forked from Minki/linux
4bdc0d676a
ioremap has provided non-cached semantics by default since the Linux 2.6 days, so remove the additional ioremap_nocache interface. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Arnd Bergmann <arnd@arndb.de>
1273 lines
33 KiB
C
1273 lines
33 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2004-2007 Cavium Networks
|
|
* Copyright (C) 2008, 2009 Wind River Systems
|
|
* written by Ralf Baechle <ralf@linux-mips.org>
|
|
*/
|
|
#include <linux/compiler.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/console.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/export.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/serial.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/types.h>
|
|
#include <linux/string.h> /* for memset */
|
|
#include <linux/tty.h>
|
|
#include <linux/time.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/serial_core.h>
|
|
#include <linux/serial_8250.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/kexec.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/reboot.h>
|
|
#include <asm/smp-ops.h>
|
|
#include <asm/irq_cpu.h>
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/bootinfo.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/fw/fw.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/time.h>
|
|
|
|
#include <asm/octeon/octeon.h>
|
|
#include <asm/octeon/pci-octeon.h>
|
|
#include <asm/octeon/cvmx-rst-defs.h>
|
|
|
|
/*
|
|
* TRUE for devices having registers with little-endian byte
|
|
* order, FALSE for registers with native-endian byte order.
|
|
* PCI mandates little-endian, USB and SATA are configuraable,
|
|
* but we chose little-endian for these.
|
|
*/
|
|
const bool octeon_should_swizzle_table[256] = {
|
|
[0x00] = true, /* bootbus/CF */
|
|
[0x1b] = true, /* PCI mmio window */
|
|
[0x1c] = true, /* PCI mmio window */
|
|
[0x1d] = true, /* PCI mmio window */
|
|
[0x1e] = true, /* PCI mmio window */
|
|
[0x68] = true, /* OCTEON III USB */
|
|
[0x69] = true, /* OCTEON III USB */
|
|
[0x6c] = true, /* OCTEON III SATA */
|
|
[0x6f] = true, /* OCTEON II USB */
|
|
};
|
|
EXPORT_SYMBOL(octeon_should_swizzle_table);
|
|
|
|
#ifdef CONFIG_PCI
|
|
extern void pci_console_init(const char *arg);
|
|
#endif
|
|
|
|
static unsigned long long max_memory = ULLONG_MAX;
|
|
static unsigned long long reserve_low_mem;
|
|
|
|
DEFINE_SEMAPHORE(octeon_bootbus_sem);
|
|
EXPORT_SYMBOL(octeon_bootbus_sem);
|
|
|
|
static struct octeon_boot_descriptor *octeon_boot_desc_ptr;
|
|
|
|
struct cvmx_bootinfo *octeon_bootinfo;
|
|
EXPORT_SYMBOL(octeon_bootinfo);
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Wait for relocation code is prepared and send
|
|
* secondary CPUs to spin until kernel is relocated.
|
|
*/
|
|
static void octeon_kexec_smp_down(void *ignored)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
local_irq_disable();
|
|
set_cpu_online(cpu, false);
|
|
while (!atomic_read(&kexec_ready_to_reboot))
|
|
cpu_relax();
|
|
|
|
asm volatile (
|
|
" sync \n"
|
|
" synci ($0) \n");
|
|
|
|
kexec_reboot();
|
|
}
|
|
#endif
|
|
|
|
#define OCTEON_DDR0_BASE (0x0ULL)
|
|
#define OCTEON_DDR0_SIZE (0x010000000ULL)
|
|
#define OCTEON_DDR1_BASE (0x410000000ULL)
|
|
#define OCTEON_DDR1_SIZE (0x010000000ULL)
|
|
#define OCTEON_DDR2_BASE (0x020000000ULL)
|
|
#define OCTEON_DDR2_SIZE (0x3e0000000ULL)
|
|
#define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
|
|
|
|
static struct kimage *kimage_ptr;
|
|
|
|
static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
|
|
{
|
|
int64_t addr;
|
|
struct cvmx_bootmem_desc *bootmem_desc;
|
|
|
|
bootmem_desc = cvmx_bootmem_get_desc();
|
|
|
|
if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
|
|
mem_size = OCTEON_MAX_PHY_MEM_SIZE;
|
|
pr_err("Error: requested memory too large,"
|
|
"truncating to maximum size\n");
|
|
}
|
|
|
|
bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
|
|
bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
|
|
|
|
addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes);
|
|
bootmem_desc->head_addr = 0;
|
|
|
|
if (mem_size <= OCTEON_DDR0_SIZE) {
|
|
__cvmx_bootmem_phy_free(addr,
|
|
mem_size - reserve_low_mem -
|
|
low_reserved_bytes, 0);
|
|
return;
|
|
}
|
|
|
|
__cvmx_bootmem_phy_free(addr,
|
|
OCTEON_DDR0_SIZE - reserve_low_mem -
|
|
low_reserved_bytes, 0);
|
|
|
|
mem_size -= OCTEON_DDR0_SIZE;
|
|
|
|
if (mem_size > OCTEON_DDR1_SIZE) {
|
|
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
|
|
__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
|
|
mem_size - OCTEON_DDR1_SIZE, 0);
|
|
} else
|
|
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
|
|
}
|
|
|
|
static int octeon_kexec_prepare(struct kimage *image)
|
|
{
|
|
int i;
|
|
char *bootloader = "kexec";
|
|
|
|
octeon_boot_desc_ptr->argc = 0;
|
|
for (i = 0; i < image->nr_segments; i++) {
|
|
if (!strncmp(bootloader, (char *)image->segment[i].buf,
|
|
strlen(bootloader))) {
|
|
/*
|
|
* convert command line string to array
|
|
* of parameters (as bootloader does).
