forked from Minki/linux
fe56b9e6a8
The Qlogic Everest Driver is the backend module for the QL4xxx ethernet products by Qlogic. This module serves two main purposes: 1. It's responsible to contain all the common code that will be shared between the various drivers that would be used with said line of products. Flows such as chip initialization and de-initialization fall under this category. 2. It would abstract the protocol-specific HW & FW components, allowing the protocol drivers to have a clean APIs which is detached in its slowpath configuration from the actual HSI. This adds a very basic module without any protocol-specific bits. I.e., this adds a basic implementation that almost entirely falls under the first category. Signed-off-by: Yuval Mintz <Yuval.Mintz@qlogic.com> Signed-off-by: Ariel Elior <Ariel.Elior@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
777 lines
20 KiB
C
777 lines
20 KiB
C
/* QLogic qed NIC Driver
|
|
* Copyright (c) 2015 QLogic Corporation
|
|
*
|
|
* This software is available under the terms of the GNU General Public License
|
|
* (GPL) Version 2, available from the file COPYING in the main directory of
|
|
* this source tree.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/io.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/string.h>
|
|
#include <linux/qed/qed_chain.h>
|
|
#include "qed.h"
|
|
#include "qed_hsi.h"
|
|
#include "qed_hw.h"
|
|
#include "qed_reg_addr.h"
|
|
|
|
#define QED_BAR_ACQUIRE_TIMEOUT 1000
|
|
|
|
/* Invalid values */
|
|
#define QED_BAR_INVALID_OFFSET (cpu_to_le32(-1))
|
|
|
|
struct qed_ptt {
|
|
struct list_head list_entry;
|
|
unsigned int idx;
|
|
struct pxp_ptt_entry pxp;
|
|
};
|
|
|
|
struct qed_ptt_pool {
|
|
struct list_head free_list;
|
|
spinlock_t lock; /* ptt synchronized access */
|
|
struct qed_ptt ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
|
|
};
|
|
|
|
int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool),
|
|
GFP_ATOMIC);
|
|
int i;
|
|
|
|
if (!p_pool)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&p_pool->free_list);
|
|
for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
|
|
p_pool->ptts[i].idx = i;
|
|
p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
|
|
p_pool->ptts[i].pxp.pretend.control = 0;
|
|
if (i >= RESERVED_PTT_MAX)
|
|
list_add(&p_pool->ptts[i].list_entry,
|
|
&p_pool->free_list);
|
|
}
|
|
|
|
p_hwfn->p_ptt_pool = p_pool;
|
|
spin_lock_init(&p_pool->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_ptt *p_ptt;
|
|
int i;
|
|
|
|
for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
|
|
p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
|
|
p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
|
|
}
|
|
}
|
|
|
|
void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
|
|
{
|
|
kfree(p_hwfn->p_ptt_pool);
|
|
p_hwfn->p_ptt_pool = NULL;
|
|
}
|
|
|
|
struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
|
|
{
|
|
struct qed_ptt *p_ptt;
|
|
unsigned int i;
|
|
|
|
/* Take the free PTT from the list */
|
|
for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
|
|
spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
|
|
|
|
if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
|
|
p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
|
|
struct qed_ptt, list_entry);
|
|
list_del(&p_ptt->list_entry);
|
|
|
|
spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
|
|
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"allocated ptt %d\n", p_ptt->idx);
|
|
return p_ptt;
|
|
}
|
|
|
|
spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
|
|
usleep_range(1000, 2000);
|
|
}
|
|
|
|
DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
|
|
return NULL;
|
|
}
|
|
|
|
void qed_ptt_release(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
|
|
list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
|
|
spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
|
|
}
|
|
|
|
u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
/* The HW is using DWORDS and we need to translate it to Bytes */
|
|
return le32_to_cpu(p_ptt->pxp.offset) << 2;
|
|
}
|
|
|
|
static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
