forked from Minki/linux
5adf3edde8
Print the node name during endpoint parsing for better debuggability. Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com> Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
1232 lines
31 KiB
C
1232 lines
31 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* V4L2 fwnode binding parsing library
|
|
*
|
|
* The origins of the V4L2 fwnode library are in V4L2 OF library that
|
|
* formerly was located in v4l2-of.c.
|
|
*
|
|
* Copyright (c) 2016 Intel Corporation.
|
|
* Author: Sakari Ailus <sakari.ailus@linux.intel.com>
|
|
*
|
|
* Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
|
|
* Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
|
|
*
|
|
* Copyright (C) 2012 Renesas Electronics Corp.
|
|
* Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
|
|
*/
|
|
#include <linux/acpi.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/property.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <media/v4l2-async.h>
|
|
#include <media/v4l2-fwnode.h>
|
|
#include <media/v4l2-subdev.h>
|
|
|
|
enum v4l2_fwnode_bus_type {
|
|
V4L2_FWNODE_BUS_TYPE_GUESS = 0,
|
|
V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
|
|
V4L2_FWNODE_BUS_TYPE_CSI1,
|
|
V4L2_FWNODE_BUS_TYPE_CCP2,
|
|
V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
|
|
V4L2_FWNODE_BUS_TYPE_PARALLEL,
|
|
V4L2_FWNODE_BUS_TYPE_BT656,
|
|
NR_OF_V4L2_FWNODE_BUS_TYPE,
|
|
};
|
|
|
|
static const struct v4l2_fwnode_bus_conv {
|
|
enum v4l2_fwnode_bus_type fwnode_bus_type;
|
|
enum v4l2_mbus_type mbus_type;
|
|
const char *name;
|
|
} buses[] = {
|
|
{
|
|
V4L2_FWNODE_BUS_TYPE_GUESS,
|
|
V4L2_MBUS_UNKNOWN,
|
|
"not specified",
|
|
}, {
|
|
V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
|
|
V4L2_MBUS_CSI2_CPHY,
|
|
"MIPI CSI-2 C-PHY",
|
|
}, {
|
|
V4L2_FWNODE_BUS_TYPE_CSI1,
|
|
V4L2_MBUS_CSI1,
|
|
"MIPI CSI-1",
|
|
}, {
|
|
V4L2_FWNODE_BUS_TYPE_CCP2,
|
|
V4L2_MBUS_CCP2,
|
|
"compact camera port 2",
|
|
}, {
|
|
V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
|
|
V4L2_MBUS_CSI2_DPHY,
|
|
"MIPI CSI-2 D-PHY",
|
|
}, {
|
|
V4L2_FWNODE_BUS_TYPE_PARALLEL,
|
|
V4L2_MBUS_PARALLEL,
|
|
"parallel",
|
|
}, {
|
|
V4L2_FWNODE_BUS_TYPE_BT656,
|
|
V4L2_MBUS_BT656,
|
|
"Bt.656",
|
|
}
|
|
};
|
|
|
|
static const struct v4l2_fwnode_bus_conv *
|
|
get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(buses); i++)
|
|
if (buses[i].fwnode_bus_type == type)
|
|
return &buses[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static enum v4l2_mbus_type
|
|
v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
|
|
{
|
|
const struct v4l2_fwnode_bus_conv *conv =
|
|
get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
|
|
|
|
return conv ? conv->mbus_type : V4L2_MBUS_UNKNOWN;
|
|
}
|
|
|
|
static const char *
|
|
v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
|
|
{
|
|
const struct v4l2_fwnode_bus_conv *conv =
|
|
get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
|
|
|
|
return conv ? conv->name : "not found";
|
|
}
|
|
|
|
static const struct v4l2_fwnode_bus_conv *
|
|
get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(buses); i++)
|
|
if (buses[i].mbus_type == type)
|
|
return &buses[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static const char *
|
|
v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
|
|
{
|
|
const struct v4l2_fwnode_bus_conv *conv =
|
|
get_v4l2_fwnode_bus_conv_by_mbus(type);
|
|
|
|
return conv ? conv->name : "not found";
|
|
}
|
|
|
|
static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
|
|
struct v4l2_fwnode_endpoint *vep,
|
|
enum v4l2_mbus_type bus_type)
|
|
{
|
|
struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
|
|
bool have_clk_lane = false, have_data_lanes = false,
|
|
have_lane_polarities = false;
|
|
unsigned int flags = 0, lanes_used = 0;
|
|
u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
|
|
u32 clock_lane = 0;
|
|
unsigned int num_data_lanes = 0;
|
|
bool use_default_lane_mapping = false;
|
|
unsigned int i;
|
|
u32 v;
|
|
int rval;
|
|
|
|
if (bus_type == V4L2_MBUS_CSI2_DPHY ||
|
|
bus_type == V4L2_MBUS_CSI2_CPHY) {
|
|
use_default_lane_mapping = true;
|
|
|
|
num_data_lanes = min_t(u32, bus->num_data_lanes,