|
|
*/
|
|
int argc = 0, offt;
|
|
char *str = (char *)image->segment[i].buf;
|
|
char *ptr = strchr(str, ' ');
|
|
while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
|
|
*ptr = '\0';
|
|
if (ptr[1] != ' ') {
|
|
offt = (int)(ptr - str + 1);
|
|
octeon_boot_desc_ptr->argv[argc] =
|
|
image->segment[i].mem + offt;
|
|
argc++;
|
|
}
|
|
ptr = strchr(ptr + 1, ' ');
|
|
}
|
|
octeon_boot_desc_ptr->argc = argc;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Information about segments will be needed during pre-boot memory
|
|
* initialization.
|
|
*/
|
|
kimage_ptr = image;
|
|
return 0;
|
|
}
|
|
|
|
static void octeon_generic_shutdown(void)
|
|
{
|
|
int i;
|
|
#ifdef CONFIG_SMP
|
|
int cpu;
|
|
#endif
|
|
struct cvmx_bootmem_desc *bootmem_desc;
|
|
void *named_block_array_ptr;
|
|
|
|
bootmem_desc = cvmx_bootmem_get_desc();
|
|
named_block_array_ptr =
|
|
cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* disable watchdogs */
|
|
for_each_online_cpu(cpu)
|
|
cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
|
|
#else
|
|
cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
|
|
#endif
|
|
if (kimage_ptr != kexec_crash_image) {
|
|
memset(named_block_array_ptr,
|
|
0x0,
|
|
CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
|
|
sizeof(struct cvmx_bootmem_named_block_desc));
|
|
/*
|
|
* Mark all memory (except low 0x100000 bytes) as free.
|
|
* It is the same thing that bootloader does.
|
|
*/
|
|
kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
|
|
0x100000);
|
|
/*
|
|
* Allocate all segments to avoid their corruption during boot.
|
|
*/
|
|
for (i = 0; i < kimage_ptr->nr_segments; i++)
|
|
cvmx_bootmem_alloc_address(
|
|
kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
|
|
kimage_ptr->segment[i].mem - PAGE_SIZE,
|
|
PAGE_SIZE);
|
|
} else {
|
|
/*
|
|
* Do not mark all memory as free. Free only named sections
|
|
* leaving the rest of memory unchanged.
|
|
*/
|
|
struct cvmx_bootmem_named_block_desc *ptr =
|
|
(struct cvmx_bootmem_named_block_desc *)
|
|
named_block_array_ptr;
|
|
|
|
for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
|
|
if (ptr[i].size)
|
|
cvmx_bootmem_free_named(ptr[i].name);
|
|
}
|
|
kexec_args[2] = 1UL; /* running on octeon_main_processor */
|
|
kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
|
|
#ifdef CONFIG_SMP
|
|
secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
|
|
secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
|
|
#endif
|
|
}
|
|
|
|
static void octeon_shutdown(void)
|
|
{
|
|
octeon_generic_shutdown();
|
|
#ifdef CONFIG_SMP
|
|
smp_call_function(octeon_kexec_smp_down, NULL, 0);
|
|
smp_wmb();
|
|
while (num_online_cpus() > 1) {
|
|
cpu_relax();
|
|
mdelay(1);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void octeon_crash_shutdown(struct pt_regs *regs)
|
|
{
|
|
octeon_generic_shutdown();
|
|
default_machine_crash_shutdown(regs);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
void octeon_crash_smp_send_stop(void)
|
|
{
|
|
int cpu;
|
|
|
|
/* disable watchdogs */
|
|
for_each_online_cpu(cpu)
|
|
cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
|
|
}
|
|
#endif
|
|
|
|
#endif /* CONFIG_KEXEC */
|
|
|
|
#ifdef CONFIG_CAVIUM_RESERVE32
|
|
uint64_t octeon_reserve32_memory;
|
|
EXPORT_SYMBOL(octeon_reserve32_memory);
|
|
#endif
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
/* crashkernel cmdline parameter is parsed _after_ memory setup
|
|
* we also parse it here (workaround for EHB5200) */
|
|
static uint64_t crashk_size, crashk_base;
|
|
#endif
|
|
|
|
static int octeon_uart;
|
|
|
|
extern asmlinkage void handle_int(void);
|
|
|
|
/**
|
|
* Return non zero if we are currently running in the Octeon simulator
|
|
*
|
|
* Returns
|
|
*/
|
|
int octeon_is_simulation(void)
|
|
{
|
|
return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
|
|
}
|
|
EXPORT_SYMBOL(octeon_is_simulation);
|
|
|
|
/**
|
|
* Return true if Octeon is in PCI Host mode. This means
|
|
* Linux can control the PCI bus.
|
|
*
|
|
* Returns Non zero if Octeon in host mode.
|
|
*/
|
|
int octeon_is_pci_host(void)
|
|
{
|
|
#ifdef CONFIG_PCI
|
|
return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Get the clock rate of Octeon
|
|
*
|
|
* Returns Clock rate in HZ
|
|
*/
|
|
uint64_t octeon_get_clock_rate(void)
|
|
{
|
|
struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
|
|
|
|
return sysinfo->cpu_clock_hz;
|
|
}
|
|
EXPORT_SYMBOL(octeon_get_clock_rate);
|
|
|
|
static u64 octeon_io_clock_rate;
|
|
|
|
u64 octeon_get_io_clock_rate(void)
|
|
{
|
|
return octeon_io_clock_rate;
|
|
}
|
|
EXPORT_SYMBOL(octeon_get_io_clock_rate);
|
|
|
|
|
|
/**
|
|
* Write to the LCD display connected to the bootbus. This display
|
|
* exists on most Cavium evaluation boards. If it doesn't exist, then
|
|
* this function doesn't do anything.