|
|
{
|
|
return PXP_PF_WINDOW_ADMIN_PER_PF_START +
|
|
p_ptt->idx * sizeof(struct pxp_ptt_entry);
|
|
}
|
|
|
|
u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
|
|
{
|
|
return PXP_EXTERNAL_BAR_PF_WINDOW_START +
|
|
p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
|
|
}
|
|
|
|
void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 new_hw_addr)
|
|
{
|
|
u32 prev_hw_addr;
|
|
|
|
prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
|
|
|
|
if (new_hw_addr == prev_hw_addr)
|
|
return;
|
|
|
|
/* Update PTT entery in admin window */
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"Updating PTT entry %d to offset 0x%x\n",
|
|
p_ptt->idx, new_hw_addr);
|
|
|
|
/* The HW is using DWORDS and the address is in Bytes */
|
|
p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
|
|
|
|
REG_WR(p_hwfn,
|
|
qed_ptt_config_addr(p_ptt) +
|
|
offsetof(struct pxp_ptt_entry, offset),
|
|
le32_to_cpu(p_ptt->pxp.offset));
|
|
}
|
|
|
|
static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 hw_addr)
|
|
{
|
|
u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
|
|
u32 offset;
|
|
|
|
offset = hw_addr - win_hw_addr;
|
|
|
|
/* Verify the address is within the window */
|
|
if (hw_addr < win_hw_addr ||
|
|
offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
|
|
qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
|
|
offset = 0;
|
|
}
|
|
|
|
return qed_ptt_get_bar_addr(p_ptt) + offset;
|
|
}
|
|
|
|
struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
|
|
enum reserved_ptts ptt_idx)
|
|
{
|
|
if (ptt_idx >= RESERVED_PTT_MAX) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Requested PTT %d is out of range\n", ptt_idx);
|
|
return NULL;
|
|
}
|
|
|
|
return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
|
|
}
|
|
|
|
void qed_wr(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 hw_addr, u32 val)
|
|
{
|
|
u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
|
|
|
|
REG_WR(p_hwfn, bar_addr, val);
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
|
|
bar_addr, hw_addr, val);
|
|
}
|
|
|
|
u32 qed_rd(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 hw_addr)
|
|
{
|
|
u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
|
|
u32 val = REG_RD(p_hwfn, bar_addr);
|
|
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
|
|
bar_addr, hw_addr, val);
|
|
|
|
return val;
|
|
}
|
|
|
|
static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
void *addr,
|
|
u32 hw_addr,
|
|
size_t n,
|
|
bool to_device)
|
|
{
|
|
u32 dw_count, *host_addr, hw_offset;
|
|
size_t quota, done = 0;
|
|
u32 __iomem *reg_addr;
|
|
|
|
while (done < n) {
|
|
quota = min_t(size_t, n - done,
|
|
PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
|
|
|
|
qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
|
|
hw_offset = qed_ptt_get_bar_addr(p_ptt);
|
|
|
|
dw_count = quota / 4;
|
|
host_addr = (u32 *)((u8 *)addr + done);
|
|
reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
|
|
if (to_device)
|
|
while (dw_count--)
|
|
DIRECT_REG_WR(reg_addr++, *host_addr++);
|
|
else
|
|
while (dw_count--)
|
|
*host_addr++ = DIRECT_REG_RD(reg_addr++);
|
|
|
|
done += quota;
|
|
}
|
|
}
|
|
|
|
void qed_memcpy_from(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
void *dest, u32 hw_addr, size_t n)
|
|
{
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
|
|
hw_addr, dest, hw_addr, (unsigned long)n);
|
|
|
|
qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
|
|
}
|
|
|
|
void qed_memcpy_to(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u32 hw_addr, void *src, size_t n)
|
|
{
|
|
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
|
|
"hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
|
|
hw_addr, hw_addr, src, (unsigned long)n);
|
|
|
|
qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
|
|
}
|
|
|
|
void qed_fid_pretend(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u16 fid)
|
|
{
|
|
u16 control = 0;
|
|
|
|
SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
|
|
SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
|
|
|
|
/* Every pretend undos previous pretends, including
|
|
* previous port pretend.