|
|
V4L2_FWNODE_CSI2_MAX_DATA_LANES);
|
|
|
|
clock_lane = bus->clock_lane;
|
|
if (clock_lane)
|
|
use_default_lane_mapping = false;
|
|
|
|
for (i = 0; i < num_data_lanes; i++) {
|
|
array[i] = bus->data_lanes[i];
|
|
if (array[i])
|
|
use_default_lane_mapping = false;
|
|
}
|
|
|
|
if (use_default_lane_mapping)
|
|
pr_debug("no lane mapping given, using defaults\n");
|
|
}
|
|
|
|
rval = fwnode_property_count_u32(fwnode, "data-lanes");
|
|
if (rval > 0) {
|
|
num_data_lanes =
|
|
min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
|
|
|
|
fwnode_property_read_u32_array(fwnode, "data-lanes", array,
|
|
num_data_lanes);
|
|
|
|
have_data_lanes = true;
|
|
if (use_default_lane_mapping) {
|
|
pr_debug("data-lanes property exists; disabling default mapping\n");
|
|
use_default_lane_mapping = false;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < num_data_lanes; i++) {
|
|
if (lanes_used & BIT(array[i])) {
|
|
if (have_data_lanes || !use_default_lane_mapping)
|
|
pr_warn("duplicated lane %u in data-lanes, using defaults\n",
|
|
array[i]);
|
|
use_default_lane_mapping = true;
|
|
}
|
|
lanes_used |= BIT(array[i]);
|
|
|
|
if (have_data_lanes)
|
|
pr_debug("lane %u position %u\n", i, array[i]);
|
|
}
|
|
|
|
rval = fwnode_property_count_u32(fwnode, "lane-polarities");
|
|
if (rval > 0) {
|
|
if (rval != 1 + num_data_lanes /* clock+data */) {
|
|
pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
|
|
1 + num_data_lanes, rval);
|
|
return -EINVAL;
|
|
}
|
|
|
|
have_lane_polarities = true;
|
|
}
|
|
|
|
if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
|
|
clock_lane = v;
|
|
pr_debug("clock lane position %u\n", v);
|
|
have_clk_lane = true;
|
|
}
|
|
|
|
if (have_clk_lane && lanes_used & BIT(clock_lane) &&
|
|
!use_default_lane_mapping) {
|
|
pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
|
|
v);
|
|
use_default_lane_mapping = true;
|
|
}
|
|
|
|
if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
|
|
flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
|
|
pr_debug("non-continuous clock\n");
|
|
} else {
|
|
flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
|
|
}
|
|
|
|
if (bus_type == V4L2_MBUS_CSI2_DPHY ||
|
|
bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used ||
|
|
have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) {
|
|
/* Only D-PHY has a clock lane. */
|
|
unsigned int dfl_data_lane_index =
|
|
bus_type == V4L2_MBUS_CSI2_DPHY;
|
|
|
|
bus->flags = flags;
|
|
if (bus_type == V4L2_MBUS_UNKNOWN)
|
|
vep->bus_type = V4L2_MBUS_CSI2_DPHY;
|
|
bus->num_data_lanes = num_data_lanes;
|
|
|
|
if (use_default_lane_mapping) {
|
|
bus->clock_lane = 0;
|
|
for (i = 0; i < num_data_lanes; i++)
|
|
bus->data_lanes[i] = dfl_data_lane_index + i;
|
|
} else {
|
|
bus->clock_lane = clock_lane;
|
|
for (i = 0; i < num_data_lanes; i++)
|
|
bus->data_lanes[i] = array[i];
|
|
}
|
|
|
|
if (have_lane_polarities) {
|
|
fwnode_property_read_u32_array(fwnode,
|
|
"lane-polarities", array,
|
|
1 + num_data_lanes);
|
|
|
|
for (i = 0; i < 1 + num_data_lanes; i++) {
|
|
bus->lane_polarities[i] = array[i];
|
|
pr_debug("lane %u polarity %sinverted",
|
|
i, array[i] ? "" : "not ");
|
|
}
|
|
} else {
|
|
pr_debug("no lane polarities defined, assuming not inverted\n");
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \
|
|
V4L2_MBUS_HSYNC_ACTIVE_LOW | \
|
|
V4L2_MBUS_VSYNC_ACTIVE_HIGH | \
|
|
V4L2_MBUS_VSYNC_ACTIVE_LOW | \
|
|
V4L2_MBUS_FIELD_EVEN_HIGH | \
|
|
V4L2_MBUS_FIELD_EVEN_LOW)
|
|
|
|
static void
|
|
v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
|
|
struct v4l2_fwnode_endpoint *vep,
|
|
enum v4l2_mbus_type bus_type)
|
|
{
|
|
struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
|
|
unsigned int flags = 0;
|
|
u32 v;
|
|
|
|
if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
|
|
flags = bus->flags;
|
|
|
|
if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
|
|
flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
|
|
V4L2_MBUS_HSYNC_ACTIVE_LOW);
|
|
flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
|
|
V4L2_MBUS_HSYNC_ACTIVE_LOW;
|
|
pr_debug("hsync-active %s\n", v ? "high" : "low");
|
|
}
|
|
|
|