|
|
*
|
|
* @s: String to write
|
|
*/
|
|
static void octeon_write_lcd(const char *s)
|
|
{
|
|
if (octeon_bootinfo->led_display_base_addr) {
|
|
void __iomem *lcd_address =
|
|
ioremap(octeon_bootinfo->led_display_base_addr,
|
|
8);
|
|
int i;
|
|
for (i = 0; i < 8; i++, s++) {
|
|
if (*s)
|
|
iowrite8(*s, lcd_address + i);
|
|
else
|
|
iowrite8(' ', lcd_address + i);
|
|
}
|
|
iounmap(lcd_address);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return the console uart passed by the bootloader
|
|
*
|
|
* Returns uart (0 or 1)
|
|
*/
|
|
static int octeon_get_boot_uart(void)
|
|
{
|
|
return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
|
|
1 : 0;
|
|
}
|
|
|
|
/**
|
|
* Get the coremask Linux was booted on.
|
|
*
|
|
* Returns Core mask
|
|
*/
|
|
int octeon_get_boot_coremask(void)
|
|
{
|
|
return octeon_boot_desc_ptr->core_mask;
|
|
}
|
|
|
|
/**
|
|
* Check the hardware BIST results for a CPU
|
|
*/
|
|
void octeon_check_cpu_bist(void)
|
|
{
|
|
const int coreid = cvmx_get_core_num();
|
|
unsigned long long mask;
|
|
unsigned long long bist_val;
|
|
|
|
/* Check BIST results for COP0 registers */
|
|
mask = 0x1f00000000ull;
|
|
bist_val = read_octeon_c0_icacheerr();
|
|
if (bist_val & mask)
|
|
pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
|
|
coreid, bist_val);
|
|
|
|
bist_val = read_octeon_c0_dcacheerr();
|
|
if (bist_val & 1)
|
|
pr_err("Core%d L1 Dcache parity error: "
|
|
"CacheErr(dcache) = 0x%llx\n",
|
|
coreid, bist_val);
|
|
|
|
mask = 0xfc00000000000000ull;
|
|
bist_val = read_c0_cvmmemctl();
|
|
if (bist_val & mask)
|
|
pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
|
|
coreid, bist_val);
|
|
|
|
write_octeon_c0_dcacheerr(0);
|
|
}
|
|
|
|
/**
|
|
* Reboot Octeon
|
|
*
|
|
* @command: Command to pass to the bootloader. Currently ignored.
|
|
*/
|
|
static void octeon_restart(char *command)
|
|
{
|
|
/* Disable all watchdogs before soft reset. They don't get cleared */
|
|
#ifdef CONFIG_SMP
|
|
int cpu;
|
|
for_each_online_cpu(cpu)
|
|
cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
|
|
#else
|
|
cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
|
|
#endif
|
|
|
|
mb();
|
|
while (1)
|
|
if (OCTEON_IS_OCTEON3())
|
|
cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
|
|
else
|
|
cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
|
|
}
|
|
|
|
|
|
/**
|
|
* Permanently stop a core.
|
|
*
|
|
* @arg: Ignored.
|
|
*/
|
|
static void octeon_kill_core(void *arg)
|
|
{
|
|
if (octeon_is_simulation())
|
|
/* A break instruction causes the simulator stop a core */
|
|
asm volatile ("break" ::: "memory");
|
|
|
|
local_irq_disable();
|
|
/* Disable watchdog on this core. */
|
|
cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
|
|
/* Spin in a low power mode. */
|
|
while (true)
|
|
asm volatile ("wait" ::: "memory");
|
|
}
|
|
|
|
|
|
/**
|
|
* Halt the system
|
|
*/
|
|
static void octeon_halt(void)
|
|
{
|
|
smp_call_function(octeon_kill_core, NULL, 0);
|
|
|
|
switch (octeon_bootinfo->board_type) {
|
|
case CVMX_BOARD_TYPE_NAO38:
|
|
/* Driving a 1 to GPIO 12 shuts off this board */
|
|
cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
|
|
cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
|
|
break;
|
|
default:
|
|
octeon_write_lcd("PowerOff");
|
|
break;
|
|
}
|
|
|
|
octeon_kill_core(NULL);
|
|
}
|
|
|
|
static char __read_mostly octeon_system_type[80];
|
|
|
|
static void __init init_octeon_system_type(void)
|
|
{
|
|
char const *board_type;
|
|
|
|
board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
|
|
if (board_type == NULL) {
|
|
struct device_node *root;
|
|
int ret;
|
|
|
|
root = of_find_node_by_path("/");
|
|
ret = of_property_read_string(root, "model", &board_type);
|
|
of_node_put(root);
|
|
if (ret)
|
|
board_type = "Unsupported Board";
|
|
}
|
|
|
|
snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
|
|
board_type, octeon_model_get_string(read_c0_prid()));
|
|
}
|
|
|
|
/**
|
|
* Return a string representing the system type
|
|
*
|
|
* Returns
|
|
*/
|
|
const char *octeon_board_type_string(void)
|
|
{
|
|
return octeon_system_type;
|
|
}
|
|
|
|
const char *get_system_type(void)
|
|
__attribute__ ((alias("octeon_board_type_string")));
|
|
|
|
void octeon_user_io_init(void)
|
|
{
|
|
union octeon_cvmemctl cvmmemctl;
|
|
|
|
/* Get the current settings for CP0_CVMMEMCTL_REG */
|
|
cvmmemctl.u64 = read_c0_cvmmemctl();
|
|
/* R/W If set, marked write-buffer entries time out the same
|
|
* as as other entries; if clear, marked write-buffer entries
|
|
* use the maximum timeout. */
|
|
cvmmemctl.s.dismarkwblongto = 1;
|
|
/* R/W If set, a merged store does not clear the write-buffer
|
|
* entry timeout state. */
|
|
cvmmemctl.s.dismrgclrwbto = 0;
|
|