|
|
*/
|
|
SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
|
|
SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
|
|
SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
|
|
|
|
if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
|
|
fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
|
|
|
|
p_ptt->pxp.pretend.control = cpu_to_le16(control);
|
|
p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
|
|
|
|
REG_WR(p_hwfn,
|
|
qed_ptt_config_addr(p_ptt) +
|
|
offsetof(struct pxp_ptt_entry, pretend),
|
|
*(u32 *)&p_ptt->pxp.pretend);
|
|
}
|
|
|
|
void qed_port_pretend(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u8 port_id)
|
|
{
|
|
u16 control = 0;
|
|
|
|
SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
|
|
SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
|
|
SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
|
|
|
|
p_ptt->pxp.pretend.control = cpu_to_le16(control);
|
|
|
|
REG_WR(p_hwfn,
|
|
qed_ptt_config_addr(p_ptt) +
|
|
offsetof(struct pxp_ptt_entry, pretend),
|
|
*(u32 *)&p_ptt->pxp.pretend);
|
|
}
|
|
|
|
void qed_port_unpretend(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
u16 control = 0;
|
|
|
|
SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
|
|
SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
|
|
SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
|
|
|
|
p_ptt->pxp.pretend.control = cpu_to_le16(control);
|
|
|
|
REG_WR(p_hwfn,
|
|
qed_ptt_config_addr(p_ptt) +
|
|
offsetof(struct pxp_ptt_entry, pretend),
|
|
*(u32 *)&p_ptt->pxp.pretend);
|
|
}
|
|
|
|
/* DMAE */
|
|
static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
|
|
const u8 is_src_type_grc,
|
|
const u8 is_dst_type_grc,
|
|
struct qed_dmae_params *p_params)
|
|
{
|
|
u32 opcode = 0;
|
|
u16 opcodeB = 0;
|
|
|
|
/* Whether the source is the PCIe or the GRC.
|
|
* 0- The source is the PCIe
|
|
* 1- The source is the GRC.
|
|
*/
|
|
opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
|
|
: DMAE_CMD_SRC_MASK_PCIE) <<
|
|
DMAE_CMD_SRC_SHIFT;
|
|
opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_SRC_PF_ID_MASK) <<
|
|
DMAE_CMD_SRC_PF_ID_SHIFT);
|
|
|
|
/* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
|
|
opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
|
|
: DMAE_CMD_DST_MASK_PCIE) <<
|
|
DMAE_CMD_DST_SHIFT;
|
|
opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_DST_PF_ID_MASK) <<
|
|
DMAE_CMD_DST_PF_ID_SHIFT);
|
|
|
|
/* Whether to write a completion word to the completion destination:
|
|
* 0-Do not write a completion word
|
|
* 1-Write the completion word
|
|
*/
|
|
opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
|
|
opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
|
|
DMAE_CMD_SRC_ADDR_RESET_SHIFT);
|
|
|
|
if (p_params->flags & QED_DMAE_FLAG_COMPLETION_DST)
|
|
opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
|
|
|
|
opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
|
|
|
|
opcode |= ((p_hwfn->port_id) << DMAE_CMD_PORT_ID_SHIFT);
|
|
|
|
/* reset source address in next go */
|
|
opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
|
|
DMAE_CMD_SRC_ADDR_RESET_SHIFT);
|
|
|
|
/* reset dest address in next go */
|
|
opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
|
|
DMAE_CMD_DST_ADDR_RESET_SHIFT);
|
|
|
|
opcodeB |= (DMAE_CMD_SRC_VF_ID_MASK <<
|
|
DMAE_CMD_SRC_VF_ID_SHIFT);
|
|
|
|
opcodeB |= (DMAE_CMD_DST_VF_ID_MASK <<
|
|
DMAE_CMD_DST_VF_ID_SHIFT);
|
|
|
|
p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
|
|
