1f6d6e8ebe
* 'v28-range-hrtimers-for-linus-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (37 commits) hrtimers: add missing docbook comments to struct hrtimer hrtimers: simplify hrtimer_peek_ahead_timers() hrtimers: fix docbook comments DECLARE_PER_CPU needs linux/percpu.h hrtimers: fix typo rangetimers: fix the bug reported by Ingo for real rangetimer: fix BUG_ON reported by Ingo rangetimer: fix x86 build failure for the !HRTIMERS case select: fix alpha OSF wrapper select: fix alpha OSF wrapper hrtimer: peek at the timer queue just before going idle hrtimer: make the futex() system call use the per process slack value hrtimer: make the nanosleep() syscall use the per process slack hrtimer: fix signed/unsigned bug in slack estimator hrtimer: show the timer ranges in /proc/timer_list hrtimer: incorporate feedback from Peter Zijlstra hrtimer: add a hrtimer_start_range() function hrtimer: another build fix hrtimer: fix build bug found by Ingo hrtimer: make select() and poll() use the hrtimer range feature ...
222 lines
5.7 KiB
C
222 lines
5.7 KiB
C
/*
|
|
* Cell Broadband Engine OProfile Support
|
|
*
|
|
* (C) Copyright IBM Corporation 2006
|
|
*
|
|
* Authors: Maynard Johnson <maynardj@us.ibm.com>
|
|
* Carl Love <carll@us.ibm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/cell-pmu.h>
|
|
#include "pr_util.h"
|
|
|
|
#define TRACE_ARRAY_SIZE 1024
|
|
#define SCALE_SHIFT 14
|
|
|
|
static u32 *samples;
|
|
|
|
int spu_prof_running;
|
|
static unsigned int profiling_interval;
|
|
|
|
#define NUM_SPU_BITS_TRBUF 16
|
|
#define SPUS_PER_TB_ENTRY 4
|
|
|
|
#define SPU_PC_MASK 0xFFFF
|
|
|
|
static DEFINE_SPINLOCK(sample_array_lock);
|
|
unsigned long sample_array_lock_flags;
|
|
|
|
void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset)
|
|
{
|
|
unsigned long ns_per_cyc;
|
|
|
|
if (!freq_khz)
|
|
freq_khz = ppc_proc_freq/1000;
|
|
|
|
/* To calculate a timeout in nanoseconds, the basic
|
|
* formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency).
|
|
* To avoid floating point math, we use the scale math
|
|
* technique as described in linux/jiffies.h. We use
|
|
* a scale factor of SCALE_SHIFT, which provides 4 decimal places
|
|
* of precision. This is close enough for the purpose at hand.
|
|
*
|
|
* The value of the timeout should be small enough that the hw
|
|
* trace buffer will not get more then about 1/3 full for the
|
|
* maximum user specified (the LFSR value) hw sampling frequency.
|
|
* This is to ensure the trace buffer will never fill even if the
|
|
* kernel thread scheduling varies under a heavy system load.
|
|
*/
|
|
|
|
ns_per_cyc = (USEC_PER_SEC << SCALE_SHIFT)/freq_khz;
|
|
profiling_interval = (ns_per_cyc * cycles_reset) >> SCALE_SHIFT;
|
|
|
|
}
|
|
|
|
/*
|
|
* Extract SPU PC from trace buffer entry
|
|
*/
|
|
static void spu_pc_extract(int cpu, int entry)
|
|
{
|
|
/* the trace buffer is 128 bits */
|
|
u64 trace_buffer[2];
|
|
u64 spu_mask;
|
|
int spu;
|
|
|
|
spu_mask = SPU_PC_MASK;
|
|
|
|
/* Each SPU PC is 16 bits; hence, four spus in each of
|
|
* the two 64-bit buffer entries that make up the
|
|
* 128-bit trace_buffer entry. Process two 64-bit values
|
|
* simultaneously.
