|
ptep = pte_offset_kernel(pmd, gpa);
|
|
if (pte_present(*ptep)) {
|
|
/* PTE was previously valid, so invalidate it */
|
|
old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT,
|
|
0, gpa, 0);
|
|
kvmppc_radix_tlbie_page(kvm, gpa, 0);
|
|
if (old & _PAGE_DIRTY)
|
|
mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
|
|
}
|
|
kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
|
|
} else {
|
|
kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
|
|
}
|
|
ret = 0;
|
|
|
|
out_unlock:
|
|
spin_unlock(&kvm->mmu_lock);
|
|
if (new_pud)
|
|
pud_free(kvm->mm, new_pud);
|
|
if (new_pmd)
|
|
pmd_free(kvm->mm, new_pmd);
|
|
if (new_ptep)
|
|
kvmppc_pte_free(new_ptep);
|
|
return ret;
|
|
}
|
|
|
|
int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
unsigned long ea, unsigned long dsisr)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
unsigned long mmu_seq, pte_size;
|
|
unsigned long gpa, gfn, hva, pfn;
|
|
struct kvm_memory_slot *memslot;
|
|
struct page *page = NULL, *pages[1];
|
|
long ret, npages, ok;
|
|
unsigned int writing;
|
|
struct vm_area_struct *vma;
|
|
unsigned long flags;
|
|
pte_t pte, *ptep;
|
|
unsigned long pgflags;
|
|
unsigned int shift, level;
|
|
|
|
/* Check for unusual errors */
|
|
if (dsisr & DSISR_UNSUPP_MMU) {
|
|
pr_err("KVM: Got unsupported MMU fault\n");
|
|
return -EFAULT;
|
|
}
|
|
if (dsisr & DSISR_BADACCESS) {
|
|
/* Reflect to the guest as DSI */
|
|
pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
|
|
kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
/* Translate the logical address and get the page */
|
|
gpa = vcpu->arch.fault_gpa & ~0xfffUL;
|
|
gpa &= ~0xF000000000000000ul;
|
|
gfn = gpa >> PAGE_SHIFT;
|
|
if (!(dsisr & DSISR_PRTABLE_FAULT))
|
|
gpa |= ea & 0xfff;
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
|
|
/* No memslot means it's an emulated MMIO region */
|
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
|
|
if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
|
|
DSISR_SET_RC)) {
|
|
/*
|
|
* Bad address in guest page table tree, or other
|
|
* unusual error - reflect it to the guest as DSI.
|
|
*/
|
|
kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
|
|
return RESUME_GUEST;
|
|
}
|
|
return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
|
|
dsisr & DSISR_ISSTORE);
|
|
}
|
|
|
|
/* used to check for invalidations in progress */
|
|
mmu_seq = kvm->mmu_notifier_seq;
|
|
smp_rmb();
|
|
|
|
writing = (dsisr & DSISR_ISSTORE) != 0;
|
|
hva = gfn_to_hva_memslot(memslot, gfn);
|
|
if (dsisr & DSISR_SET_RC) {
|
|
/*
|
|
* Need to set an R or C bit in the 2nd-level tables;
|
|
* if the relevant bits aren't already set in the linux
|
|
* page tables, fall through to do the gup_fast to
|
|
* set them in the linux page tables too.
|
|
*/
|
|
ok = 0;
|
|
pgflags = _PAGE_ACCESSED;
|
|
if (writing)
|
|
pgflags |= _PAGE_DIRTY;
|
|
local_irq_save(flags);
|
|
ptep = find_current_mm_pte(current->mm->pgd, hva, NULL, NULL);
|
|
if (ptep) {
|
|
pte = READ_ONCE(*ptep);
|
|
if (pte_present(pte) &&
|
|
(pte_val(pte) & pgflags) == pgflags)
|
|
ok = 1;
|
|
}
|
|
local_irq_restore(flags);
|
|
if (ok) {
|
|
spin_lock(&kvm->mmu_lock);
|
|
if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
|
|
spin_unlock(&kvm->mmu_lock);
|
|
return RESUME_GUEST;
|
|
}
|
|
/*
|
|
* We are walking the secondary page table here. We can do this
|
|
* without disabling irq.