/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
|
|
* word location for an IOBDMA. The other 8 bits come from the
|
|
* SCRADDR field of the IOBDMA. */
|
|
cvmmemctl.s.iobdmascrmsb = 0;
|
|
/* R/W If set, SYNCWS and SYNCS only order marked stores; if
|
|
* clear, SYNCWS and SYNCS only order unmarked
|
|
* stores. SYNCWSMARKED has no effect when DISSYNCWS is
|
|
* set. */
|
|
cvmmemctl.s.syncwsmarked = 0;
|
|
/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
|
|
cvmmemctl.s.dissyncws = 0;
|
|
/* R/W If set, no stall happens on write buffer full. */
|
|
if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
|
|
cvmmemctl.s.diswbfst = 1;
|
|
else
|
|
cvmmemctl.s.diswbfst = 0;
|
|
/* R/W If set (and SX set), supervisor-level loads/stores can
|
|
* use XKPHYS addresses with <48>==0 */
|
|
cvmmemctl.s.xkmemenas = 0;
|
|
|
|
/* R/W If set (and UX set), user-level loads/stores can use
|
|
* XKPHYS addresses with VA<48>==0 */
|
|
cvmmemctl.s.xkmemenau = 0;
|
|
|
|
/* R/W If set (and SX set), supervisor-level loads/stores can
|
|
* use XKPHYS addresses with VA<48>==1 */
|
|
cvmmemctl.s.xkioenas = 0;
|
|
|
|
/* R/W If set (and UX set), user-level loads/stores can use
|
|
* XKPHYS addresses with VA<48>==1 */
|
|
cvmmemctl.s.xkioenau = 0;
|
|
|
|
/* R/W If set, all stores act as SYNCW (NOMERGE must be set
|
|
* when this is set) RW, reset to 0. */
|
|
cvmmemctl.s.allsyncw = 0;
|
|
|
|
/* R/W If set, no stores merge, and all stores reach the
|
|
* coherent bus in order. */
|
|
cvmmemctl.s.nomerge = 0;
|
|
/* R/W Selects the bit in the counter used for DID time-outs 0
|
|
* = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
|
|
* between 1x and 2x this interval. For example, with
|
|
* DIDTTO=3, expiration interval is between 16K and 32K. */
|
|
cvmmemctl.s.didtto = 0;
|
|
/* R/W If set, the (mem) CSR clock never turns off. */
|
|
cvmmemctl.s.csrckalwys = 0;
|
|
/* R/W If set, mclk never turns off. */
|
|
cvmmemctl.s.mclkalwys = 0;
|
|
/* R/W Selects the bit in the counter used for write buffer
|
|
* flush time-outs (WBFLT+11) is the bit position in an
|
|
* internal counter used to determine expiration. The write
|
|
* buffer expires between 1x and 2x this interval. For
|
|
* example, with WBFLT = 0, a write buffer expires between 2K
|
|
* and 4K cycles after the write buffer entry is allocated. */
|
|
cvmmemctl.s.wbfltime = 0;
|
|
/* R/W If set, do not put Istream in the L2 cache. */
|
|
cvmmemctl.s.istrnol2 = 0;
|
|
|
|
/*
|
|
* R/W The write buffer threshold. As per erratum Core-14752
|
|
* for CN63XX, a sc/scd might fail if the write buffer is
|
|
* full. Lowering WBTHRESH greatly lowers the chances of the
|
|
* write buffer ever being full and triggering the erratum.
|
|
*/
|
|
if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
|
|
cvmmemctl.s.wbthresh = 4;
|
|
else
|
|
cvmmemctl.s.wbthresh = 10;
|
|
|
|
/* R/W If set, CVMSEG is available for loads/stores in
|
|
* kernel/debug mode. */
|
|
#if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
|
|
cvmmemctl.s.cvmsegenak = 1;
|
|
#else
|
|
cvmmemctl.s.cvmsegenak = 0;
|
|
#endif
|
|
/* R/W If set, CVMSEG is available for loads/stores in
|
|
* supervisor mode. */
|
|
cvmmemctl.s.cvmsegenas = 0;
|
|
/* R/W If set, CVMSEG is available for loads/stores in user
|
|
* mode. */
|
|
cvmmemctl.s.cvmsegenau = 0;
|
|
|
|
write_c0_cvmmemctl(cvmmemctl.u64);
|
|
|
|
/* Setup of CVMSEG is done in kernel-entry-init.h */
|
|
if (smp_processor_id() == 0)
|
|
pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
|
|
CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
|
|
CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
|
|
|
|
if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
|
|
union cvmx_iob_fau_timeout fau_timeout;
|
|
|
|
/* Set a default for the hardware timeouts */
|
|
fau_timeout.u64 = 0;
|
|
fau_timeout.s.tout_val = 0xfff;
|
|
/* Disable tagwait FAU timeout */
|
|
fau_timeout.s.tout_enb = 0;
|
|
cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
|
|
}
|
|
|
|
if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
|
|
!OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
|
|
OCTEON_IS_MODEL(OCTEON_CN70XX)) {
|
|
union cvmx_pow_nw_tim nm_tim;
|
|
|
|
nm_tim.u64 = 0;
|
|
/* 4096 cycles */
|
|
nm_tim.s.nw_tim = 3;
|
|
cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
|
|
}
|
|
|
|
write_octeon_c0_icacheerr(0);
|
|
write_c0_derraddr1(0);
|
|
}
|
|
|
|
/**
|
|
* Early entry point for arch setup
|
|
*/
|
|
void __init prom_init(void)
|
|
{
|
|
struct cvmx_sysinfo *sysinfo;
|
|
const char *arg;
|
|
char *p;
|
|
int i;
|
|
u64 t;
|
|
int argc;
|
|
#ifdef CONFIG_CAVIUM_RESERVE32
|
|
int64_t addr = -1;
|
|
#endif
|
|
/*
|
|
* The bootloader passes a pointer to the boot descriptor in
|
|
* $a3, this is available as fw_arg3.