p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcodeB);
|
|
}
|
|
|
|
u32 qed_dmae_idx_to_go_cmd(u8 idx)
|
|
{
|
|
/* All the DMAE 'go' registers form an array in internal memory */
|
|
return DMAE_REG_GO_C0 + (idx << 2);
|
|
}
|
|
|
|
static int
|
|
qed_dmae_post_command(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt)
|
|
{
|
|
struct dmae_cmd *command = p_hwfn->dmae_info.p_dmae_cmd;
|
|
u8 idx_cmd = p_hwfn->dmae_info.channel, i;
|
|
int qed_status = 0;
|
|
|
|
/* verify address is not NULL */
|
|
if ((((command->dst_addr_lo == 0) && (command->dst_addr_hi == 0)) ||
|
|
((command->src_addr_lo == 0) && (command->src_addr_hi == 0)))) {
|
|
DP_NOTICE(p_hwfn,
|
|
"source or destination address 0 idx_cmd=%d\n"
|
|
"opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
|
|
idx_cmd,
|
|
le32_to_cpu(command->opcode),
|
|
le16_to_cpu(command->opcode_b),
|
|
le16_to_cpu(command->length),
|
|
le32_to_cpu(command->src_addr_hi),
|
|
le32_to_cpu(command->src_addr_lo),
|
|
le32_to_cpu(command->dst_addr_hi),
|
|
le32_to_cpu(command->dst_addr_lo));
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
DP_VERBOSE(p_hwfn,
|
|
NETIF_MSG_HW,
|
|
"Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
|
|
idx_cmd,
|
|
le32_to_cpu(command->opcode),
|
|
le16_to_cpu(command->opcode_b),
|
|
le16_to_cpu(command->length),
|
|
le32_to_cpu(command->src_addr_hi),
|
|
le32_to_cpu(command->src_addr_lo),
|
|
le32_to_cpu(command->dst_addr_hi),
|
|
le32_to_cpu(command->dst_addr_lo));
|
|
|
|
/* Copy the command to DMAE - need to do it before every call
|
|
* for source/dest address no reset.
|
|
* The first 9 DWs are the command registers, the 10 DW is the
|
|
* GO register, and the rest are result registers
|
|
* (which are read only by the client).
|
|
*/
|
|
for (i = 0; i < DMAE_CMD_SIZE; i++) {
|
|
u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
|
|
*(((u32 *)command) + i) : 0;
|
|
|
|
qed_wr(p_hwfn, p_ptt,
|
|
DMAE_REG_CMD_MEM +
|
|
(idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
|
|
(i * sizeof(u32)), data);
|
|
}
|
|
|
|
qed_wr(p_hwfn, p_ptt,
|
|
qed_dmae_idx_to_go_cmd(idx_cmd),
|
|
DMAE_GO_VALUE);
|
|
|
|
return qed_status;
|
|
}
|
|
|
|
int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
|
|
{
|
|
dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
|
|
struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
|
|
u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
|
|
u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
|
|
|
|
*p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
|
|
sizeof(u32),
|
|
p_addr,
|
|
GFP_KERNEL);
|
|
if (!*p_comp) {
|
|
DP_NOTICE(p_hwfn, "Failed to allocate `p_completion_word'\n");
|
|
goto err;
|
|
}
|
|
|
|
p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
|
|
*p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
|
|
sizeof(struct dmae_cmd),
|
|
p_addr, GFP_KERNEL);
|
|
if (!*p_cmd) {
|
|
DP_NOTICE(p_hwfn, "Failed to allocate `struct dmae_cmd'\n");
|
|
goto err;
|
|
}
|
|
|
|
p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
|
|
*p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
|
|
sizeof(u32) * DMAE_MAX_RW_SIZE,
|
|
p_addr, GFP_KERNEL);
|
|
if (!*p_buff) {
|
|
DP_NOTICE(p_hwfn, "Failed to allocate `intermediate_buffer'\n");
|
|
goto err;
|
|
}
|
|
|
|
p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
|
|
|
|
return 0;
|
|
err:
|
|
qed_dmae_info_free(p_hwfn);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
|
|
{
|
|
dma_addr_t p_phys;
|
|
|
|