if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
|
|
flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
|
|
V4L2_MBUS_VSYNC_ACTIVE_LOW);
|
|
flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
|
|
V4L2_MBUS_VSYNC_ACTIVE_LOW;
|
|
pr_debug("vsync-active %s\n", v ? "high" : "low");
|
|
}
|
|
|
|
if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
|
|
flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
|
|
V4L2_MBUS_FIELD_EVEN_LOW);
|
|
flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
|
|
V4L2_MBUS_FIELD_EVEN_LOW;
|
|
pr_debug("field-even-active %s\n", v ? "high" : "low");
|
|
}
|
|
|
|
if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
|
|
flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
|
|
V4L2_MBUS_PCLK_SAMPLE_FALLING);
|
|
flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
|
|
V4L2_MBUS_PCLK_SAMPLE_FALLING;
|
|
pr_debug("pclk-sample %s\n", v ? "high" : "low");
|
|
}
|
|
|
|
if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
|
|
flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
|
|
V4L2_MBUS_DATA_ACTIVE_LOW);
|
|
flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
|
|
V4L2_MBUS_DATA_ACTIVE_LOW;
|
|
pr_debug("data-active %s\n", v ? "high" : "low");
|
|
}
|
|
|
|
if (fwnode_property_present(fwnode, "slave-mode")) {
|
|
pr_debug("slave mode\n");
|
|
flags &= ~V4L2_MBUS_MASTER;
|
|
flags |= V4L2_MBUS_SLAVE;
|
|
} else {
|
|
flags &= ~V4L2_MBUS_SLAVE;
|
|
flags |= V4L2_MBUS_MASTER;
|
|
}
|
|
|
|
if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
|
|
bus->bus_width = v;
|
|
pr_debug("bus-width %u\n", v);
|
|
}
|
|
|
|
if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
|
|
bus->data_shift = v;
|
|
pr_debug("data-shift %u\n", v);
|
|
}
|
|
|
|
if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
|
|
flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
|
|
V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
|
|
flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
|
|
V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
|
|
pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
|
|
}
|
|
|
|
if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
|
|
flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
|
|
V4L2_MBUS_DATA_ENABLE_LOW);
|
|
flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
|
|
V4L2_MBUS_DATA_ENABLE_LOW;
|
|
pr_debug("data-enable-active %s\n", v ? "high" : "low");
|
|
}
|
|
|
|
switch (bus_type) {
|
|
default:
|
|
bus->flags = flags;
|
|
if (flags & PARALLEL_MBUS_FLAGS)
|
|
vep->bus_type = V4L2_MBUS_PARALLEL;
|
|
else
|
|
vep->bus_type = V4L2_MBUS_BT656;
|
|
break;
|
|
case V4L2_MBUS_PARALLEL:
|
|
vep->bus_type = V4L2_MBUS_PARALLEL;
|
|
bus->flags = flags;
|
|
break;
|
|
case V4L2_MBUS_BT656:
|
|
vep->bus_type = V4L2_MBUS_BT656;
|
|
bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
|
|
struct v4l2_fwnode_endpoint *vep,
|
|
enum v4l2_mbus_type bus_type)
|
|
{
|
|
struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
|
|
u32 v;
|
|
|
|
if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
|
|
bus->clock_inv = v;
|
|
pr_debug("clock-inv %u\n", v);
|
|
}
|
|
|
|
if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
|
|
bus->strobe = v;
|
|
pr_debug("strobe %u\n", v);
|
|
}
|
|
|
|
if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
|
|
bus->data_lane = v;
|
|
pr_debug("data-lanes %u\n", v);
|
|
}
|
|
|
|
if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
|
|
bus->clock_lane = v;
|
|
pr_debug("clock-lanes %u\n", v);
|
|
}
|
|
|
|
if (bus_type == V4L2_MBUS_CCP2)
|
|
vep->bus_type = V4L2_MBUS_CCP2;
|
|
else
|
|
vep->bus_type = V4L2_MBUS_CSI1;
|
|
}
|
|
|
|
static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
|
|
struct v4l2_fwnode_endpoint *vep)
|
|
{
|
|
u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
|
|
enum v4l2_mbus_type mbus_type;
|
|
int rval;
|
|
|
|
if (vep->bus_type == V4L2_MBUS_UNKNOWN) {
|
|
/* Zero fields from bus union to until the end */
|
|
memset(&vep->bus, 0,
|
|
sizeof(*vep) - offsetof(typeof(*vep), bus));
|
|
}
|
|
|
|
pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
|
|
|
|
/*
|
|
* Zero the fwnode graph endpoint memory in case we don't end up parsing
|
|
* the endpoint.