|
|
*/
|
|
ptep = __find_linux_pte(kvm->arch.pgtable,
|
|
gpa, NULL, &shift);
|
|
if (ptep && pte_present(*ptep)) {
|
|
kvmppc_radix_update_pte(kvm, ptep, 0, pgflags,
|
|
gpa, shift);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
return RESUME_GUEST;
|
|
}
|
|
spin_unlock(&kvm->mmu_lock);
|
|
}
|
|
}
|
|
|
|
ret = -EFAULT;
|
|
pfn = 0;
|
|
pte_size = PAGE_SIZE;
|
|
pgflags = _PAGE_READ | _PAGE_EXEC;
|
|
level = 0;
|
|
npages = get_user_pages_fast(hva, 1, writing, pages);
|
|
if (npages < 1) {
|
|
/* Check if it's an I/O mapping */
|
|
down_read(¤t->mm->mmap_sem);
|
|
vma = find_vma(current->mm, hva);
|
|
if (vma && vma->vm_start <= hva && hva < vma->vm_end &&
|
|
(vma->vm_flags & VM_PFNMAP)) {
|
|
pfn = vma->vm_pgoff +
|
|
((hva - vma->vm_start) >> PAGE_SHIFT);
|
|
pgflags = pgprot_val(vma->vm_page_prot);
|
|
}
|
|
up_read(¤t->mm->mmap_sem);
|
|
if (!pfn)
|
|
return -EFAULT;
|
|
} else {
|
|
page = pages[0];
|
|
pfn = page_to_pfn(page);
|
|
if (PageHuge(page)) {
|
|
page = compound_head(page);
|
|
pte_size <<= compound_order(page);
|
|
/* See if we can insert a 2MB large-page PTE here */
|
|
if (pte_size >= PMD_SIZE &&
|
|
(gpa & PMD_MASK & PAGE_MASK) ==
|
|
(hva & PMD_MASK & PAGE_MASK)) {
|
|
level = 1;
|
|
pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1);
|
|
}
|
|
}
|
|
/* See if we can provide write access */
|
|
if (writing) {
|
|
/*
|
|
* We assume gup_fast has set dirty on the host PTE.
|
|
*/
|
|
pgflags |= _PAGE_WRITE;
|
|
} else {
|
|
local_irq_save(flags);
|
|
ptep = find_current_mm_pte(current->mm->pgd,
|
|
hva, NULL, NULL);
|
|
if (ptep && pte_write(*ptep) && pte_dirty(*ptep))
|
|
pgflags |= _PAGE_WRITE;
|
|
local_irq_restore(flags);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute the PTE value that we need to insert.
|
|
*/
|
|
pgflags |= _PAGE_PRESENT | _PAGE_PTE | _PAGE_ACCESSED;
|
|
if (pgflags & _PAGE_WRITE)
|
|
pgflags |= _PAGE_DIRTY;
|
|
pte = pfn_pte(pfn, __pgprot(pgflags));
|
|
|
|
/* Allocate space in the tree and write the PTE */
|
|
ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
|
|
if (ret == -EBUSY) {
|
|
/*
|
|
* There's already a PMD where wanted to install a large page;
|
|
* for now, fall back to installing a small page.
|
|
*/
|
|
level = 0;
|
|
pfn |= gfn & ((PMD_SIZE >> PAGE_SHIFT) - 1);
|
|
pte = pfn_pte(pfn, __pgprot(pgflags));
|
|
ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
|
|
}
|
|
if (ret == 0 || ret == -EAGAIN)
|
|
ret = RESUME_GUEST;
|
|
|
|
if (page) {
|
|
/*
|
|
* We drop pages[0] here, not page because page might
|
|
* have been set to the head page of a compound, but
|
|
* we have to drop the reference on the correct tail
|
|
* page to match the get inside gup()
|
|
*/
|
|
put_page(pages[0]);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Called with kvm->lock held */
|
|
int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
|
unsigned long gfn)
|
|
{
|
|
pte_t *ptep;
|
|
unsigned long gpa = gfn << PAGE_SHIFT;
|
|
unsigned int shift;
|
|
unsigned long old;
|
|
|
|
ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
|
|
if (ptep && pte_present(*ptep)) {
|
|
old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT, 0,
|
|
gpa, shift);
|
|
kvmppc_radix_tlbie_page(kvm, gpa, shift);
|
|
if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) {
|
|
unsigned long npages = 1;
|
|
if (shift)
|
|
npages = 1ul << (shift - PAGE_SHIFT);
|
|
kvmppc_update_dirty_map(memslot, gfn, npages);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Called with kvm->lock held */
|
|
int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
|
unsigned long gfn)
|
|
{
|
|
pte_t *ptep;
|
|
unsigned long gpa = gfn << PAGE_SHIFT;
|
|
unsigned int shift;
|
|
int ref = 0;
|
|
|
|
ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
|
|
if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
|
|
kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
|
|
gpa, shift);
|
|
/* XXX need to flush tlb here? */
|
|
ref = 1;
|
|
}
|
|
return ref;
|
|
}
|
|
|
|
/* Called with kvm->lock held */
|
|
int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
|
unsigned long gfn)
|
|
{
|
|
pte_t *ptep;
|
|
unsigned long gpa = gfn << PAGE_SHIFT;
|
|
unsigned int shift;
|
|
int ref = 0;
|
|
|
|
ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
|
|
if (ptep && pte_present(*ptep) && pte_young(*ptep))
|
|
ref = 1;
|
|
return ref;
|
|
}
|
|
|
|
/* Returns the number of PAGE_SIZE pages that are dirty */
|
|
static int kvm_radix_test_clear_dirty(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot, int pagenum)
|
|
{
|
|
unsigned long gfn = memslot->base_gfn + pagenum;
|
|
unsigned long gpa = gfn << PAGE_SHIFT;
|
|
pte_t *ptep;
|
|
unsigned int shift;
|
|
int ret = 0;
|
|
|
|
ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
|
|
if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
|
|
ret = 1;
|
|
if (shift)
|
|
ret = 1 << (shift - PAGE_SHIFT);
|
|
kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
|
|
gpa, shift);
|
|
kvmppc_radix_tlbie_page(kvm, gpa, shift);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot, unsigned long *map)
|
|
{
|
|
unsigned long i, j;
|
|
int npages;
|
|
|
|
for (i = 0; i < memslot->npages; i = j) {
|
|
npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
|
|
|
|
/*
|
|
* Note that if npages > 0 then i must be a multiple of npages,
|
|
* since huge pages are only used to back the guest at guest
|
|
* real addresses that are a multiple of their size.