|
|
*/
|
|
octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
|
|
octeon_bootinfo =
|
|
cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
|
|
cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
|
|
|
|
sysinfo = cvmx_sysinfo_get();
|
|
memset(sysinfo, 0, sizeof(*sysinfo));
|
|
sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
|
|
sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
|
|
|
|
if ((octeon_bootinfo->major_version > 1) ||
|
|
(octeon_bootinfo->major_version == 1 &&
|
|
octeon_bootinfo->minor_version >= 4))
|
|
cvmx_coremask_copy(&sysinfo->core_mask,
|
|
&octeon_bootinfo->ext_core_mask);
|
|
else
|
|
cvmx_coremask_set64(&sysinfo->core_mask,
|
|
octeon_bootinfo->core_mask);
|
|
|
|
/* Some broken u-boot pass garbage in upper bits, clear them out */
|
|
if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
|
|
for (i = 512; i < 1024; i++)
|
|
cvmx_coremask_clear_core(&sysinfo->core_mask, i);
|
|
|
|
sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
|
|
sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
|
|
sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
|
|
sysinfo->board_type = octeon_bootinfo->board_type;
|
|
sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
|
|
sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
|
|
memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
|
|
sizeof(sysinfo->mac_addr_base));
|
|
sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
|
|
memcpy(sysinfo->board_serial_number,
|
|
octeon_bootinfo->board_serial_number,
|
|
sizeof(sysinfo->board_serial_number));
|
|
sysinfo->compact_flash_common_base_addr =
|
|
octeon_bootinfo->compact_flash_common_base_addr;
|
|
sysinfo->compact_flash_attribute_base_addr =
|
|
octeon_bootinfo->compact_flash_attribute_base_addr;
|
|
sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
|
|
sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
|
|
sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
|
|
|
|
if (OCTEON_IS_OCTEON2()) {
|
|
/* I/O clock runs at a different rate than the CPU. */
|
|
union cvmx_mio_rst_boot rst_boot;
|
|
rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
|
|
octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
|
|
} else if (OCTEON_IS_OCTEON3()) {
|
|
/* I/O clock runs at a different rate than the CPU. */
|
|
union cvmx_rst_boot rst_boot;
|
|
rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
|
|
octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
|
|
} else {
|
|
octeon_io_clock_rate = sysinfo->cpu_clock_hz;
|
|
}
|
|
|
|
t = read_c0_cvmctl();
|
|
if ((t & (1ull << 27)) == 0) {
|
|
/*
|
|
* Setup the multiplier save/restore code if
|
|
* CvmCtl[NOMUL] clear.
|
|
*/
|
|
void *save;
|
|
void *save_end;
|
|
void *restore;
|
|
void *restore_end;
|
|
int save_len;
|
|
int restore_len;
|
|
int save_max = (char *)octeon_mult_save_end -
|
|
(char *)octeon_mult_save;
|
|
int restore_max = (char *)octeon_mult_restore_end -
|
|
(char *)octeon_mult_restore;
|
|
if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
|
|
save = octeon_mult_save3;
|
|
save_end = octeon_mult_save3_end;
|
|
restore = octeon_mult_restore3;
|
|
restore_end = octeon_mult_restore3_end;
|
|
} else {
|
|
save = octeon_mult_save2;
|
|
save_end = octeon_mult_save2_end;
|
|
restore = octeon_mult_restore2;
|
|
restore_end = octeon_mult_restore2_end;
|
|
}
|
|
save_len = (char *)save_end - (char *)save;
|
|
restore_len = (char *)restore_end - (char *)restore;
|
|
if (!WARN_ON(save_len > save_max ||
|
|
restore_len > restore_max)) {
|
|
memcpy(octeon_mult_save, save, save_len);
|
|
memcpy(octeon_mult_restore, restore, restore_len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Only enable the LED controller if we're running on a CN38XX, CN58XX,
|
|
* or CN56XX. The CN30XX and CN31XX don't have an LED controller.
|
|
*/
|
|
if (!octeon_is_simulation() &&
|
|
octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
|
|
cvmx_write_csr(CVMX_LED_EN, 0);
|
|
cvmx_write_csr(CVMX_LED_PRT, 0);
|
|
cvmx_write_csr(CVMX_LED_DBG, 0);
|
|
cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
|
|
cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
|
|
cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
|
|
cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
|
|
cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
|
|
cvmx_write_csr(CVMX_LED_EN, 1);
|
|
}
|
|
#ifdef CONFIG_CAVIUM_RESERVE32
|
|
/*
|
|
* We need to temporarily allocate all memory in the reserve32
|
|
* region. This makes sure the kernel doesn't allocate this
|
|
* memory when it is getting memory from the
|
|
* bootloader. Later, after the memory allocations are
|
|
* complete, the reserve32 will be freed.