/* Just make sure no one is in the middle */
|
|
mutex_lock(&p_hwfn->dmae_info.mutex);
|
|
|
|
if (p_hwfn->dmae_info.p_completion_word) {
|
|
p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
|
|
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
|
|
sizeof(u32),
|
|
p_hwfn->dmae_info.p_completion_word,
|
|
p_phys);
|
|
p_hwfn->dmae_info.p_completion_word = NULL;
|
|
}
|
|
|
|
if (p_hwfn->dmae_info.p_dmae_cmd) {
|
|
p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
|
|
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
|
|
sizeof(struct dmae_cmd),
|
|
p_hwfn->dmae_info.p_dmae_cmd,
|
|
p_phys);
|
|
p_hwfn->dmae_info.p_dmae_cmd = NULL;
|
|
}
|
|
|
|
if (p_hwfn->dmae_info.p_intermediate_buffer) {
|
|
p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
|
|
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
|
|
sizeof(u32) * DMAE_MAX_RW_SIZE,
|
|
p_hwfn->dmae_info.p_intermediate_buffer,
|
|
p_phys);
|
|
p_hwfn->dmae_info.p_intermediate_buffer = NULL;
|
|
}
|
|
|
|
mutex_unlock(&p_hwfn->dmae_info.mutex);
|
|
}
|
|
|
|
static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
|
|
{
|
|
u32 wait_cnt = 0;
|
|
u32 wait_cnt_limit = 10000;
|
|
|
|
int qed_status = 0;
|
|
|
|
barrier();
|
|
while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
|
|
udelay(DMAE_MIN_WAIT_TIME);
|
|
if (++wait_cnt > wait_cnt_limit) {
|
|
DP_NOTICE(p_hwfn->cdev,
|
|
"Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
|
|
*p_hwfn->dmae_info.p_completion_word,
|
|
DMAE_COMPLETION_VAL);
|
|
qed_status = -EBUSY;
|
|
break;
|
|
}
|
|
|
|
/* to sync the completion_word since we are not
|
|
* using the volatile keyword for p_completion_word
|
|
*/
|
|
barrier();
|
|
}
|
|
|
|
if (qed_status == 0)
|
|
*p_hwfn->dmae_info.p_completion_word = 0;
|
|
|
|
return qed_status;
|
|
}
|
|
|
|
static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u64 src_addr,
|
|
u64 dst_addr,
|
|
u8 src_type,
|
|
u8 dst_type,
|
|
u32 length)
|
|
{
|
|
dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
|
|
struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
|
|
int qed_status = 0;
|
|
|
|
switch (src_type) {
|
|
case QED_DMAE_ADDRESS_GRC:
|
|
case QED_DMAE_ADDRESS_HOST_PHYS:
|
|
cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
|
|
cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
|
|
break;
|
|
/* for virtual source addresses we use the intermediate buffer. */
|
|
case QED_DMAE_ADDRESS_HOST_VIRT:
|
|
cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
|
|
cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
|
|
memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
|
|
(void *)(uintptr_t)src_addr,
|
|
length * sizeof(u32));
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (dst_type) {
|
|
case QED_DMAE_ADDRESS_GRC:
|
|
case QED_DMAE_ADDRESS_HOST_PHYS:
|
|
cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
|
|
cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
|
|
break;
|
|
/* for virtual source addresses we use the intermediate buffer. */
|
|
case QED_DMAE_ADDRESS_HOST_VIRT:
|
|
cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
|
|
cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
cmd->length = cpu_to_le16((u16)length);
|
|
|
|
qed_dmae_post_command(p_hwfn, p_ptt);
|
|
|
|
qed_status = qed_dmae_operation_wait(p_hwfn);
|
|
|
|
if (qed_status) {
|
|
DP_NOTICE(p_hwfn,
|
|
"qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
|
|
src_addr,
|
|
dst_addr,
|
|
length);
|
|
return qed_status;
|
|
}
|
|
|
|
