linux/drivers/mtd/nand/nand_base.c
Thomas Gleixner 58dd8f2bfd [MTD] NAND consolidate data types
The NAND driver used a mix of unsigned char, u_char amd uint8_t
data types. Consolidate to uint8_t usage

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2006-05-23 11:52:35 +02:00

2774 lines
80 KiB
C

/*
* drivers/mtd/nand.c
*
* Overview:
* This is the generic MTD driver for NAND flash devices. It should be
* capable of working with almost all NAND chips currently available.
* Basic support for AG-AND chips is provided.
*
* Additional technical information is available on
* http://www.linux-mtd.infradead.org/tech/nand.html
*
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
* 2002 Thomas Gleixner (tglx@linutronix.de)
*
* 02-08-2004 tglx: support for strange chips, which cannot auto increment
* pages on read / read_oob
*
* 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
* pointed this out, as he marked an auto increment capable chip
* as NOAUTOINCR in the board driver.
* Make reads over block boundaries work too
*
* 04-14-2004 tglx: first working version for 2k page size chips
*
* 05-19-2004 tglx: Basic support for Renesas AG-AND chips
*
* 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
* among multiple independend devices. Suggestions and initial
* patch from Ben Dooks <ben-mtd@fluff.org>
*
* 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb"
* issue. Basically, any block not rewritten may lose data when
* surrounding blocks are rewritten many times. JFFS2 ensures
* this doesn't happen for blocks it uses, but the Bad Block
* Table(s) may not be rewritten. To ensure they do not lose
* data, force them to be rewritten when some of the surrounding
* blocks are erased. Rather than tracking a specific nearby
* block (which could itself go bad), use a page address 'mask' to
* select several blocks in the same area, and rewrite the BBT
* when any of them are erased.
*
* 01-03-2005 dmarlin: added support for the device recovery command sequence
* for Renesas AG-AND chips. If there was a sudden loss of power
* during an erase operation, a "device recovery" operation must
* be performed when power is restored to ensure correct
* operation.
*
* 01-20-2005 dmarlin: added support for optional hardware specific callback
* routine to perform extra error status checks on erase and write
* failures. This required adding a wrapper function for
* nand_read_ecc.
*
* 08-20-2005 vwool: suspend/resume added
*
* Credits:
* David Woodhouse for adding multichip support
*
* Aleph One Ltd. and Toby Churchill Ltd. for supporting the
* rework for 2K page size chips
*
* TODO:
* Enable cached programming for 2k page size chips
* Check, if mtd->ecctype should be set to MTD_ECC_HW
* if we have HW ecc support.
* The AG-AND chips have nice features for speed improvement,
* which are not supported yet. Read / program 4 pages in one go.
*
* $Id: nand_base.c,v 1.150 2005/09/15 13:58:48 vwool Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/compatmac.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/leds.h>
#include <asm/io.h>
#ifdef CONFIG_MTD_PARTITIONS
#include <linux/mtd/partitions.h>
#endif
/* Define default oob placement schemes for large and small page devices */
static struct nand_oobinfo nand_oob_8 = {
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 3,
.eccpos = {0, 1, 2},
.oobfree = {{3, 2}, {6, 2}}
};
static struct nand_oobinfo nand_oob_16 = {
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 6,
.eccpos = {0, 1, 2, 3, 6, 7},
.oobfree = {{8, 8}}
};
static struct nand_oobinfo nand_oob_64 = {
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 24,
.eccpos = {
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63},
.oobfree = {{2, 38}}
};
/* This is used for padding purposes in nand_write_oob */
static uint8_t ffchars[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
};
/*
* NAND low-level MTD interface functions
*/
static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len);
static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len);
static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len);
static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, uint8_t *buf);
static int nand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, uint8_t *buf, uint8_t *eccbuf,
struct nand_oobinfo *oobsel);
static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, uint8_t *buf);
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const uint8_t *buf);
static int nand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const uint8_t *buf, uint8_t *eccbuf,
struct nand_oobinfo *oobsel);
static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const uint8_t *buf);
static int nand_writev(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen);
static int nand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen,
uint8_t *eccbuf, struct nand_oobinfo *oobsel);
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr);
static void nand_sync(struct mtd_info *mtd);
/* Some internal functions */
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this,
int page, uint8_t * oob_buf,
struct nand_oobinfo *oobsel, int mode);
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this,
int page, int numpages, uint8_t *oob_buf,
struct nand_oobinfo *oobsel, int chipnr,
int oobmode);
#else
#define nand_verify_pages(...) (0)
#endif
static int nand_get_device(struct nand_chip *this, struct mtd_info *mtd,
int new_state);
/**
* nand_release_device - [GENERIC] release chip
* @mtd: MTD device structure
*
* Deselect, release chip lock and wake up anyone waiting on the device
*/
static void nand_release_device(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
/* De-select the NAND device */
this->select_chip(mtd, -1);
/* Release the controller and the chip */
spin_lock(&this->controller->lock);
this->controller->active = NULL;
this->state = FL_READY;
wake_up(&this->controller->wq);
spin_unlock(&this->controller->lock);
}
/**
* nand_read_byte - [DEFAULT] read one byte from the chip
* @mtd: MTD device structure
*
* Default read function for 8bit buswith
*/
static uint8_t nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
return readb(this->IO_ADDR_R);
}
/**
* nand_write_byte - [DEFAULT] write one byte to the chip
* @mtd: MTD device structure
* @byte: pointer to data byte to write
*
* Default write function for 8it buswith
*/
static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
{
struct nand_chip *this = mtd->priv;
writeb(byte, this->IO_ADDR_W);
}
/**
* nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
* @mtd: MTD device structure
*
* Default read function for 16bit buswith with
* endianess conversion
*/
static uint8_t nand_read_byte16(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
return (uint8_t) cpu_to_le16(readw(this->IO_ADDR_R));
}
/**
* nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
* @mtd: MTD device structure
* @byte: pointer to data byte to write
*
* Default write function for 16bit buswith with
* endianess conversion
*/
static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
{
struct nand_chip *this = mtd->priv;
writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
}
/**
* nand_read_word - [DEFAULT] read one word from the chip
* @mtd: MTD device structure
*
* Default read function for 16bit buswith without
* endianess conversion
*/
static u16 nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
return readw(this->IO_ADDR_R);
}
/**
* nand_write_word - [DEFAULT] write one word to the chip
* @mtd: MTD device structure
* @word: data word to write
*
* Default write function for 16bit buswith without
* endianess conversion
*/
static void nand_write_word(struct mtd_info *mtd, u16 word)
{
struct nand_chip *this = mtd->priv;
writew(word, this->IO_ADDR_W);
}
/**
* nand_select_chip - [DEFAULT] control CE line
* @mtd: MTD device structure
* @chip: chipnumber to select, -1 for deselect
*
* Default select function for 1 chip devices.