|
|
*/
|
|
memset(&vep->base, 0, sizeof(vep->base));
|
|
|
|
fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
|
|
pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
|
|
v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
|
|
v4l2_fwnode_mbus_type_to_string(vep->bus_type),
|
|
vep->bus_type);
|
|
mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
|
|
|
|
if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
|
|
if (mbus_type != V4L2_MBUS_UNKNOWN &&
|
|
vep->bus_type != mbus_type) {
|
|
pr_debug("expecting bus type %s\n",
|
|
v4l2_fwnode_mbus_type_to_string(vep->bus_type));
|
|
return -ENXIO;
|
|
}
|
|
} else {
|
|
vep->bus_type = mbus_type;
|
|
}
|
|
|
|
switch (vep->bus_type) {
|
|
case V4L2_MBUS_UNKNOWN:
|
|
rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
|
|
V4L2_MBUS_UNKNOWN);
|
|
if (rval)
|
|
return rval;
|
|
|
|
if (vep->bus_type == V4L2_MBUS_UNKNOWN)
|
|
v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
|
|
V4L2_MBUS_UNKNOWN);
|
|
|
|
pr_debug("assuming media bus type %s (%u)\n",
|
|
v4l2_fwnode_mbus_type_to_string(vep->bus_type),
|
|
vep->bus_type);
|
|
|
|
break;
|
|
case V4L2_MBUS_CCP2:
|
|
case V4L2_MBUS_CSI1:
|
|
v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
|
|
|
|
break;
|
|
case V4L2_MBUS_CSI2_DPHY:
|
|
case V4L2_MBUS_CSI2_CPHY:
|
|
rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
|
|
vep->bus_type);
|
|
if (rval)
|
|
return rval;
|
|
|
|
break;
|
|
case V4L2_MBUS_PARALLEL:
|
|
case V4L2_MBUS_BT656:
|
|
v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
|
|
vep->bus_type);
|
|
|
|
break;
|
|
default:
|
|
pr_warn("unsupported bus type %u\n", mbus_type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
fwnode_graph_parse_endpoint(fwnode, &vep->base);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
|
|
struct v4l2_fwnode_endpoint *vep)
|
|
{
|
|
int ret;
|
|
|
|
ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
|
|
|
|
pr_debug("===== end parsing endpoint %pfw\n", fwnode);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
|
|
|
|
void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
|
|
{
|
|
if (IS_ERR_OR_NULL(vep))
|
|
return;
|
|
|
|
kfree(vep->link_frequencies);
|
|
vep->link_frequencies = NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
|
|
|
|
int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
|
|
struct v4l2_fwnode_endpoint *vep)
|
|
{
|
|
int rval;
|
|
|
|
rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
|
|
if (rval < 0)
|
|
return rval;
|
|
|
|
rval = fwnode_property_count_u64(fwnode, "link-frequencies");
|
|
if (rval > 0) {
|
|
unsigned int i;
|
|
|
|
vep->link_frequencies =
|
|
kmalloc_array(rval, sizeof(*vep->link_frequencies),
|
|
GFP_KERNEL);
|
|
if (!vep->link_frequencies)
|
|
return -ENOMEM;
|
|
|
|
vep->nr_of_link_frequencies = rval;
|
|
|
|
rval = fwnode_property_read_u64_array(fwnode,
|
|
"link-frequencies",
|
|
vep->link_frequencies,
|
|
vep->nr_of_link_frequencies);
|
|
if (rval < 0) {
|
|
v4l2_fwnode_endpoint_free(vep);
|
|
return rval;
|
|
}
|
|
|
|
for (i = 0; i < vep->nr_of_link_frequencies; i++)
|
|
pr_info("link-frequencies %u value %llu\n", i,
|
|
vep->link_frequencies[i]);
|
|
}
|
|
|
|
pr_debug("===== end parsing endpoint %pfw\n", fwnode);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
|
|
|
|
int v4l2_fwnode_parse_link(struct fwnode_handle *__fwnode,
|
|
struct v4l2_fwnode_link *link)
|
|
{
|
|
const char *port_prop = is_of_node(__fwnode) ? "reg" : "port";
|
|
struct fwnode_handle *fwnode;
|
|
|
|
memset(link, 0, sizeof(*link));
|
|
|
|
fwnode = fwnode_get_parent(__fwnode);
|
|
fwnode_property_read_u32(fwnode, port_prop, &link->local_port);
|
|
fwnode = fwnode_get_next_parent(fwnode);
|
|
if (is_of_node(fwnode) && of_node_name_eq(to_of_node(fwnode), "ports"))
|
|
fwnode = fwnode_get_next_parent(fwnode);
|
|
link->local_node = fwnode;
|
|
|
|
fwnode = fwnode_graph_get_remote_endpoint(__fwnode);
|
|
if (!fwnode) {
|
|
fwnode_handle_put(fwnode);
|
|
return -ENOLINK;
|
|
}
|
|
|
|
fwnode = fwnode_get_parent(fwnode);
|
|
fwnode_property_read_u32(fwnode, port_prop, &link->remote_port);
|
|
fwnode = fwnode_get_next_parent(fwnode);
|
|
if (is_of_node(fwnode) && of_node_name_eq(to_of_node(fwnode), "ports"))
|
|
fwnode = fwnode_get_next_parent(fwnode);
|
|
link->remote_node = fwnode;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
|
|
|
|
void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
|
|
{
|
|
fwnode_handle_put(link->local_node);
|
|
fwnode_handle_put(link->remote_node);
|
|
}
|
|
EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
|
|
|
|
static int
|
|
v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev,
|
|
struct v4l2_async_notifier *notifier,
|
|
struct fwnode_handle *endpoint,
|
|
unsigned int asd_struct_size,
|
|
parse_endpoint_func parse_endpoint)
|
|
{
|
|
struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
|
|
struct v4l2_async_subdev *asd;
|
|
int ret;
|
|
|
|
asd = kzalloc(asd_struct_size, GFP_KERNEL);
|
|
if (!asd)
|
|
return -ENOMEM;
|
|
|
|
asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
|
|
asd->match.fwnode =
|
|
fwnode_graph_get_remote_port_parent(endpoint);
|
|
if (!asd->match.fwnode) {
|
|
dev_dbg(dev, "no remote endpoint found\n");
|
|
ret = -ENOTCONN;
|
|
goto out_err;
|
|
}
|
|
|
|
ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
|
|
if (ret) {
|
|
dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
|
|
ret);
|
|
goto out_err;
|
|
}
|
|
|
|
ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
|
|
if (ret == -ENOTCONN)
|
|
dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
|
|
vep.base.id);
|
|
else if (ret < 0)
|
|
dev_warn(dev,
|
|
"driver could not parse port@%u/endpoint@%u (%d)\n",
|
|
vep.base.port, vep.base.id, ret);
|
|
v4l2_fwnode_endpoint_free(&vep);
|
|
if (ret < 0)
|
|
goto out_err;
|
|
|
|
ret = v4l2_async_notifier_add_subdev(notifier, asd);
|
|
if (ret < 0) {
|
|
/* not an error if asd already exists */
|
|
if (ret == -EEXIST)
|
|
ret = 0;
|
|
goto out_err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_err:
|
|
fwnode_handle_put(asd->match.fwnode);
|
|
kfree(asd);
|
|
|
|
return ret == -ENOTCONN ? 0 : ret;
|
|
}
|
|
|
|
static int
|
|
__v4l2_async_notifier_parse_fwnode_ep(struct device *dev,
|
|
struct v4l2_async_notifier *notifier,
|
|
size_t asd_struct_size,
|
|
unsigned int port,
|
|
bool has_port,
|
|
parse_endpoint_func parse_endpoint)
|
|
{
|
|
struct fwnode_handle *fwnode;
|
|
int ret = 0;
|
|
|
|
if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
|
|
return -EINVAL;
|
|
|
|
fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
|
|
struct fwnode_handle *dev_fwnode;
|
|
bool is_available;
|
|
|
|
dev_fwnode = fwnode_graph_get_port_parent(fwnode);
|
|
is_available = fwnode_device_is_available(dev_fwnode);
|
|
fwnode_handle_put(dev_fwnode);
|
|
if (!is_available)
|
|
continue;
|
|
|
|
if (has_port) {
|
|
struct fwnode_endpoint ep;
|
|
|
|
ret = fwnode_graph_parse_endpoint(fwnode, &ep);
|
|
if (ret)
|
|
break;
|
|
|
|
if (ep.port != port)
|
|
continue;
|
|
}
|
|
|
|
ret = v4l2_async_notifier_fwnode_parse_endpoint(dev,
|
|
notifier,
|
|
fwnode,
|
|
asd_struct_size,
|
|
parse_endpoint);
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
|
|
fwnode_handle_put(fwnode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev,
|
|
struct v4l2_async_notifier *notifier,
|
|
size_t asd_struct_size,
|
|
parse_endpoint_func parse_endpoint)
|
|
{
|
|
return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
|
|
asd_struct_size, 0,
|
|
false, parse_endpoint);
|
|
}
|
|
EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
|
|
|
|
int
|
|
v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device *dev,
|
|
struct v4l2_async_notifier *notifier,
|
|
size_t asd_struct_size,
|
|
unsigned int port,
|
|
parse_endpoint_func parse_endpoint)
|
|
{
|
|
return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
|
|
asd_struct_size,
|
|
port, true,
|
|
parse_endpoint);
|
|
}
|
|
EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints_by_port);
|
|
|
|
/*
|
|
* v4l2_fwnode_reference_parse - parse references for async sub-devices
|
|
* @dev: the device node the properties of which are parsed for references
|
|
* @notifier: the async notifier where the async subdevs will be added
|
|
* @prop: the name of the property
|
|
*
|
|
* Return: 0 on success
|
|
* -ENOENT if no entries were found
|
|
* -ENOMEM if memory allocation failed
|
|
* -EINVAL if property parsing failed
|
|
*/
|
|
static int v4l2_fwnode_reference_parse(struct device *dev,
|
|
struct v4l2_async_notifier *notifier,
|
|
const char *prop)
|
|
{
|
|
struct fwnode_reference_args args;
|
|
unsigned int index;
|
|
int ret;
|
|
|
|
for (index = 0;
|
|
!(ret = fwnode_property_get_reference_args(dev_fwnode(dev),
|
|
prop, NULL, 0,
|
|
index, &args));
|
|
index++)
|
|
fwnode_handle_put(args.fwnode);
|
|
|
|
if (!index)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* Note that right now both -ENODATA and -ENOENT may signal
|
|
* out-of-bounds access. Return the error in cases other than that.