|
|
*
|
|
* Allocate memory for RESERVED32 aligned on 2MB boundary. This
|
|
* is in case we later use hugetlb entries with it.
|
|
*/
|
|
addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
|
|
0, 0, 2 << 20,
|
|
"CAVIUM_RESERVE32", 0);
|
|
if (addr < 0)
|
|
pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
|
|
else
|
|
octeon_reserve32_memory = addr;
|
|
#endif
|
|
|
|
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
|
|
if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
|
|
pr_info("Skipping L2 locking due to reduced L2 cache size\n");
|
|
} else {
|
|
uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
|
|
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
|
|
/* TLB refill */
|
|
cvmx_l2c_lock_mem_region(ebase, 0x100);
|
|
#endif
|
|
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
|
|
/* General exception */
|
|
cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
|
|
#endif
|
|
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
|
|
/* Interrupt handler */
|
|
cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
|
|
#endif
|
|
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
|
|
cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
|
|
cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
|
|
#endif
|
|
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
|
|
cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
octeon_check_cpu_bist();
|
|
|
|
octeon_uart = octeon_get_boot_uart();
|
|
|
|
#ifdef CONFIG_SMP
|
|
octeon_write_lcd("LinuxSMP");
|
|
#else
|
|
octeon_write_lcd("Linux");
|
|
#endif
|
|
|
|
octeon_setup_delays();
|
|
|
|
/*
|
|
* BIST should always be enabled when doing a soft reset. L2
|
|
* Cache locking for instance is not cleared unless BIST is
|
|
* enabled. Unfortunately due to a chip errata G-200 for
|
|
* Cn38XX and CN31XX, BIST must be disabled on these parts.
|
|
*/
|
|
if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
|
|
OCTEON_IS_MODEL(OCTEON_CN31XX))
|
|
cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
|
|
else
|
|
cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
|
|
|
|
/* Default to 64MB in the simulator to speed things up */
|
|
if (octeon_is_simulation())
|
|
max_memory = 64ull << 20;
|
|
|
|
arg = strstr(arcs_cmdline, "mem=");
|
|
if (arg) {
|
|
max_memory = memparse(arg + 4, &p);
|
|
if (max_memory == 0)
|
|
max_memory = 32ull << 30;
|
|
if (*p == '@')
|
|
reserve_low_mem = memparse(p + 1, &p);
|
|
}
|
|
|
|
arcs_cmdline[0] = 0;
|
|
argc = octeon_boot_desc_ptr->argc;
|
|
for (i = 0; i < argc; i++) {
|
|
const char *arg =
|
|
cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
|
|
if ((strncmp(arg, "MEM=", 4) == 0) ||
|
|
(strncmp(arg, "mem=", 4) == 0)) {
|
|
max_memory = memparse(arg + 4, &p);
|
|
if (max_memory == 0)
|
|
max_memory = 32ull << 30;
|
|
if (*p == '@')
|
|
reserve_low_mem = memparse(p + 1, &p);
|
|
#ifdef CONFIG_KEXEC
|
|
} else if (strncmp(arg, "crashkernel=", 12) == 0) {
|
|
crashk_size = memparse(arg+12, &p);
|
|
if (*p == '@')
|
|
crashk_base = memparse(p+1, &p);
|
|
strcat(arcs_cmdline, " ");
|
|
strcat(arcs_cmdline, arg);
|
|
/*
|
|
* To do: switch parsing to new style, something like:
|
|
* parse_crashkernel(arg, sysinfo->system_dram_size,
|
|
* &crashk_size, &crashk_base);
|
|
*/
|
|
#endif
|
|
} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
|
|
sizeof(arcs_cmdline) - 1) {
|
|
strcat(arcs_cmdline, " ");
|
|
strcat(arcs_cmdline, arg);
|
|
}
|
|
}
|
|
|
|
if (strstr(arcs_cmdline, "console=") == NULL) {
|
|
if (octeon_uart == 1)
|
|
strcat(arcs_cmdline, " console=ttyS1,115200");
|
|
else
|
|
strcat(arcs_cmdline, " console=ttyS0,115200");
|
|
}
|
|
|
|
mips_hpt_frequency = octeon_get_clock_rate();
|
|
|
|
octeon_init_cvmcount();
|
|
|
|
_machine_restart = octeon_restart;
|
|
_machine_halt = octeon_halt;
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
_machine_kexec_shutdown = octeon_shutdown;
|
|
_machine_crash_shutdown = octeon_crash_shutdown;
|
|
_machine_kexec_prepare = octeon_kexec_prepare;
|
|
#ifdef CONFIG_SMP
|
|
_crash_smp_send_stop = octeon_crash_smp_send_stop;
|
|
#endif
|
|
#endif
|
|
|
|
octeon_user_io_init();
|
|
octeon_setup_smp();
|
|
}
|
|
|
|
/* Exclude a single page from the regions obtained in plat_mem_setup. */
|
|
#ifndef CONFIG_CRASH_DUMP
|
|
static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
|
|
{
|
|
if (addr > *mem && addr < *mem + *size) {
|
|
u64 inc = addr - *mem;
|
|
add_memory_region(*mem, inc, BOOT_MEM_RAM);
|
|
*mem += inc;
|
|
*size -= inc;
|
|
}
|
|
|
|
if (addr == *mem && *size > PAGE_SIZE) {
|
|
*mem += PAGE_SIZE;
|
|
*size -= PAGE_SIZE;
|
|
}
|
|
}
|
|
#endif /* CONFIG_CRASH_DUMP */
|
|
|
|
void __init fw_init_cmdline(void)
|
|
{
|
|
int i;
|
|
|
|
octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
|
|
for (i = 0; i < octeon_boot_desc_ptr->argc; i++) {
|
|
const char *arg =
|
|
cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
|
|
if (strlen(arcs_cmdline) + strlen(arg) + 1 <
|
|
sizeof(arcs_cmdline) - 1) {
|
|
strcat(arcs_cmdline, " ");
|
|
strcat(arcs_cmdline, arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
void __init *plat_get_fdt(void)
|
|
{
|
|
octeon_bootinfo =
|
|
cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
|
|
return phys_to_virt(octeon_bootinfo->fdt_addr);
|
|
}
|
|
|
|
void __init plat_mem_setup(void)
|
|
{
|
|
uint64_t mem_alloc_size;
|
|
uint64_t total;
|
|
uint64_t crashk_end;
|
|
#ifndef CONFIG_CRASH_DUMP
|
|
int64_t memory;
|
|
uint64_t kernel_start;
|
|
uint64_t kernel_size;
|
|
#endif
|
|
|
|
total = 0;
|
|
crashk_end = 0;
|
|
|
|
/*
|
|
* The Mips memory init uses the first memory location for
|
|
* some memory vectors. When SPARSEMEM is in use, it doesn't
|
|
* verify that the size is big enough for the final
|
|
* vectors. Making the smallest chuck 4MB seems to be enough
|
|
* to consistently work.