*/
static void nand_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *this = mtd->priv;
switch (chip) {
case -1:
this->hwcontrol(mtd, NAND_CTL_CLRNCE);
break;
case 0:
this->hwcontrol(mtd, NAND_CTL_SETNCE);
break;
default:
BUG();
}
}
/**
* nand_write_buf - [DEFAULT] write buffer to chip
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*
* Default write function for 8bit buswith
*/
static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i = 0; i < len; i++)
writeb(buf[i], this->IO_ADDR_W);
}
/**
* nand_read_buf - [DEFAULT] read chip data into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*
* Default read function for 8bit buswith
*/
static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i = 0; i < len; i++)
buf[i] = readb(this->IO_ADDR_R);
}
/**
* nand_verify_buf - [DEFAULT] Verify chip data against buffer
* @mtd: MTD device structure
* @buf: buffer containing the data to compare
* @len: number of bytes to compare
*
* Default verify function for 8bit buswith
*/
static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i = 0; i < len; i++)
if (buf[i] != readb(this->IO_ADDR_R))
return -EFAULT;
return 0;
}
/**
* nand_write_buf16 - [DEFAULT] write buffer to chip
* @mtd: MTD device structure
* @buf: data buffer
* @len: number of bytes to write
*
* Default write function for 16bit buswith
*/
static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
u16 *p = (u16 *) buf;
len >>= 1;
for (i = 0; i < len; i++)
writew(p[i], this->IO_ADDR_W);
}
/**
* nand_read_buf16 - [DEFAULT] read chip data into buffer
* @mtd: MTD device structure
* @buf: buffer to store date
* @len: number of bytes to read
*
* Default read function for 16bit buswith
*/
static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
u16 *p = (u16 *) buf;
len >>= 1;
for (i = 0; i < len; i++)
p[i] = readw(this->IO_ADDR_R);
}
/**
* nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
* @mtd: MTD device structure
* @buf: buffer containing the data to compare
* @len: number of bytes to compare
*
* Default verify function for 16bit buswith
*/
static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
u16 *p = (u16 *) buf;
len >>= 1;
for (i = 0; i < len; i++)
if (p[i] != readw(this->IO_ADDR_R))
return -EFAULT;
return 0;
}
/**
* nand_block_bad - [DEFAULT] Read bad block marker from the chip
* @mtd: MTD device structure
* @ofs: offset from device start
* @getchip: 0, if the chip is already selected
*
* Check, if the block is bad.
*/
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
int page, chipnr, res = 0;
struct nand_chip *this = mtd->priv;
u16 bad;
if (getchip) {
page = (int)(ofs >> this->page_shift);
chipnr = (int)(ofs >> this->chip_shift);
/* Grab the lock and see if the device is available */
nand_get_device(this, mtd, FL_READING);
/* Select the NAND device */
this->select_chip(mtd, chipnr);
} else
page = (int)ofs;
if (this->options & NAND_BUSWIDTH_16) {
this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE,
page & this->pagemask);
bad = cpu_to_le16(this->read_word(mtd));
if (this->badblockpos & 0x1)
bad >>= 8;
if ((bad & 0xFF) != 0xff)
res = 1;
} else {
this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos,
page & this->pagemask);
if (this->read_byte(mtd) != 0xff)
res = 1;
}
if (getchip) {
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
}
return res;
}
/**
* nand_default_block_markbad - [DEFAULT] mark a block bad
* @mtd: MTD device structure
* @ofs: offset from device start
*
* This is the default implementation, which can be overridden by
* a hardware specific driver.
*/
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *this = mtd->priv;
uint8_t buf[2] = { 0, 0 };
size_t retlen;
int block;
/* Get block number */
block = ((int)ofs) >> this->bbt_erase_shift;
if (this->bbt)
this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
/* Do we have a flash based bad block table ? */
if (this->options & NAND_USE_FLASH_BBT)
return nand_update_bbt(mtd, ofs);
/* We write two bytes, so we dont have to mess with 16 bit access */
ofs += mtd->oobsize + (this->badblockpos & ~0x01);
return nand_write_oob(mtd, ofs, 2, &retlen, buf);
}
/**
* nand_check_wp - [GENERIC] check if the chip is write protected
* @mtd: MTD device structure
* Check, if the device is write protected
*
* The function expects, that the device is already selected
*/
static int nand_check_wp(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
/* Check the WP bit */
this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
return (this->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
}
/**
* nand_block_checkbad - [GENERIC] Check if a block is marked bad
* @mtd: MTD device structure
* @ofs: offset from device start
* @getchip: 0, if the chip is already selected
* @allowbbt: 1, if its allowed to access the bbt area
*
* Check, if the block is bad. Either by reading the bad block table or
* calling of the scan function.
*/
static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
int allowbbt)
{
struct nand_chip *this = mtd->priv;
if (!this->bbt)
return this->block_bad(mtd, ofs, getchip);
/* Return info from the table */
return nand_isbad_bbt(mtd, ofs, allowbbt);
}
DEFINE_LED_TRIGGER(nand_led_trigger);
/*
* Wait for the ready pin, after a command
* The timeout is catched later.
*/
static void nand_wait_ready(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
unsigned long timeo = jiffies + 2;
led_trigger_event(nand_led_trigger, LED_FULL);
/* wait until command is processed or timeout occures */
do {
if (this->dev_ready(mtd))
break;
touch_softlockup_watchdog();
} while (time_before(jiffies, timeo));
led_trigger_event(nand_led_trigger, LED_OFF);
}
/**
* nand_command - [DEFAULT] Send command to NAND device
* @mtd: MTD device structure
* @command: the command to be sent
* @column: the column address for this command, -1 if none
* @page_addr: the page address for this command, -1 if none
*
* Send command to NAND device. This function is used for small page
* devices (256/512 Bytes per page)
*/
static void nand_command(struct mtd_info *mtd, unsigned command, int column,
int page_addr)
{
register struct nand_chip *this = mtd->priv;
/* Begin command latch cycle */
this->hwcontrol(mtd, NAND_CTL_SETCLE);
/*
* Write out the command to the device.
*/
if (command == NAND_CMD_SEQIN) {
int readcmd;
if (column >= mtd->oobblock) {
/* OOB area */
column -= mtd->oobblock;
readcmd = NAND_CMD_READOOB;
} else if (column < 256) {
/* First 256 bytes --> READ0 */
readcmd = NAND_CMD_READ0;
} else {
column -= 256;
readcmd = NAND_CMD_READ1;
}
this->write_byte(mtd, readcmd);
}
this->write_byte(mtd, command);
/* Set ALE and clear CLE to start address cycle */
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
if (column != -1 || page_addr != -1) {
this->hwcontrol(mtd, NAND_CTL_SETALE);
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
if (this->options & NAND_BUSWIDTH_16)
column >>= 1;
this->write_byte(mtd, column);
}
if (page_addr != -1) {
this->write_byte(mtd, (uint8_t)(page_addr & 0xff));
this->write_byte(mtd, (uint8_t)((page_addr >> 8) & 0xff));
/* One more address cycle for devices > 32MiB */
if (this->chipsize > (32 << 20))
this->write_byte(mtd, (uint8_t)((page_addr >> 16) & 0x0f));
}
/* Latch in address */
this->hwcontrol(mtd, NAND_CTL_CLRALE);
}
/*
* program and erase have their own busy handlers
* status and sequential in needs no delay
*/
switch (command) {
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_STATUS:
return;
case NAND_CMD_RESET:
if (this->dev_ready)
break;
udelay(this->chip_delay);
this->hwcontrol(mtd, NAND_CTL_SETCLE);
this->write_byte(mtd, NAND_CMD_STATUS);
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
while (!(this->read_byte(mtd) & NAND_STATUS_READY)) ;
return;
/* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay
*/
if (!this->dev_ready) {
udelay(this->chip_delay);
return;
}
}
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay(100);
nand_wait_ready(mtd);
}
/**
* nand_command_lp - [DEFAULT] Send command to NAND large page device
* @mtd: MTD device structure
* @command: the command to be sent
* @column: the column address for this command, -1 if none
* @page_addr: the page address for this command, -1 if none
*
* Send command to NAND device. This is the version for the new large page devices
* We dont have the separate regions as we have in the small page devices.