|
|
* trace[0] SPU PC contents are: 0 1 2 3
|
|
* trace[1] SPU PC contents are: 4 5 6 7
|
|
*/
|
|
|
|
cbe_read_trace_buffer(cpu, trace_buffer);
|
|
|
|
for (spu = SPUS_PER_TB_ENTRY-1; spu >= 0; spu--) {
|
|
/* spu PC trace entry is upper 16 bits of the
|
|
* 18 bit SPU program counter
|
|
*/
|
|
samples[spu * TRACE_ARRAY_SIZE + entry]
|
|
= (spu_mask & trace_buffer[0]) << 2;
|
|
samples[(spu + SPUS_PER_TB_ENTRY) * TRACE_ARRAY_SIZE + entry]
|
|
= (spu_mask & trace_buffer[1]) << 2;
|
|
|
|
trace_buffer[0] = trace_buffer[0] >> NUM_SPU_BITS_TRBUF;
|
|
trace_buffer[1] = trace_buffer[1] >> NUM_SPU_BITS_TRBUF;
|
|
}
|
|
}
|
|
|
|
static int cell_spu_pc_collection(int cpu)
|
|
{
|
|
u32 trace_addr;
|
|
int entry;
|
|
|
|
/* process the collected SPU PC for the node */
|
|
|
|
entry = 0;
|
|
|
|
trace_addr = cbe_read_pm(cpu, trace_address);
|
|
while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
|
|
/* there is data in the trace buffer to process */
|
|
spu_pc_extract(cpu, entry);
|
|
|
|
entry++;
|
|
|
|
if (entry >= TRACE_ARRAY_SIZE)
|
|
/* spu_samples is full */
|
|
break;
|
|
|
|
trace_addr = cbe_read_pm(cpu, trace_address);
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
|
|
static enum hrtimer_restart profile_spus(struct hrtimer *timer)
|
|
{
|
|
ktime_t kt;
|
|
int cpu, node, k, num_samples, spu_num;
|
|
|
|
if (!spu_prof_running)
|
|
goto stop;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
if (cbe_get_hw_thread_id(cpu))
|
|
continue;
|
|
|
|
node = cbe_cpu_to_node(cpu);
|
|
|
|
/* There should only be one kernel thread at a time processing
|
|
* the samples. In the very unlikely case that the processing
|
|
* is taking a very long time and multiple kernel threads are
|
|
* started to process the samples. Make sure only one kernel
|
|
* thread is working on the samples array at a time. The
|
|
* sample array must be loaded and then processed for a given
|
|
* cpu. The sample array is not per cpu.
|
|
*/
|
|
spin_lock_irqsave(&sample_array_lock,
|
|
sample_array_lock_flags);
|
|
num_samples = cell_spu_pc_collection(cpu);
|
|
|
|
if (num_samples == 0) {
|
|
spin_unlock_irqrestore(&sample_array_lock,
|
|
sample_array_lock_flags);
|
|
continue;
|
|
}
|
|
|
|
for (k = 0; k < SPUS_PER_NODE; k++) {
|
|
spu_num = k + (node * SPUS_PER_NODE);
|
|
spu_sync_buffer(spu_num,
|
|
samples + (k * TRACE_ARRAY_SIZE),
|
|
num_samples);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&sample_array_lock,
|
|
sample_array_lock_flags);
|
|
|
|
}
|
|
smp_wmb(); /* insure spu event buffer updates are written */
|
|
/* don't want events intermingled... */
|
|
|
|
kt = ktime_set(0, profiling_interval);
|
|
if (!spu_prof_running)
|
|
goto stop;
|
|
hrtimer_forward(timer, timer->base->get_time(), kt);
|
|
return HRTIMER_RESTART;
|
|
|
|
stop:
|
|
printk(KERN_INFO "SPU_PROF: spu-prof timer ending\n");
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static struct hrtimer timer;
|
|
/*
|
|
* Entry point for SPU profiling.
|
|
* NOTE: SPU profiling is done system-wide, not per-CPU.
|
|
*
|
|
* cycles_reset is the count value specified by the user when
|
|
* setting up OProfile to count SPU_CYCLES.
|
|
*/
|
|
int start_spu_profiling(unsigned int cycles_reset)
|
|
{
|
|
ktime_t kt;
|
|
|
|
pr_debug("timer resolution: %lu\n", TICK_NSEC);
|
|
kt = ktime_set(0, profiling_interval);
|
|
hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
hrtimer_set_expires(&timer, kt);
|
|
timer.function = profile_spus;
|
|
|
|
/* Allocate arrays for collecting SPU PC samples */
|
|
samples = kzalloc(SPUS_PER_NODE *
|
|
TRACE_ARRAY_SIZE * sizeof(u32), GFP_KERNEL);
|
|
|
|
if (!samples)
|
|
return -ENOMEM;
|
|
|
|
spu_prof_running = 1;
|
|
hrtimer_start(&timer, kt, HRTIMER_MODE_REL);
|
|
schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void stop_spu_profiling(void)
|
|
{
|
|
spu_prof_running = 0;
|
|
hrtimer_cancel(&timer);
|
|
kfree(samples);
|
|
pr_debug("SPU_PROF: stop_spu_profiling issued\n");
|
|
}
|