|
|
*/
|
|
if (ret != -ENOENT && ret != -ENODATA)
|
|
return ret;
|
|
|
|
for (index = 0;
|
|
!fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL,
|
|
0, index, &args);
|
|
index++) {
|
|
struct v4l2_async_subdev *asd;
|
|
|
|
asd = v4l2_async_notifier_add_fwnode_subdev(notifier,
|
|
args.fwnode,
|
|
sizeof(*asd));
|
|
fwnode_handle_put(args.fwnode);
|
|
if (IS_ERR(asd)) {
|
|
/* not an error if asd already exists */
|
|
if (PTR_ERR(asd) == -EEXIST)
|
|
continue;
|
|
|
|
return PTR_ERR(asd);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* v4l2_fwnode_reference_get_int_prop - parse a reference with integer
|
|
* arguments
|
|
* @fwnode: fwnode to read @prop from
|
|
* @notifier: notifier for @dev
|
|
* @prop: the name of the property
|
|
* @index: the index of the reference to get
|
|
* @props: the array of integer property names
|
|
* @nprops: the number of integer property names in @nprops
|
|
*
|
|
* First find an fwnode referred to by the reference at @index in @prop.
|
|
*
|
|
* Then under that fwnode, @nprops times, for each property in @props,
|
|
* iteratively follow child nodes starting from fwnode such that they have the
|
|
* property in @props array at the index of the child node distance from the
|
|
* root node and the value of that property matching with the integer argument
|
|
* of the reference, at the same index.
|
|
*
|
|
* The child fwnode reached at the end of the iteration is then returned to the
|
|
* caller.
|
|
*
|
|
* The core reason for this is that you cannot refer to just any node in ACPI.
|
|
* So to refer to an endpoint (easy in DT) you need to refer to a device, then
|
|
* provide a list of (property name, property value) tuples where each tuple
|
|
* uniquely identifies a child node. The first tuple identifies a child directly
|
|
* underneath the device fwnode, the next tuple identifies a child node
|
|
* underneath the fwnode identified by the previous tuple, etc. until you
|
|
* reached the fwnode you need.
|
|
*
|
|
* THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
|
|
* REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
|
|
* Documentation/acpi/dsd instead and especially graph.txt,
|
|
* data-node-references.txt and leds.txt .
|
|
*
|
|
* Scope (\_SB.PCI0.I2C2)
|
|
* {
|
|
* Device (CAM0)
|
|
* {
|
|
* Name (_DSD, Package () {
|
|
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
|
|
* Package () {
|
|
* Package () {
|
|
* "compatible",
|
|
* Package () { "nokia,smia" }
|
|
* },
|
|
* },
|
|
* ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
|
|
* Package () {
|
|
* Package () { "port0", "PRT0" },
|
|
* }
|
|
* })
|
|
* Name (PRT0, Package() {
|
|
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
|
|
* Package () {
|
|
* Package () { "port", 0 },
|
|
* },
|
|
* ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
|
|
* Package () {
|
|
* Package () { "endpoint0", "EP00" },
|
|
* }
|
|
* })
|
|
* Name (EP00, Package() {
|
|
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
|
|
* Package () {
|
|
* Package () { "endpoint", 0 },
|
|
* Package () {
|
|
* "remote-endpoint",
|
|
* Package() {
|
|
* \_SB.PCI0.ISP, 4, 0
|
|
* }
|
|
* },
|
|
* }
|
|
* })
|
|
* }
|
|
* }
|
|
*
|
|
* Scope (\_SB.PCI0)
|
|
* {
|
|
* Device (ISP)
|
|
* {
|
|
* Name (_DSD, Package () {
|
|
* ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
|
|
* Package () {
|
|
* Package () { "port4", "PRT4" },
|
|
* }
|
|
* })
|
|
*
|
|
* Name (PRT4, Package() {
|
|
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
|
|
* Package () {
|
|
* Package () { "port", 4 },
|
|
* },
|
|
* ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
|
|
* Package () {
|
|
* Package () { "endpoint0", "EP40" },
|
|
* }
|
|
* })
|
|
*
|
|
* Name (EP40, Package() {
|
|
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
|
|
* Package () {
|
|
* Package () { "endpoint", 0 },
|
|
* Package () {
|
|
* "remote-endpoint",
|
|
* Package () {
|
|
* \_SB.PCI0.I2C2.CAM0,
|
|
* 0, 0
|
|
* }
|
|
* },
|
|
* }
|
|
* })
|
|
* }
|
|
* }
|
|
*
|
|
* From the EP40 node under ISP device, you could parse the graph remote
|
|
* endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
|
|
*
|
|
* @fwnode: fwnode referring to EP40 under ISP.