* We must emulate NAND_CMD_READOOB to keep the code compatible.
*
*/
static void nand_command_lp(struct mtd_info *mtd, unsigned command, int column, int page_addr)
{
register struct nand_chip *this = mtd->priv;
/* Emulate NAND_CMD_READOOB */
if (command == NAND_CMD_READOOB) {
column += mtd->oobblock;
command = NAND_CMD_READ0;
}
/* Begin command latch cycle */
this->hwcontrol(mtd, NAND_CTL_SETCLE);
/* Write out the command to the device. */
this->write_byte(mtd, (command & 0xff));
/* End command latch cycle */
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
if (column != -1 || page_addr != -1) {
this->hwcontrol(mtd, NAND_CTL_SETALE);
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
if (this->options & NAND_BUSWIDTH_16)
column >>= 1;
this->write_byte(mtd, column & 0xff);
this->write_byte(mtd, column >> 8);
}
if (page_addr != -1) {
this->write_byte(mtd, (uint8_t)(page_addr & 0xff));
this->write_byte(mtd, (uint8_t)((page_addr >> 8) & 0xff));
/* One more address cycle for devices > 128MiB */
if (this->chipsize > (128 << 20))
this->write_byte(mtd, (uint8_t)((page_addr >> 16) & 0xff));
}
/* Latch in address */
this->hwcontrol(mtd, NAND_CTL_CLRALE);
}
/*
* program and erase have their own busy handlers
* status, sequential in, and deplete1 need no delay
*/
switch (command) {
case NAND_CMD_CACHEDPROG:
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_STATUS:
case NAND_CMD_DEPLETE1:
return;
/*
* read error status commands require only a short delay
*/
case NAND_CMD_STATUS_ERROR:
case NAND_CMD_STATUS_ERROR0:
case NAND_CMD_STATUS_ERROR1:
case NAND_CMD_STATUS_ERROR2:
case NAND_CMD_STATUS_ERROR3:
udelay(this->chip_delay);
return;
case NAND_CMD_RESET:
if (this->dev_ready)
break;
udelay(this->chip_delay);
this->hwcontrol(mtd, NAND_CTL_SETCLE);
this->write_byte(mtd, NAND_CMD_STATUS);
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
while (!(this->read_byte(mtd) & NAND_STATUS_READY)) ;
return;
case NAND_CMD_READ0:
/* Begin command latch cycle */
this->hwcontrol(mtd, NAND_CTL_SETCLE);
/* Write out the start read command */
this->write_byte(mtd, NAND_CMD_READSTART);
/* End command latch cycle */
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
/* Fall through into ready check */
/* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay
*/
if (!this->dev_ready) {
udelay(this->chip_delay);
return;
}
}
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay(100);
nand_wait_ready(mtd);
}
/**
* nand_get_device - [GENERIC] Get chip for selected access
* @this: the nand chip descriptor
* @mtd: MTD device structure
* @new_state: the state which is requested
*
* Get the device and lock it for exclusive access
*/
static int
nand_get_device(struct nand_chip *this, struct mtd_info *mtd, int new_state)
{
spinlock_t *lock = &this->controller->lock;
wait_queue_head_t *wq = &this->controller->wq;
DECLARE_WAITQUEUE(wait, current);
retry:
spin_lock(lock);
/* Hardware controller shared among independend devices */
/* Hardware controller shared among independend devices */
if (!this->controller->active)
this->controller->active = this;
if (this->controller->active == this && this->state == FL_READY) {
this->state = new_state;
spin_unlock(lock);
return 0;
}
if (new_state == FL_PM_SUSPENDED) {
spin_unlock(lock);
return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
}
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(wq, &wait);
spin_unlock(lock);
schedule();
remove_wait_queue(wq, &wait);
goto retry;
}
/**
* nand_wait - [DEFAULT] wait until the command is done
* @mtd: MTD device structure
* @this: NAND chip structure
* @state: state to select the max. timeout value
*
* Wait for command done. This applies to erase and program only
* Erase can take up to 400ms and program up to 20ms according to
* general NAND and SmartMedia specs
*
*/
static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
{
unsigned long timeo = jiffies;
int status;
if (state == FL_ERASING)
timeo += (HZ * 400) / 1000;
else
timeo += (HZ * 20) / 1000;
led_trigger_event(nand_led_trigger, LED_FULL);
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay(100);
if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
else
this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
while (time_before(jiffies, timeo)) {
/* Check, if we were interrupted */
if (this->state != state)
return 0;
if (this->dev_ready) {
if (this->dev_ready(mtd))
break;
} else {
if (this->read_byte(mtd) & NAND_STATUS_READY)
break;
}
cond_resched();
}
led_trigger_event(nand_led_trigger, LED_OFF);
status = (int)this->read_byte(mtd);
return status;
}
/**
* nand_write_page - [GENERIC] write one page
* @mtd: MTD device structure
* @this: NAND chip structure
* @page: startpage inside the chip, must be called with (page & this->pagemask)
* @oob_buf: out of band data buffer
* @oobsel: out of band selecttion structre
* @cached: 1 = enable cached programming if supported by chip
*
* Nand_page_program function is used for write and writev !
* This function will always program a full page of data
* If you call it with a non page aligned buffer, you're lost :)
*
* Cached programming is not supported yet.
*/
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int page,
uint8_t *oob_buf, struct nand_oobinfo *oobsel, int cached)
{
int i, status;
uint8_t ecc_code[32];
int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
int *oob_config = oobsel->eccpos;
int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
int eccbytes = 0;
/* FIXME: Enable cached programming */
cached = 0;
/* Send command to begin auto page programming */
this->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
/* Write out complete page of data, take care of eccmode */
switch (eccmode) {
/* No ecc, write all */
case NAND_ECC_NONE:
printk(KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
this->write_buf(mtd, this->data_poi, mtd->oobblock);
break;
/* Software ecc 3/256, write all */
case NAND_ECC_SOFT:
for (; eccsteps; eccsteps--) {
this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
for (i = 0; i < 3; i++, eccidx++)
oob_buf[oob_config[eccidx]] = ecc_code[i];
datidx += this->eccsize;
}
this->write_buf(mtd, this->data_poi, mtd->oobblock);
break;
default:
eccbytes = this->eccbytes;
for (; eccsteps; eccsteps--) {
/* enable hardware ecc logic for write */
this->enable_hwecc(mtd, NAND_ECC_WRITE);
this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
for (i = 0; i < eccbytes; i++, eccidx++)
oob_buf[oob_config[eccidx]] = ecc_code[i];
/* If the hardware ecc provides syndromes then
* the ecc code must be written immidiately after
* the data bytes (words) */
if (this->options & NAND_HWECC_SYNDROME)
this->write_buf(mtd, ecc_code, eccbytes);
datidx += this->eccsize;
}
break;
}
/* Write out OOB data */
if (this->options & NAND_HWECC_SYNDROME)
this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
else
this->write_buf(mtd, oob_buf, mtd->oobsize);
/* Send command to actually program the data */
this->cmdfunc(mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
if (!cached) {
/* call wait ready function */
status = this->waitfunc(mtd, this, FL_WRITING);
/* See if operation failed and additional status checks are available */
if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
status = this->errstat(mtd, this, FL_WRITING, status, page);
}
/* See if device thinks it succeeded */
if (status & NAND_STATUS_FAIL) {
DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
return -EIO;
}
} else {
/* FIXME: Implement cached programming ! */
/* wait until cache is ready */
// status = this->waitfunc (mtd, this, FL_CACHEDRPG);
}
return 0;
}
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
/**
* nand_verify_pages - [GENERIC] verify the chip contents after a write
* @mtd: MTD device structure
* @this: NAND chip structure
* @page: startpage inside the chip, must be called with (page & this->pagemask)
* @numpages: number of pages to verify
* @oob_buf: out of band data buffer
* @oobsel: out of band selecttion structre
* @chipnr: number of the current chip
* @oobmode: 1 = full buffer verify, 0 = ecc only
*
* The NAND device assumes that it is always writing to a cleanly erased page.
