forked from Minki/linux
6d2e91a662
When building under W=1, the lack of lkdtm.h in lkdtm_usercopy.c and lkdtm_rodata.c was discovered. This fixes the issue and consolidates the common header and the pr_fmt macro for simplicity and regularity across each test source file. Signed-off-by: Kees Cook <keescook@chromium.org>
143 lines
3.2 KiB
C
143 lines
3.2 KiB
C
/*
|
|
* This is for all the tests relating directly to heap memory, including
|
|
* page allocation and slab allocations.
|
|
*/
|
|
#include "lkdtm.h"
|
|
#include <linux/slab.h>
|
|
|
|
/*
|
|
* This tries to stay within the next largest power-of-2 kmalloc cache
|
|
* to avoid actually overwriting anything important if it's not detected
|
|
* correctly.
|
|
*/
|
|
void lkdtm_OVERWRITE_ALLOCATION(void)
|
|
{
|
|
size_t len = 1020;
|
|
u32 *data = kmalloc(len, GFP_KERNEL);
|
|
|
|
data[1024 / sizeof(u32)] = 0x12345678;
|
|
kfree(data);
|
|
}
|
|
|
|
void lkdtm_WRITE_AFTER_FREE(void)
|
|
{
|
|
int *base, *again;
|
|
size_t len = 1024;
|
|
/*
|
|
* The slub allocator uses the first word to store the free
|
|
* pointer in some configurations. Use the middle of the
|
|
* allocation to avoid running into the freelist
|
|
*/
|
|
size_t offset = (len / sizeof(*base)) / 2;
|
|
|
|
base = kmalloc(len, GFP_KERNEL);
|
|
pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
|
|
pr_info("Attempting bad write to freed memory at %p\n",
|
|
&base[offset]);
|
|
kfree(base);
|
|
base[offset] = 0x0abcdef0;
|
|
/* Attempt to notice the overwrite. */
|
|
again = kmalloc(len, GFP_KERNEL);
|
|
kfree(again);
|
|
if (again != base)
|
|
pr_info("Hmm, didn't get the same memory range.\n");
|
|
}
|
|
|
|
void lkdtm_READ_AFTER_FREE(void)
|
|
{
|
|
int *base, *val, saw;
|
|
size_t len = 1024;
|
|
/*
|
|
* The slub allocator uses the first word to store the free
|
|
* pointer in some configurations. Use the middle of the
|
|
* allocation to avoid running into the freelist
|
|
*/
|
|
size_t offset = (len / sizeof(*base)) / 2;
|
|
|
|
base = kmalloc(len, GFP_KERNEL);
|
|
if (!base) {
|
|
pr_info("Unable to allocate base memory.\n");
|
|
return;
|
|
}
|
|
|
|
val = kmalloc(len, GFP_KERNEL);
|
|
if (!val) {
|
|
pr_info("Unable to allocate val memory.\n");
|
|
kfree(base);
|
|
return;
|
|
}
|
|
|
|
*val = 0x12345678;
|
|
base[offset] = *val;
|
|
pr_info("Value in memory before free: %x\n", base[offset]);
|
|
|
|
kfree(base);
|
|
|
|
pr_info("Attempting bad read from freed memory\n");
|
|
saw = base[offset];
|
|
if (saw != *val) {
|
|
/* Good! Poisoning happened, so declare a win. */
|
|
pr_info("Memory correctly poisoned (%x)\n", saw);
|
|
BUG();
|
|
}
|
|
pr_info("Memory was not poisoned\n");
|
|
|
|
kfree(val);
|
|
}
|
|
|
|
void lkdtm_WRITE_BUDDY_AFTER_FREE(void)
|
|
{
|
|
unsigned long p = __get_free_page(GFP_KERNEL);
|
|
if (!p) {
|
|
pr_info("Unable to allocate free page\n");
|
|
return;
|
|
}
|
|
|
|
pr_info("Writing to the buddy page before free\n");
|
|
memset((void *)p, 0x3, PAGE_SIZE);
|
|
free_page(p);
|
|
schedule();
|
|
pr_info("Attempting bad write to the buddy page after free\n");
|
|
memset((void *)p, 0x78, PAGE_SIZE);
|
|
/* Attempt to notice the overwrite. */
|
|
p = __get_free_page(GFP_KERNEL);
|
|
free_page(p);
|
|
schedule();
|
|
}
|
|
|
|
void lkdtm_READ_BUDDY_AFTER_FREE(void)
|
|
{
|
|
unsigned long p = __get_free_page(GFP_KERNEL);
|
|
int saw, *val;
|
|
int *base;
|
|
|
|
if (!p) {
|
|
pr_info("Unable to allocate free page\n");
|
|
return;
|
|
}
|
|
|
|
val = kmalloc(1024, GFP_KERNEL);
|
|
if (!val) {
|
|
pr_info("Unable to allocate val memory.\n");
|
|
free_page(p);
|
|
return;
|
|
}
|
|
|
|
base = (int *)p;
|
|
|
|
*val = 0x12345678;
|
|
base[0] = *val;
|
|
pr_info("Value in memory before free: %x\n", base[0]);
|
|
free_page(p);
|
|
pr_info("Attempting to read from freed memory\n");
|
|
saw = base[0];
|
|
if (saw != *val) {
|
|
/* Good! Poisoning happened, so declare a win. */
|
|
pr_info("Memory correctly poisoned (%x)\n", saw);
|
|
BUG();
|
|
}
|
|
pr_info("Buddy page was not poisoned\n");
|
|
|
|
kfree(val);
|
|
}
|