|
|
* @prop: "remote-endpoint"
|
|
* @index: 0
|
|
* @props: "port", "endpoint"
|
|
* @nprops: 2
|
|
*
|
|
* And you'd get back fwnode referring to EP00 under CAM0.
|
|
*
|
|
* The same works the other way around: if you use EP00 under CAM0 as the
|
|
* fwnode, you'll get fwnode referring to EP40 under ISP.
|
|
*
|
|
* The same example in DT syntax would look like this:
|
|
*
|
|
* cam: cam0 {
|
|
* compatible = "nokia,smia";
|
|
*
|
|
* port {
|
|
* port = <0>;
|
|
* endpoint {
|
|
* endpoint = <0>;
|
|
* remote-endpoint = <&isp 4 0>;
|
|
* };
|
|
* };
|
|
* };
|
|
*
|
|
* isp: isp {
|
|
* ports {
|
|
* port@4 {
|
|
* port = <4>;
|
|
* endpoint {
|
|
* endpoint = <0>;
|
|
* remote-endpoint = <&cam 0 0>;
|
|
* };
|
|
* };
|
|
* };
|
|
* };
|
|
*
|
|
* Return: 0 on success
|
|
* -ENOENT if no entries (or the property itself) were found
|
|
* -EINVAL if property parsing otherwise failed
|
|
* -ENOMEM if memory allocation failed
|
|
*/
|
|
static struct fwnode_handle *
|
|
v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
|
|
const char *prop,
|
|
unsigned int index,
|
|
const char * const *props,
|
|
unsigned int nprops)
|
|
{
|
|
struct fwnode_reference_args fwnode_args;
|
|
u64 *args = fwnode_args.args;
|
|
struct fwnode_handle *child;
|
|
int ret;
|
|
|
|
/*
|
|
* Obtain remote fwnode as well as the integer arguments.
|
|
*
|
|
* Note that right now both -ENODATA and -ENOENT may signal
|
|
* out-of-bounds access. Return -ENOENT in that case.
|
|
*/
|
|
ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
|
|
index, &fwnode_args);
|
|
if (ret)
|
|
return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
|
|
|
|
/*
|
|
* Find a node in the tree under the referred fwnode corresponding to
|
|
* the integer arguments.
|
|
*/
|
|
fwnode = fwnode_args.fwnode;
|
|
while (nprops--) {
|
|
u32 val;
|
|
|
|
/* Loop over all child nodes under fwnode. */
|
|
fwnode_for_each_child_node(fwnode, child) {
|
|
if (fwnode_property_read_u32(child, *props, &val))
|
|
continue;
|
|
|
|
/* Found property, see if its value matches. */
|
|
if (val == *args)
|
|
break;
|
|
}
|
|
|
|
fwnode_handle_put(fwnode);
|
|
|
|
/* No property found; return an error here. */
|
|
if (!child) {
|
|
fwnode = ERR_PTR(-ENOENT);
|
|
break;
|
|
}
|
|
|
|
props++;
|
|
args++;
|
|
fwnode = child;
|
|
}
|
|
|
|
return fwnode;
|
|
}
|
|
|
|
struct v4l2_fwnode_int_props {
|
|
const char *name;
|
|
const char * const *props;
|
|
unsigned int nprops;
|
|
};
|
|
|
|
/*
|
|
* v4l2_fwnode_reference_parse_int_props - parse references for async
|
|
* sub-devices
|
|
* @dev: struct device pointer
|
|
* @notifier: notifier for @dev
|
|
* @prop: the name of the property
|
|
* @props: the array of integer property names
|
|
* @nprops: the number of integer properties
|
|
*
|
|
* Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
|
|
* property @prop with integer arguments with child nodes matching in properties
|
|
* @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
|
|
* accordingly.
|
|
*
|
|
* While it is technically possible to use this function on DT, it is only
|
|
* meaningful on ACPI. On Device tree you can refer to any node in the tree but
|
|
* on ACPI the references are limited to devices.
|
|
*
|
|
* Return: 0 on success
|
|
* -ENOENT if no entries (or the property itself) were found
|
|
* -EINVAL if property parsing otherwisefailed
|
|
* -ENOMEM if memory allocation failed
|
|
*/
|
|
static int
|
|
v4l2_fwnode_reference_parse_int_props(struct device *dev,
|
|
struct v4l2_async_notifier *notifier,
|
|
const struct v4l2_fwnode_int_props *p)
|
|
{
|
|
struct fwnode_handle *fwnode;
|
|
unsigned int index;
|
|
int ret;
|
|
const char *prop = p->name;
|
|
const char * const *props = p->props;
|
|
unsigned int nprops = p->nprops;
|
|
|
|
index = 0;
|
|
do {
|
|
fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
|
|
prop, index,
|
|
props, nprops);
|
|
if (IS_ERR(fwnode)) {
|
|
/*
|
|
* Note that right now both -ENODATA and -ENOENT may
|
|
* signal out-of-bounds access. Return the error in
|
|
* cases other than that.