* Hence, it performs its internal write verification only on bits that
* transitioned from 1 to 0. The device does NOT verify the whole page on a
* byte by byte basis. It is possible that the page was not completely erased
* or the page is becoming unusable due to wear. The read with ECC would catch
* the error later when the ECC page check fails, but we would rather catch
* it early in the page write stage. Better to write no data than invalid data.
*/
static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
uint8_t *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
{
int i, j, datidx = 0, oobofs = 0, res = -EIO;
int eccsteps = this->eccsteps;
int hweccbytes;
uint8_t oobdata[64];
hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
/* Send command to read back the first page */
this->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
for (;;) {
for (j = 0; j < eccsteps; j++) {
/* Loop through and verify the data */
if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
goto out;
}
datidx += mtd->eccsize;
/* Have we a hw generator layout ? */
if (!hweccbytes)
continue;
if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
goto out;
}
oobofs += hweccbytes;
}
/* check, if we must compare all data or if we just have to
* compare the ecc bytes
*/
if (oobmode) {
if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
goto out;
}
} else {
/* Read always, else autoincrement fails */
this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
int ecccnt = oobsel->eccbytes;
for (i = 0; i < ecccnt; i++) {
int idx = oobsel->eccpos[i];
if (oobdata[idx] != oob_buf[oobofs + idx]) {
DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed ECC write verify, page 0x%08x, %6i bytes were succesful\n",
__FUNCTION__, page, i);
goto out;
}
}
}
}
oobofs += mtd->oobsize - hweccbytes * eccsteps;
page++;
numpages--;
/* Apply delay or wait for ready/busy pin
* Do this before the AUTOINCR check, so no problems
* arise if a chip which does auto increment
* is marked as NOAUTOINCR by the board driver.
* Do this also before returning, so the chip is
* ready for the next command.
*/
if (!this->dev_ready)
udelay(this->chip_delay);
else
nand_wait_ready(mtd);
/* All done, return happy */
if (!numpages)
return 0;
/* Check, if the chip supports auto page increment */
if (!NAND_CANAUTOINCR(this))
this->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
}
/*
* Terminate the read command. We come here in case of an error
* So we must issue a reset command.
*/
out:
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
return res;
}
#endif
/**
* nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
* @mtd: MTD device structure
* @from: offset to read from
* @len: number of bytes to read
* @retlen: pointer to variable to store the number of read bytes
* @buf: the databuffer to put data
*
* This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
* and flags = 0xff
*/
static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf)
{
return nand_do_read_ecc(mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff);
}
/**
* nand_read_ecc - [MTD Interface] MTD compability function for nand_do_read_ecc
* @mtd: MTD device structure
* @from: offset to read from
* @len: number of bytes to read
* @retlen: pointer to variable to store the number of read bytes
* @buf: the databuffer to put data
* @oob_buf: filesystem supplied oob data buffer
* @oobsel: oob selection structure
*
* This function simply calls nand_do_read_ecc with flags = 0xff
*/
static int nand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, uint8_t *buf, uint8_t *oob_buf, struct nand_oobinfo *oobsel)
{
/* use userspace supplied oobinfo, if zero */
if (oobsel == NULL)
oobsel = &mtd->oobinfo;
return nand_do_read_ecc(mtd, from, len, retlen, buf, oob_buf, oobsel, 0xff);
}
/**
* nand_do_read_ecc - [MTD Interface] Read data with ECC
* @mtd: MTD device structure
* @from: offset to read from
* @len: number of bytes to read
* @retlen: pointer to variable to store the number of read bytes
* @buf: the databuffer to put data
* @oob_buf: filesystem supplied oob data buffer (can be NULL)
* @oobsel: oob selection structure
* @flags: flag to indicate if nand_get_device/nand_release_device should be preformed
* and how many corrected error bits are acceptable:
* bits 0..7 - number of tolerable errors
* bit 8 - 0 == do not get/release chip, 1 == get/release chip
*
* NAND read with ECC
*/
int nand_do_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, uint8_t *buf, uint8_t *oob_buf, struct nand_oobinfo *oobsel, int flags)
{
int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
struct nand_chip *this = mtd->priv;
uint8_t *data_poi, *oob_data = oob_buf;
uint8_t ecc_calc[32];
uint8_t ecc_code[32];
int eccmode, eccsteps;
int *oob_config, datidx;
int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
int eccbytes;
int compareecc = 1;
int oobreadlen;
DEBUG(MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int)from, (int)len);
/* Do not allow reads past end of device */
if ((from + len) > mtd->size) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
*retlen = 0;
return -EINVAL;
}
/* Grab the lock and see if the device is available */
if (flags & NAND_GET_DEVICE)
nand_get_device(this, mtd, FL_READING);
/* Autoplace of oob data ? Use the default placement scheme */
if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
oobsel = this->autooob;
eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
oob_config = oobsel->eccpos;
/* Select the NAND device */
chipnr = (int)(from >> this->chip_shift);
this->select_chip(mtd, chipnr);
/* First we calculate the starting page */
realpage = (int)(from >> this->page_shift);
page = realpage & this->pagemask;
/* Get raw starting column */
col = from & (mtd->oobblock - 1);
end = mtd->oobblock;
ecc = this->eccsize;
eccbytes = this->eccbytes;
if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
compareecc = 0;
oobreadlen = mtd->oobsize;
if (this->options & NAND_HWECC_SYNDROME)
oobreadlen -= oobsel->eccbytes;
/* Loop until all data read */
while (read < len) {
int aligned = (!col && (len - read) >= end);
/*
* If the read is not page aligned, we have to read into data buffer
* due to ecc, else we read into return buffer direct
*/
if (aligned)
data_poi = &buf[read];
else
data_poi = this->data_buf;
/* Check, if we have this page in the buffer
*
* FIXME: Make it work when we must provide oob data too,
* check the usage of data_buf oob field
*/
if (realpage == this->pagebuf && !oob_buf) {
/* aligned read ? */
if (aligned)
memcpy(data_poi, this->data_buf, end);
goto readdata;
}
/* Check, if we must send the read command */
if (sndcmd) {
this->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
sndcmd = 0;
}
/* get oob area, if we have no oob buffer from fs-driver */
if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
oob_data = &this->data_buf[end];
eccsteps = this->eccsteps;
switch (eccmode) {
case NAND_ECC_NONE:{
/* No ECC, Read in a page */
static unsigned long lastwhinge = 0;
if ((lastwhinge / HZ) != (jiffies / HZ)) {
printk(KERN_WARNING
"Reading data from NAND FLASH without ECC is not recommended\n");
lastwhinge = jiffies;
}
this->read_buf(mtd, data_poi, end);
break;
}
case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
this->read_buf(mtd, data_poi, end);
for (i = 0, datidx = 0; eccsteps; eccsteps--, i += 3, datidx += ecc)
this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
break;
default:
for (i = 0, datidx = 0; eccsteps; eccsteps--, i += eccbytes, datidx += ecc) {
this->enable_hwecc(mtd, NAND_ECC_READ);