if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
|
|
memcpy((void *)(uintptr_t)(dst_addr),
|
|
&p_hwfn->dmae_info.p_intermediate_buffer[0],
|
|
length * sizeof(u32));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u64 src_addr, u64 dst_addr,
|
|
u8 src_type, u8 dst_type,
|
|
u32 size_in_dwords,
|
|
struct qed_dmae_params *p_params)
|
|
{
|
|
dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
|
|
u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
|
|
struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
|
|
u64 src_addr_split = 0, dst_addr_split = 0;
|
|
u16 length_limit = DMAE_MAX_RW_SIZE;
|
|
int qed_status = 0;
|
|
u32 offset = 0;
|
|
|
|
qed_dmae_opcode(p_hwfn,
|
|
(src_type == QED_DMAE_ADDRESS_GRC),
|
|
(dst_type == QED_DMAE_ADDRESS_GRC),
|
|
p_params);
|
|
|
|
cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
|
|
cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
|
|
cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
|
|
|
|
/* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
|
|
cnt_split = size_in_dwords / length_limit;
|
|
length_mod = size_in_dwords % length_limit;
|
|
|
|
src_addr_split = src_addr;
|
|
dst_addr_split = dst_addr;
|
|
|
|
for (i = 0; i <= cnt_split; i++) {
|
|
offset = length_limit * i;
|
|
|
|
if (!(p_params->flags & QED_DMAE_FLAG_RW_REPL_SRC)) {
|
|
if (src_type == QED_DMAE_ADDRESS_GRC)
|
|
src_addr_split = src_addr + offset;
|
|
else
|
|
src_addr_split = src_addr + (offset * 4);
|
|
}
|
|
|
|
if (dst_type == QED_DMAE_ADDRESS_GRC)
|
|
dst_addr_split = dst_addr + offset;
|
|
else
|
|
dst_addr_split = dst_addr + (offset * 4);
|
|
|
|
length_cur = (cnt_split == i) ? length_mod : length_limit;
|
|
|
|
/* might be zero on last iteration */
|
|
if (!length_cur)
|
|
continue;
|
|
|
|
qed_status = qed_dmae_execute_sub_operation(p_hwfn,
|
|
p_ptt,
|
|
src_addr_split,
|
|
dst_addr_split,
|
|
src_type,
|
|
dst_type,
|
|
length_cur);
|
|
if (qed_status) {
|
|
DP_NOTICE(p_hwfn,
|
|
"qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
|
|
qed_status,
|
|
src_addr,
|
|
dst_addr,
|
|
length_cur);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return qed_status;
|
|
}
|
|
|
|
int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
|
|
struct qed_ptt *p_ptt,
|
|
u64 source_addr,
|
|
u32 grc_addr,
|
|
u32 size_in_dwords,
|
|
u32 flags)
|
|
{
|
|
u32 grc_addr_in_dw = grc_addr / sizeof(u32);
|
|
struct qed_dmae_params params;
|
|
int rc;
|
|
|
|
memset(¶ms, 0, sizeof(struct qed_dmae_params));
|
|
params.flags = flags;
|
|
|
|
mutex_lock(&p_hwfn->dmae_info.mutex);
|
|
|
|
rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
|
|
grc_addr_in_dw,
|
|
QED_DMAE_ADDRESS_HOST_VIRT,
|
|
QED_DMAE_ADDRESS_GRC,
|
|
size_in_dwords, ¶ms);
|
|
|
|
mutex_unlock(&p_hwfn->dmae_info.mutex);
|
|
|
|
return rc;
|
|
}
|
|
|
|
u16 qed_get_qm_pq(struct qed_hwfn *p_hwfn,
|
|
enum protocol_type proto,
|
|
union qed_qm_pq_params *p_params)
|
|
{
|
|
u16 pq_id = 0;
|
|
|
|
if ((proto == PROTOCOLID_CORE || proto == PROTOCOLID_ETH) &&
|
|
!p_params) {
|
|
DP_NOTICE(p_hwfn,
|
|
"Protocol %d received NULL PQ params\n",
|
|
proto);
|
|
return 0;
|
|
}
|
|
|
|
switch (proto) {
|
|
case PROTOCOLID_CORE:
|
|
if (p_params->core.tc == LB_TC)
|
|
pq_id = p_hwfn->qm_info.pure_lb_pq;
|
|
else
|
|
pq_id = p_hwfn->qm_info.offload_pq;
|
|
break;
|
|
case PROTOCOLID_ETH:
|
|
pq_id = p_params->eth.tc;
|
|
break;
|
|
default:
|
|
pq_id = 0;
|
|
}
|
|
|
|
pq_id = CM_TX_PQ_BASE + pq_id + RESC_START(p_hwfn, QED_PQ);
|
|
|
|
return pq_id;
|
|
}
|