|
|
*/
|
|
if (PTR_ERR(fwnode) != -ENOENT &&
|
|
PTR_ERR(fwnode) != -ENODATA)
|
|
return PTR_ERR(fwnode);
|
|
break;
|
|
}
|
|
fwnode_handle_put(fwnode);
|
|
index++;
|
|
} while (1);
|
|
|
|
for (index = 0;
|
|
!IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
|
|
prop, index,
|
|
props,
|
|
nprops)));
|
|
index++) {
|
|
struct v4l2_async_subdev *asd;
|
|
|
|
asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode,
|
|
sizeof(*asd));
|
|
fwnode_handle_put(fwnode);
|
|
if (IS_ERR(asd)) {
|
|
ret = PTR_ERR(asd);
|
|
/* not an error if asd already exists */
|
|
if (ret == -EEXIST)
|
|
continue;
|
|
|
|
return PTR_ERR(asd);
|
|
}
|
|
}
|
|
|
|
return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
|
|
}
|
|
|
|
int v4l2_async_notifier_parse_fwnode_sensor_common(struct device *dev,
|
|
struct v4l2_async_notifier *notifier)
|
|
{
|
|
static const char * const led_props[] = { "led" };
|
|
static const struct v4l2_fwnode_int_props props[] = {
|
|
{ "flash-leds", led_props, ARRAY_SIZE(led_props) },
|
|
{ "lens-focus", NULL, 0 },
|
|
};
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(props); i++) {
|
|
int ret;
|
|
|
|
if (props[i].props && is_acpi_node(dev_fwnode(dev)))
|
|
ret = v4l2_fwnode_reference_parse_int_props(dev,
|
|
notifier,
|
|
&props[i]);
|
|
else
|
|
ret = v4l2_fwnode_reference_parse(dev, notifier,
|
|
props[i].name);
|
|
if (ret && ret != -ENOENT) {
|
|
dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
|
|
props[i].name, ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common);
|
|
|
|
int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd)
|
|
{
|
|
struct v4l2_async_notifier *notifier;
|
|
int ret;
|
|
|
|
if (WARN_ON(!sd->dev))
|
|
return -ENODEV;
|
|
|
|
notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
|
|
if (!notifier)
|
|
return -ENOMEM;
|
|
|
|
v4l2_async_notifier_init(notifier);
|
|
|
|
ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev,
|
|
notifier);
|
|
if (ret < 0)
|
|
goto out_cleanup;
|
|
|
|
ret = v4l2_async_subdev_notifier_register(sd, notifier);
|
|
if (ret < 0)
|
|
goto out_cleanup;
|
|
|
|
ret = v4l2_async_register_subdev(sd);
|
|
if (ret < 0)
|
|
goto out_unregister;
|
|
|
|
sd->subdev_notifier = notifier;
|
|
|
|
return 0;
|
|
|
|
out_unregister:
|
|
v4l2_async_notifier_unregister(notifier);
|
|
|
|
out_cleanup:
|
|
v4l2_async_notifier_cleanup(notifier);
|
|
kfree(notifier);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common);
|
|
|
|
int v4l2_async_register_fwnode_subdev(struct v4l2_subdev *sd,
|
|
size_t asd_struct_size,
|
|
unsigned int *ports,
|
|
unsigned int num_ports,
|
|
parse_endpoint_func parse_endpoint)
|
|
{
|
|
struct v4l2_async_notifier *notifier;
|
|
struct device *dev = sd->dev;
|
|
struct fwnode_handle *fwnode;
|
|
int ret;
|
|
|
|
if (WARN_ON(!dev))
|
|
return -ENODEV;
|
|
|
|
fwnode = dev_fwnode(dev);
|
|
if (!fwnode_device_is_available(fwnode))
|
|
return -ENODEV;
|
|
|
|
notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
|
|
if (!notifier)
|
|
return -ENOMEM;
|
|
|
|
v4l2_async_notifier_init(notifier);
|
|
|
|
if (!ports) {
|
|
ret = v4l2_async_notifier_parse_fwnode_endpoints(dev, notifier,
|
|
asd_struct_size,
|
|
parse_endpoint);
|
|
if (ret < 0)
|
|
goto out_cleanup;
|
|
} else {
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < num_ports; i++) {
|
|
ret = v4l2_async_notifier_parse_fwnode_endpoints_by_port(dev, notifier, asd_struct_size, ports[i], parse_endpoint);
|
|
if (ret < 0)
|
|
goto out_cleanup;
|
|
}
|
|
}
|
|
|
|
ret = v4l2_async_subdev_notifier_register(sd, notifier);
|
|
if (ret < 0)
|
|
goto out_cleanup;
|
|
|
|
ret = v4l2_async_register_subdev(sd);
|
|
if (ret < 0)
|
|
goto out_unregister;
|
|
|
|
sd->subdev_notifier = notifier;
|
|
|
|
return 0;
|
|
|
|
out_unregister:
|
|
v4l2_async_notifier_unregister(notifier);
|
|
out_cleanup:
|
|
v4l2_async_notifier_cleanup(notifier);
|
|
kfree(notifier);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(v4l2_async_register_fwnode_subdev);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
|
|
MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
|
|
MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
|