this->read_buf(mtd, &data_poi[datidx], ecc);
/* HW ecc with syndrome calculation must read the
* syndrome from flash immidiately after the data */
if (!compareecc) {
/* Some hw ecc generators need to know when the
* syndrome is read from flash */
this->enable_hwecc(mtd, NAND_ECC_READSYN);
this->read_buf(mtd, &oob_data[i], eccbytes);
/* We calc error correction directly, it checks the hw
* generator for an error, reads back the syndrome and
* does the error correction on the fly */
ecc_status = this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]);
if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: "
"Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
ecc_failed++;
}
} else {
this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
}
}
break;
}
/* read oobdata */
this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
/* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
if (!compareecc)
goto readoob;
/* Pick the ECC bytes out of the oob data */
for (j = 0; j < oobsel->eccbytes; j++)
ecc_code[j] = oob_data[oob_config[j]];
/* correct data, if necessary */
for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
/* Get next chunk of ecc bytes */
j += eccbytes;
/* Check, if we have a fs supplied oob-buffer,
* This is the legacy mode. Used by YAFFS1
* Should go away some day
*/
if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
int *p = (int *)(&oob_data[mtd->oobsize]);
p[i] = ecc_status;
}
if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
ecc_failed++;
}
}
readoob:
/* check, if we have a fs supplied oob-buffer */
if (oob_buf) {
/* without autoplace. Legacy mode used by YAFFS1 */
switch (oobsel->useecc) {
case MTD_NANDECC_AUTOPLACE:
case MTD_NANDECC_AUTOPL_USR:
/* Walk through the autoplace chunks */
for (i = 0; oobsel->oobfree[i][1]; i++) {
int from = oobsel->oobfree[i][0];
int num = oobsel->oobfree[i][1];
memcpy(&oob_buf[oob], &oob_data[from], num);
oob += num;
}
break;
case MTD_NANDECC_PLACE:
/* YAFFS1 legacy mode */
oob_data += this->eccsteps * sizeof(int);
default:
oob_data += mtd->oobsize;
}
}
readdata:
/* Partial page read, transfer data into fs buffer */
if (!aligned) {
for (j = col; j < end && read < len; j++)
buf[read++] = data_poi[j];
this->pagebuf = realpage;
} else
read += mtd->oobblock;
/* Apply delay or wait for ready/busy pin
* Do this before the AUTOINCR check, so no problems
* arise if a chip which does auto increment
* is marked as NOAUTOINCR by the board driver.
*/
if (!this->dev_ready)
udelay(this->chip_delay);
else
nand_wait_ready(mtd);
if (read == len)
break;
/* For subsequent reads align to page boundary. */
col = 0;
/* Increment page address */
realpage++;
page = realpage & this->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
this->select_chip(mtd, -1);
this->select_chip(mtd, chipnr);
}
/* Check, if the chip supports auto page increment
* or if we have hit a block boundary.
*/
if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
sndcmd = 1;
}
/* Deselect and wake up anyone waiting on the device */
if (flags & NAND_GET_DEVICE)
nand_release_device(mtd);
/*
* Return success, if no ECC failures, else -EBADMSG
* fs driver will take care of that, because
* retlen == desired len and result == -EBADMSG
*/
*retlen = read;
return ecc_failed ? -EBADMSG : 0;
}
/**
* nand_read_oob - [MTD Interface] NAND read out-of-band
* @mtd: MTD device structure
* @from: offset to read from
* @len: number of bytes to read
* @retlen: pointer to variable to store the number of read bytes
* @buf: the databuffer to put data
*
* NAND read out-of-band data from the spare area
*/
static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf)
{
int i, col, page, chipnr;
struct nand_chip *this = mtd->priv;
int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int)from, (int)len);
/* Shift to get page */
page = (int)(from >> this->page_shift);
chipnr = (int)(from >> this->chip_shift);
/* Mask to get column */
col = from & (mtd->oobsize - 1);
/* Initialize return length value */
*retlen = 0;
/* Do not allow reads past end of device */
if ((from + len) > mtd->size) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
*retlen = 0;
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_device(this, mtd, FL_READING);
/* Select the NAND device */
this->select_chip(mtd, chipnr);
/* Send the read command */
this->cmdfunc(mtd, NAND_CMD_READOOB, col, page & this->pagemask);
/*
* Read the data, if we read more than one page
* oob data, let the device transfer the data !
*/
i = 0;
while (i < len) {
int thislen = mtd->oobsize - col;
thislen = min_t(int, thislen, len);
this->read_buf(mtd, &buf[i], thislen);
i += thislen;
/* Read more ? */
if (i < len) {
page++;
col = 0;
/* Check, if we cross a chip boundary */
if (!(page & this->pagemask)) {
chipnr++;
this->select_chip(mtd, -1);
this->select_chip(mtd, chipnr);
}
/* Apply delay or wait for ready/busy pin
* Do this before the AUTOINCR check, so no problems
* arise if a chip which does auto increment
* is marked as NOAUTOINCR by the board driver.
*/
if (!this->dev_ready)
udelay(this->chip_delay);
else
nand_wait_ready(mtd);
/* Check, if the chip supports auto page increment
* or if we have hit a block boundary.
*/
if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
/* For subsequent page reads set offset to 0 */
this->cmdfunc(mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
}
}
}
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
/* Return happy */
*retlen = len;
return 0;
}
/**
* nand_read_raw - [GENERIC] Read raw data including oob into buffer
* @mtd: MTD device structure
* @buf: temporary buffer
* @from: offset to read from
* @len: number of bytes to read
* @ooblen: number of oob data bytes to read
*
* Read raw data including oob into buffer
*/
int nand_read_raw(struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
{
struct nand_chip *this = mtd->priv;
int page = (int)(from >> this->page_shift);
int chip = (int)(from >> this->chip_shift);
int sndcmd = 1;
int cnt = 0;
int pagesize = mtd->oobblock + mtd->oobsize;
int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
/* Do not allow reads past end of device */
if ((from + len) > mtd->size) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_device(this, mtd, FL_READING);
this->select_chip(mtd, chip);
/* Add requested oob length */
len += ooblen;
while (len) {
if (sndcmd)
this->cmdfunc(mtd, NAND_CMD_READ0, 0, page & this->pagemask);
sndcmd = 0;
this->read_buf(mtd, &buf[cnt], pagesize);
len -= pagesize;
cnt += pagesize;
page++;
if (!this->dev_ready)
udelay(this->chip_delay);
else
nand_wait_ready(mtd);
/* Check, if the chip supports auto page increment */
if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
sndcmd = 1;
}
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
return 0;
}
/**
* nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
* @mtd: MTD device structure
* @fsbuf: buffer given by fs driver
* @oobsel: out of band selection structre
* @autoplace: 1 = place given buffer into the oob bytes
* @numpages: number of pages to prepare
*
* Return:
* 1. Filesystem buffer available and autoplacement is off,
* return filesystem buffer
* 2. No filesystem buffer or autoplace is off, return internal
* buffer
* 3. Filesystem buffer is given and autoplace selected
* put data from fs buffer into internal buffer and
* retrun internal buffer
*
* Note: The internal buffer is filled with 0xff. This must
* be done only once, when no autoplacement happens
* Autoplacement sets the buffer dirty flag, which
* forces the 0xff fill before using the buffer again.