|
|
*/
|
|
mem_alloc_size = 4 << 20;
|
|
if (mem_alloc_size > max_memory)
|
|
mem_alloc_size = max_memory;
|
|
|
|
/* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
add_memory_region(reserve_low_mem, max_memory, BOOT_MEM_RAM);
|
|
total += max_memory;
|
|
#else
|
|
#ifdef CONFIG_KEXEC
|
|
if (crashk_size > 0) {
|
|
add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
|
|
crashk_end = crashk_base + crashk_size;
|
|
}
|
|
#endif
|
|
/*
|
|
* When allocating memory, we want incrementing addresses from
|
|
* bootmem_alloc so the code in add_memory_region can merge
|
|
* regions next to each other.
|
|
*/
|
|
cvmx_bootmem_lock();
|
|
while (total < max_memory) {
|
|
memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
|
|
__pa_symbol(&_end), -1,
|
|
0x100000,
|
|
CVMX_BOOTMEM_FLAG_NO_LOCKING);
|
|
if (memory >= 0) {
|
|
u64 size = mem_alloc_size;
|
|
#ifdef CONFIG_KEXEC
|
|
uint64_t end;
|
|
#endif
|
|
|
|
/*
|
|
* exclude a page at the beginning and end of
|
|
* the 256MB PCIe 'hole' so the kernel will not
|
|
* try to allocate multi-page buffers that
|
|
* span the discontinuity.
|
|
*/
|
|
memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
|
|
&memory, &size);
|
|
memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
|
|
CVMX_PCIE_BAR1_PHYS_SIZE,
|
|
&memory, &size);
|
|
#ifdef CONFIG_KEXEC
|
|
end = memory + mem_alloc_size;
|
|
|
|
/*
|
|
* This function automatically merges address regions
|
|
* next to each other if they are received in
|
|
* incrementing order
|
|
*/
|
|
if (memory < crashk_base && end > crashk_end) {
|
|
/* region is fully in */
|
|
add_memory_region(memory,
|
|
crashk_base - memory,
|
|
BOOT_MEM_RAM);
|
|
total += crashk_base - memory;
|
|
add_memory_region(crashk_end,
|
|
end - crashk_end,
|
|
BOOT_MEM_RAM);
|
|
total += end - crashk_end;
|
|
continue;
|
|
}
|
|
|
|
if (memory >= crashk_base && end <= crashk_end)
|
|
/*
|
|
* Entire memory region is within the new
|
|
* kernel's memory, ignore it.
|
|
*/
|
|
continue;
|
|
|
|
if (memory > crashk_base && memory < crashk_end &&
|
|
end > crashk_end) {
|
|
/*
|
|
* Overlap with the beginning of the region,
|
|
* reserve the beginning.
|
|
*/
|
|
mem_alloc_size -= crashk_end - memory;
|
|
memory = crashk_end;
|
|
} else if (memory < crashk_base && end > crashk_base &&
|
|
end < crashk_end)
|
|
/*
|
|
* Overlap with the beginning of the region,
|
|
* chop of end.
|
|
*/
|
|
mem_alloc_size -= end - crashk_base;
|
|
#endif
|
|
add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
|
|
total += mem_alloc_size;
|
|
/* Recovering mem_alloc_size */
|
|
mem_alloc_size = 4 << 20;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
cvmx_bootmem_unlock();
|
|
/* Add the memory region for the kernel. */
|
|
kernel_start = (unsigned long) _text;
|
|
kernel_size = _end - _text;
|
|
|
|
/* Adjust for physical offset. */
|
|
kernel_start &= ~0xffffffff80000000ULL;
|
|
add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
|
|
#endif /* CONFIG_CRASH_DUMP */
|
|
|
|
#ifdef CONFIG_CAVIUM_RESERVE32
|
|
/*
|
|
* Now that we've allocated the kernel memory it is safe to
|
|
* free the reserved region. We free it here so that builtin
|
|
* drivers can use the memory.