|
|
* Since we have at most one PTE covering any given guest
|
|
* real address, if npages > 1 we can skip to i + npages.
|
|
*/
|
|
j = i + 1;
|
|
if (npages) {
|
|
set_dirty_bits(map, i, npages);
|
|
i = j + npages;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
|
|
int psize, int *indexp)
|
|
{
|
|
if (!mmu_psize_defs[psize].shift)
|
|
return;
|
|
info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
|
|
(mmu_psize_defs[psize].ap << 29);
|
|
++(*indexp);
|
|
}
|
|
|
|
int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
|
|
{
|
|
int i;
|
|
|
|
if (!radix_enabled())
|
|
return -EINVAL;
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
/* 4k page size */
|
|
info->geometries[0].page_shift = 12;
|
|
info->geometries[0].level_bits[0] = 9;
|
|
for (i = 1; i < 4; ++i)
|
|
info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
|
|
/* 64k page size */
|
|
info->geometries[1].page_shift = 16;
|
|
for (i = 0; i < 4; ++i)
|
|
info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
|
|
|
|
i = 0;
|
|
add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
|
|
add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
|
|
add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
|
|
add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_init_vm_radix(struct kvm *kvm)
|
|
{
|
|
kvm->arch.pgtable = pgd_alloc(kvm->mm);
|
|
if (!kvm->arch.pgtable)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_free_radix(struct kvm *kvm)
|
|
{
|
|
unsigned long ig, iu, im;
|
|
pte_t *pte;
|
|
pmd_t *pmd;
|
|
pud_t *pud;
|
|
pgd_t *pgd;
|
|
|
|
if (!kvm->arch.pgtable)
|
|
return;
|
|
pgd = kvm->arch.pgtable;
|
|
for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
|
|
if (!pgd_present(*pgd))
|
|
continue;
|
|
pud = pud_offset(pgd, 0);
|
|
for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++pud) {
|
|
if (!pud_present(*pud))
|
|
continue;
|
|
pmd = pmd_offset(pud, 0);
|
|
for (im = 0; im < PTRS_PER_PMD; ++im, ++pmd) {
|
|
if (pmd_huge(*pmd)) {
|
|
pmd_clear(pmd);
|
|
continue;
|
|
}
|
|
if (!pmd_present(*pmd))
|
|
continue;
|
|
pte = pte_offset_map(pmd, 0);
|
|
memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
|
|
kvmppc_pte_free(pte);
|
|
pmd_clear(pmd);
|
|
}
|
|
pmd_free(kvm->mm, pmd_offset(pud, 0));
|
|
pud_clear(pud);
|
|
}
|
|
pud_free(kvm->mm, pud_offset(pgd, 0));
|
|
pgd_clear(pgd);
|
|
}
|
|
pgd_free(kvm->mm, kvm->arch.pgtable);
|
|
kvm->arch.pgtable = NULL;
|
|
}
|
|
|
|
static void pte_ctor(void *addr)
|
|
{
|
|
memset(addr, 0, PTE_TABLE_SIZE);
|
|
}
|
|
|
|
int kvmppc_radix_init(void)
|
|
{
|
|
unsigned long size = sizeof(void *) << PTE_INDEX_SIZE;
|
|
|
|
kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
|
|
if (!kvm_pte_cache)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_radix_exit(void)
|
|
{
|
|
kmem_cache_destroy(kvm_pte_cache);
|
|
}
|