*
*/
static uint8_t *nand_prepare_oobbuf(struct mtd_info *mtd, uint8_t *fsbuf, struct nand_oobinfo *oobsel,
int autoplace, int numpages)
{
struct nand_chip *this = mtd->priv;
int i, len, ofs;
/* Zero copy fs supplied buffer */
if (fsbuf && !autoplace)
return fsbuf;
/* Check, if the buffer must be filled with ff again */
if (this->oobdirty) {
memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
this->oobdirty = 0;
}
/* If we have no autoplacement or no fs buffer use the internal one */
if (!autoplace || !fsbuf)
return this->oob_buf;
/* Walk through the pages and place the data */
this->oobdirty = 1;
ofs = 0;
while (numpages--) {
for (i = 0, len = 0; len < mtd->oobavail; i++) {
int to = ofs + oobsel->oobfree[i][0];
int num = oobsel->oobfree[i][1];
memcpy(&this->oob_buf[to], fsbuf, num);
len += num;
fsbuf += num;
}
ofs += mtd->oobavail;
}
return this->oob_buf;
}
#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
/**
* nand_write - [MTD Interface] compability function for nand_write_ecc
* @mtd: MTD device structure
* @to: offset to write to
* @len: number of bytes to write
* @retlen: pointer to variable to store the number of written bytes
* @buf: the data to write
*
* This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
*
*/
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf)
{
return (nand_write_ecc(mtd, to, len, retlen, buf, NULL, NULL));
}
/**
* nand_write_ecc - [MTD Interface] NAND write with ECC
* @mtd: MTD device structure
* @to: offset to write to
* @len: number of bytes to write
* @retlen: pointer to variable to store the number of written bytes
* @buf: the data to write
* @eccbuf: filesystem supplied oob data buffer
* @oobsel: oob selection structure
*
* NAND write with ECC
*/
static int nand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const uint8_t *buf, uint8_t *eccbuf,
struct nand_oobinfo *oobsel)
{
int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
int autoplace = 0, numpages, totalpages;
struct nand_chip *this = mtd->priv;
uint8_t *oobbuf, *bufstart;
int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
DEBUG(MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int)to, (int)len);
/* Initialize retlen, in case of early exit */
*retlen = 0;
/* Do not allow write past end of device */
if ((to + len) > mtd->size) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
return -EINVAL;
}
/* reject writes, which are not page aligned */
if (NOTALIGNED(to) || NOTALIGNED(len)) {
printk(KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_device(this, mtd, FL_WRITING);
/* Calculate chipnr */
chipnr = (int)(to >> this->chip_shift);
/* Select the NAND device */
this->select_chip(mtd, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(mtd))
goto out;
/* if oobsel is NULL, use chip defaults */
if (oobsel == NULL)
oobsel = &mtd->oobinfo;
/* Autoplace of oob data ? Use the default placement scheme */
if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
oobsel = this->autooob;
autoplace = 1;
}
if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
autoplace = 1;
/* Setup variables and oob buffer */
totalpages = len >> this->page_shift;
page = (int)(to >> this->page_shift);
/* Invalidate the page cache, if we write to the cached page */
if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
this->pagebuf = -1;
/* Set it relative to chip */
page &= this->pagemask;
startpage = page;
/* Calc number of pages we can write in one go */
numpages = min(ppblock - (startpage & (ppblock - 1)), totalpages);
oobbuf = nand_prepare_oobbuf(mtd, eccbuf, oobsel, autoplace, numpages);
bufstart = (uint8_t *) buf;
/* Loop until all data is written */
while (written < len) {
this->data_poi = (uint8_t *) &buf[written];
/* Write one page. If this is the last page to write
* or the last page in this block, then use the
* real pageprogram command, else select cached programming
* if supported by the chip.
*/
ret = nand_write_page(mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
if (ret) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
goto out;
}
/* Next oob page */
oob += mtd->oobsize;
/* Update written bytes count */
written += mtd->oobblock;
if (written == len)
goto cmp;
/* Increment page address */
page++;
/* Have we hit a block boundary ? Then we have to verify and
* if verify is ok, we have to setup the oob buffer for
* the next pages.
*/
if (!(page & (ppblock - 1))) {
int ofs;
this->data_poi = bufstart;
ret = nand_verify_pages(mtd, this, startpage, page - startpage,
oobbuf, oobsel, chipnr, (eccbuf != NULL));
if (ret) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
goto out;
}
*retlen = written;
ofs = autoplace ? mtd->oobavail : mtd->oobsize;
if (eccbuf)
eccbuf += (page - startpage) * ofs;
totalpages -= page - startpage;
numpages = min(totalpages, ppblock);
page &= this->pagemask;
startpage = page;
oobbuf = nand_prepare_oobbuf(mtd, eccbuf, oobsel, autoplace, numpages);
oob = 0;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
this->select_chip(mtd, -1);
this->select_chip(mtd, chipnr);
}
}
}
/* Verify the remaining pages */
cmp:
this->data_poi = bufstart;
ret = nand_verify_pages(mtd, this, startpage, totalpages, oobbuf, oobsel, chipnr, (eccbuf != NULL));
if (!ret)
*retlen = written;
else
DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
out:
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
return ret;
}
/**
* nand_write_oob - [MTD Interface] NAND write out-of-band
* @mtd: MTD device structure
* @to: offset to write to
* @len: number of bytes to write
* @retlen: pointer to variable to store the number of written bytes
* @buf: the data to write
*
* NAND write out-of-band
*/
static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf)
{
int column, page, status, ret = -EIO, chipnr;
struct nand_chip *this = mtd->priv;
DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int)to, (int)len);
/* Shift to get page */
page = (int)(to >> this->page_shift);
chipnr = (int)(to >> this->chip_shift);
/* Mask to get column */
column = to & (mtd->oobsize - 1);
/* Initialize return length value */
*retlen = 0;
/* Do not allow write past end of page */
if ((column + len) > mtd->oobsize) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_device(this, mtd, FL_WRITING);
/* Select the NAND device */
this->select_chip(mtd, chipnr);
/* Reset the chip. Some chips (like the Toshiba TC5832DC found
in one of my DiskOnChip 2000 test units) will clear the whole
data page too if we don't do this. I have no clue why, but
I seem to have 'fixed' it in the doc2000 driver in
August 1999. dwmw2. */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* Check, if it is write protected */
if (nand_check_wp(mtd))
goto out;
/* Invalidate the page cache, if we write to the cached page */
if (page == this->pagebuf)
this->pagebuf = -1;
if (NAND_MUST_PAD(this)) {
/* Write out desired data */
this->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
/* prepad 0xff for partial programming */
this->write_buf(mtd, ffchars, column);
/* write data */
this->write_buf(mtd, buf, len);
/* postpad 0xff for partial programming */
this->write_buf(mtd, ffchars, mtd->oobsize - (len + column));
} else {
/* Write out desired data */
this->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
/* write data */
this->write_buf(mtd, buf, len);
}
/* Send command to program the OOB data */
this->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = this->waitfunc(mtd, this, FL_WRITING);
/* See if device thinks it succeeded */
if (status & NAND_STATUS_FAIL) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
ret = -EIO;
goto out;
}
/* Return happy */
*retlen = len;
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
/* Send command to read back the data */
this->cmdfunc(mtd, NAND_CMD_READOOB, column, page & this->pagemask);
if (this->verify_buf(mtd, buf, len)) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