|
|
*/
|
|
if (octeon_reserve32_memory)
|
|
cvmx_bootmem_free_named("CAVIUM_RESERVE32");
|
|
#endif /* CONFIG_CAVIUM_RESERVE32 */
|
|
|
|
if (total == 0)
|
|
panic("Unable to allocate memory from "
|
|
"cvmx_bootmem_phy_alloc");
|
|
}
|
|
|
|
/*
|
|
* Emit one character to the boot UART. Exported for use by the
|
|
* watchdog timer.
|
|
*/
|
|
void prom_putchar(char c)
|
|
{
|
|
uint64_t lsrval;
|
|
|
|
/* Spin until there is room */
|
|
do {
|
|
lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
|
|
} while ((lsrval & 0x20) == 0);
|
|
|
|
/* Write the byte */
|
|
cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
|
|
}
|
|
EXPORT_SYMBOL(prom_putchar);
|
|
|
|
void __init prom_free_prom_memory(void)
|
|
{
|
|
if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
|
|
/* Check for presence of Core-14449 fix. */
|
|
u32 insn;
|
|
u32 *foo;
|
|
|
|
foo = &insn;
|
|
|
|
asm volatile("# before" : : : "memory");
|
|
prefetch(foo);
|
|
asm volatile(
|
|
".set push\n\t"
|
|
".set noreorder\n\t"
|
|
"bal 1f\n\t"
|
|
"nop\n"
|
|
"1:\tlw %0,-12($31)\n\t"
|
|
".set pop\n\t"
|
|
: "=r" (insn) : : "$31", "memory");
|
|
|
|
if ((insn >> 26) != 0x33)
|
|
panic("No PREF instruction at Core-14449 probe point.");
|
|
|
|
if (((insn >> 16) & 0x1f) != 28)
|
|
panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
|
|
"Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
|
|
insn);
|
|
}
|
|
}
|
|
|
|
void __init octeon_fill_mac_addresses(void);
|
|
|
|
void __init device_tree_init(void)
|
|
{
|
|
const void *fdt;
|
|
bool do_prune;
|
|
bool fill_mac;
|
|
|
|
if (fw_passed_dtb) {
|
|
fdt = (void *)fw_passed_dtb;
|
|
do_prune = false;
|
|
fill_mac = true;
|
|
pr_info("Using appended Device Tree.\n");
|
|
} else if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
|
|
fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
|
|
if (fdt_check_header(fdt))
|
|
panic("Corrupt Device Tree passed to kernel.");
|
|
do_prune = false;
|
|
fill_mac = false;
|
|
pr_info("Using passed Device Tree.\n");
|
|
} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
|
|
fdt = &__dtb_octeon_68xx_begin;
|
|
do_prune = true;
|
|
fill_mac = true;
|
|
} else {
|
|
fdt = &__dtb_octeon_3xxx_begin;
|
|
do_prune = true;
|
|
fill_mac = true;
|
|
}
|
|
|
|
initial_boot_params = (void *)fdt;
|
|
|
|
if (do_prune) {
|
|
octeon_prune_device_tree();
|
|
pr_info("Using internal Device Tree.\n");
|
|
}
|
|
if (fill_mac)
|
|
octeon_fill_mac_addresses();
|
|
unflatten_and_copy_device_tree();
|
|
init_octeon_system_type();
|
|
}
|
|
|
|
static int __initdata disable_octeon_edac_p;
|
|
|
|
static int __init disable_octeon_edac(char *str)
|
|
{
|
|
disable_octeon_edac_p = 1;
|
|
return 0;
|
|
}
|
|
early_param("disable_octeon_edac", disable_octeon_edac);
|
|
|
|
static char *edac_device_names[] = {
|
|
"octeon_l2c_edac",
|
|
"octeon_pc_edac",
|
|
};
|
|
|
|
static int __init edac_devinit(void)
|
|
{
|
|
struct platform_device *dev;
|
|
int i, err = 0;
|
|
int num_lmc;
|
|
char *name;
|
|
|
|
if (disable_octeon_edac_p)
|
|
return 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
|
|
name = edac_device_names[i];
|
|
dev = platform_device_register_simple(name, -1, NULL, 0);
|
|
if (IS_ERR(dev)) {
|
|
pr_err("Registration of %s failed!\n", name);
|
|
err = PTR_ERR(dev);
|
|
}
|
|
}
|
|
|
|
num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
|
|
(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
|
|
for (i = 0; i < num_lmc; i++) {
|
|
dev = platform_device_register_simple("octeon_lmc_edac",
|
|
i, NULL, 0);
|
|
if (IS_ERR(dev)) {
|
|
pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
|
|
err = PTR_ERR(dev);
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
device_initcall(edac_devinit);
|
|
|
|
static void __initdata *octeon_dummy_iospace;
|
|
|
|
static int __init octeon_no_pci_init(void)
|
|
{
|
|
/*
|
|
* Initially assume there is no PCI. The PCI/PCIe platform code will
|
|
* later re-initialize these to correct values if they are present.
|
|
*/
|
|
octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
|
|
set_io_port_base((unsigned long)octeon_dummy_iospace);
|
|
ioport_resource.start = MAX_RESOURCE;
|
|
ioport_resource.end = 0;
|
|
return 0;
|
|
}
|
|
core_initcall(octeon_no_pci_init);
|
|
|
|
static int __init octeon_no_pci_release(void)
|
|
{
|
|
/*
|
|
* Release the allocated memory if a real IO space is there.
|
|
*/
|
|
if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
|
|
vfree(octeon_dummy_iospace);
|
|
return 0;
|
|
}
|
|
late_initcall(octeon_no_pci_release);
|