ret = -EIO;
goto out;
}
#endif
ret = 0;
out:
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
return ret;
}
/**
* nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
* @mtd: MTD device structure
* @vecs: the iovectors to write
* @count: number of vectors
* @to: offset to write to
* @retlen: pointer to variable to store the number of written bytes
*
* NAND write with kvec. This just calls the ecc function
*/
static int nand_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
loff_t to, size_t *retlen)
{
return (nand_writev_ecc(mtd, vecs, count, to, retlen, NULL, NULL));
}
/**
* nand_writev_ecc - [MTD Interface] write with iovec with ecc
* @mtd: MTD device structure
* @vecs: the iovectors to write
* @count: number of vectors
* @to: offset to write to
* @retlen: pointer to variable to store the number of written bytes
* @eccbuf: filesystem supplied oob data buffer
* @oobsel: oob selection structure
*
* NAND write with iovec with ecc
*/
static int nand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
loff_t to, size_t *retlen, uint8_t *eccbuf, struct nand_oobinfo *oobsel)
{
int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
int oob, numpages, autoplace = 0, startpage;
struct nand_chip *this = mtd->priv;
int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
uint8_t *oobbuf, *bufstart;
/* Preset written len for early exit */
*retlen = 0;
/* Calculate total length of data */
total_len = 0;
for (i = 0; i < count; i++)
total_len += (int)vecs[i].iov_len;
DEBUG(MTD_DEBUG_LEVEL3, "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int)to, (unsigned int)total_len, count);
/* Do not allow write past end of page */
if ((to + total_len) > mtd->size) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
return -EINVAL;
}
/* reject writes, which are not page aligned */
if (NOTALIGNED(to) || NOTALIGNED(total_len)) {
printk(KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_device(this, mtd, FL_WRITING);
/* Get the current chip-nr */
chipnr = (int)(to >> this->chip_shift);
/* Select the NAND device */
this->select_chip(mtd, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(mtd))
goto out;
/* if oobsel is NULL, use chip defaults */
if (oobsel == NULL)
oobsel = &mtd->oobinfo;
/* Autoplace of oob data ? Use the default placement scheme */
if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
oobsel = this->autooob;
autoplace = 1;
}
if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
autoplace = 1;
/* Setup start page */
page = (int)(to >> this->page_shift);
/* Invalidate the page cache, if we write to the cached page */
if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
this->pagebuf = -1;
startpage = page & this->pagemask;
/* Loop until all kvec' data has been written */
len = 0;
while (count) {
/* If the given tuple is >= pagesize then
* write it out from the iov
*/
if ((vecs->iov_len - len) >= mtd->oobblock) {
/* Calc number of pages we can write
* out of this iov in one go */
numpages = (vecs->iov_len - len) >> this->page_shift;
/* Do not cross block boundaries */
numpages = min(ppblock - (startpage & (ppblock - 1)), numpages);
oobbuf = nand_prepare_oobbuf(mtd, NULL, oobsel, autoplace, numpages);
bufstart = (uint8_t *) vecs->iov_base;
bufstart += len;
this->data_poi = bufstart;
oob = 0;
for (i = 1; i <= numpages; i++) {
/* Write one page. If this is the last page to write
* then use the real pageprogram command, else select
* cached programming if supported by the chip.
*/
ret = nand_write_page(mtd, this, page & this->pagemask,
&oobbuf[oob], oobsel, i != numpages);
if (ret)
goto out;
this->data_poi += mtd->oobblock;
len += mtd->oobblock;
oob += mtd->oobsize;
page++;
}
/* Check, if we have to switch to the next tuple */
if (len >= (int)vecs->iov_len) {
vecs++;
len = 0;
count--;
}
} else {
/* We must use the internal buffer, read data out of each
* tuple until we have a full page to write
*/
int cnt = 0;
while (cnt < mtd->oobblock) {
if (vecs->iov_base != NULL && vecs->iov_len)
this->data_buf[cnt++] = ((uint8_t *) vecs->iov_base)[len++];
/* Check, if we have to switch to the next tuple */
if (len >= (int)vecs->iov_len) {
vecs++;
len = 0;
count--;
}
}
this->pagebuf = page;
this->data_poi = this->data_buf;
bufstart = this->data_poi;
numpages = 1;
oobbuf = nand_prepare_oobbuf(mtd, NULL, oobsel, autoplace, numpages);
ret = nand_write_page(mtd, this, page & this->pagemask, oobbuf, oobsel, 0);
if (ret)
goto out;
page++;
}
this->data_poi = bufstart;
ret = nand_verify_pages(mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
if (ret)
goto out;
written += mtd->oobblock * numpages;
/* All done ? */
if (!count)
break;
startpage = page & this->pagemask;
/* Check, if we cross a chip boundary */
if (!startpage) {
chipnr++;
this->select_chip(mtd, -1);
this->select_chip(mtd, chipnr);
}
}
ret = 0;
out:
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
*retlen = written;
return ret;
}
/**
* single_erease_cmd - [GENERIC] NAND standard block erase command function
* @mtd: MTD device structure
* @page: the page address of the block which will be erased
*
* Standard erase command for NAND chips
*/
static void single_erase_cmd(struct mtd_info *mtd, int page)
{
struct nand_chip *this = mtd->priv;
/* Send commands to erase a block */
this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
this->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
}
/**
* multi_erease_cmd - [GENERIC] AND specific block erase command function
* @mtd: MTD device structure
* @page: the page address of the block which will be erased
*
* AND multi block erase command function
* Erase 4 consecutive blocks
*/
static void multi_erase_cmd(struct mtd_info *mtd, int page)
{
struct nand_chip *this = mtd->priv;
/* Send commands to erase a block */
this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
this->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
}
/**
* nand_erase - [MTD Interface] erase block(s)
* @mtd: MTD device structure
* @instr: erase instruction
*
* Erase one ore more blocks
*/
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
return nand_erase_nand(mtd, instr, 0);
}
#define BBT_PAGE_MASK 0xffffff3f
/**
* nand_erase_intern - [NAND Interface] erase block(s)
* @mtd: MTD device structure
* @instr: erase instruction
* @allowbbt: allow erasing the bbt area
*
* Erase one ore more blocks
*/
int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
{
int page, len, status, pages_per_block, ret, chipnr;
struct nand_chip *this = mtd->priv;
int rewrite_bbt[NAND_MAX_CHIPS]={0}; /* flags to indicate the page, if bbt needs to be rewritten. */
unsigned int bbt_masked_page; /* bbt mask to compare to page being erased. */
/* It is used to see if the current page is in the same */
/* 256 block group and the same bank as the bbt. */
DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n", (unsigned int)instr->addr, (unsigned int)instr->len);
/* Start address must align on block boundary */
if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
return -EINVAL;
}
/* Length must align on block boundary */
if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
return -EINVAL;
}
/* Do not allow erase past end of device */
if ((instr->len + instr->addr) > mtd->size) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
return -EINVAL;
}
instr->fail_addr = 0xffffffff;
/* Grab the lock and see if the device is available */
nand_get_device(this, mtd, FL_ERASING);
/* Shift to get first page */
page = (int)(instr->addr >> this->page_shift);
chipnr = (int)(instr->addr >> this->chip_shift);
/* Calculate pages in each block */
pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
/* Select the NAND device */
this->select_chip(mtd, chipnr);
/* Check the WP bit */
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
/* if BBT requires refresh, set the BBT page mask to see if the BBT should be rewritten */
if (this->options & BBT_AUTO_REFRESH) {
bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
} else {
bbt_masked_page = 0xffffffff; /* should not match anything */
}
/* Loop through the pages */
len = instr->len;
instr->state = MTD_ERASING;
while (len) {
/* Check if we have a bad block, we do not erase bad blocks ! */
if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
printk(KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
/* Invalidate the page cache, if we erase the block which contains
the current cached page */
if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
this->pagebuf = -1;
this->erase_cmd(mtd, page & this->pagemask);
status = this->waitfunc(mtd, this, FL_ERASING);
/* See if operation failed and additional status checks are available */
if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
status = this->errstat(mtd, this, FL_ERASING, status, page);
}
/* See if block erase succeeded */
if (status & NAND_STATUS_FAIL) {
DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
instr->state = MTD_ERASE_FAILED;
instr->fail_addr = (page << this->page_shift);
goto erase_exit;
}
/* if BBT requires refresh, set the BBT rewrite flag to the page being erased */
if (this->options & BBT_AUTO_REFRESH) {
if (((page & BBT_PAGE_MASK) == bbt_masked_page) &&
(page != this->bbt_td->pages[chipnr])) {
rewrite_bbt[chipnr] = (page << this->page_shift);
}
}
/* Increment page address and decrement length */
len -= (1 << this->phys_erase_shift);
page += pages_per_block;
/* Check, if we cross a chip boundary */
if (len && !(page & this->pagemask)) {
chipnr++;
this->select_chip(mtd, -1);
this->select_chip(mtd, chipnr);
/* if BBT requires refresh and BBT-PERCHIP,
* set the BBT page mask to see if this BBT should be rewritten */
if ((this->options & BBT_AUTO_REFRESH) && (this->bbt_td->options & NAND_BBT_PERCHIP)) {
bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
}
}
}
instr->state = MTD_ERASE_DONE;
erase_exit:
ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
/* Do call back function */
if (!ret)
mtd_erase_callback(instr);
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
/* if BBT requires refresh and erase was successful, rewrite any selected bad block tables */
if ((this->options & BBT_AUTO_REFRESH) && (!ret)) {
for (chipnr = 0; chipnr < this->numchips; chipnr++) {
if (rewrite_bbt[chipnr]) {
/* update the BBT for chip */
DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n",
chipnr, rewrite_bbt[chipnr], this->bbt_td->pages[chipnr]);
nand_update_bbt(mtd, rewrite_bbt[chipnr]);
}
}
}
/* Return more or less happy */
return ret;
}
/**
* nand_sync - [MTD Interface] sync
* @mtd: MTD device structure
*
* Sync is actually a wait for chip ready function
*/
static void nand_sync(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
/* Grab the lock and see if the device is available */
nand_get_device(this, mtd, FL_SYNCING);
/* Release it and go back */
nand_release_device(mtd);
}
/**
* nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
* @mtd: MTD device structure
* @ofs: offset relative to mtd start
*/
static int nand_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
/* Check for invalid offset */
if (ofs > mtd->size)
return -EINVAL;
return nand_block_checkbad(mtd, ofs, 1, 0);
}
/**
* nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
* @mtd: MTD device structure
* @ofs: offset relative to mtd start
*/
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *this = mtd->priv;
int ret;
if ((ret = nand_block_isbad(mtd, ofs))) {
/* If it was bad already, return success and do nothing. */
if (ret > 0)
return 0;
return ret;
}
return this->block_markbad(mtd, ofs);
}
/**
* nand_suspend - [MTD Interface] Suspend the NAND flash
* @mtd: MTD device structure
*/
static int nand_suspend(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
return nand_get_device(this, mtd, FL_PM_SUSPENDED);
}
/**
* nand_resume - [MTD Interface] Resume the NAND flash
* @mtd: MTD device structure
*/
static void nand_resume(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
if (this->state == FL_PM_SUSPENDED)
nand_release_device(mtd);
else
printk(KERN_ERR "nand_resume() called for a chip which is not "
"in suspended state\n");
}
/*
* Free allocated data structures
*/
static void nand_free_kmem(struct nand_chip *this)
{
/* Buffer allocated by nand_scan ? */
if (this->options & NAND_OOBBUF_ALLOC)
kfree(this->oob_buf);
/* Buffer allocated by nand_scan ? */
if (this->options & NAND_DATABUF_ALLOC)
kfree(this->data_buf);
/* Controller allocated by nand_scan ? */
if (this->options & NAND_CONTROLLER_ALLOC)
kfree(this->controller);
}
/* module_text_address() isn't exported, and it's mostly a pointless
test if this is a module _anyway_ -- they'd have to try _really_ hard
to call us from in-kernel code if the core NAND support is modular. */
#ifdef MODULE
#define caller_is_module() (1)
#else
#define caller_is_module() module_text_address((unsigned long)__builtin_return_address(0))
#endif
/**
* nand_scan - [NAND Interface] Scan for the NAND device
* @mtd: MTD device structure
* @maxchips: Number of chips to scan for
*
* This fills out all the uninitialized function pointers
* with the defaults.
* The flash ID is read and the mtd/chip structures are
* filled with the appropriate values. Buffers are allocated if
* they are not provided by the board driver
* The mtd->owner field must be set to the module of the caller
*
*/
int nand_scan(struct mtd_info *mtd, int maxchips)
{
int i, nand_maf_id, nand_dev_id, busw, maf_id;
struct nand_chip *this = mtd->priv;
/* Many callers got this wrong, so check for it for a while... */
if (!mtd->owner && caller_is_module()) {
printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
BUG();
}
/* Get buswidth to select the correct functions */
busw = this->options & NAND_BUSWIDTH_16;
/* check for proper chip_delay setup, set 20us if not */
if (!this->chip_delay)
this->chip_delay = 20;
/* check, if a user supplied command function given */
if (this->cmdfunc == NULL)
this->cmdfunc = nand_command;
/* check, if a user supplied wait function given */
if (this->waitfunc == NULL)
this->waitfunc = nand_wait;
if (!this->select_chip)
this->select_chip = nand_select_chip;
if (!this->write_byte)
this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
if (!this->read_byte)
this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
if (!this->write_word)
this->write_word = nand_write_word;
if (!this->read_word)
this->read_word = nand_read_word;
if (!this->block_bad)
this->block_bad = nand_block_bad;
if (!this->block_markbad)
this->block_markbad = nand_default_block_markbad;
if (!this->write_buf)
this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
if (!this->read_buf)
this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
if (!this->verify_buf)
this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
if (!this->scan_bbt)
this->scan_bbt = nand_default_bbt;
/* Select the device */
this->select_chip(mtd, 0);
/* Send the command for reading device ID */
this->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
nand_maf_id = this->read_byte(mtd);
nand_dev_id = this->read_byte(mtd);
/* Print and store flash device information */
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
if (nand_dev_id != nand_flash_ids[i].id)
continue;
if (!mtd->name)
mtd->name = nand_flash_ids[i].name;
this->chipsize = nand_flash_ids[i].chipsize << 20;
/* New devices have all the information in additional id bytes */
if (!nand_flash_ids[i].pagesize) {
int extid;
/* The 3rd id byte contains non relevant data ATM */
extid = this->read_byte(mtd);
/* The 4th id byte is the important one */
extid = this->read_byte(mtd);
/* Calc pagesize */
mtd->oobblock = 1024 << (extid & 0x3);
extid >>= 2;
/* Calc oobsize */
mtd->oobsize = (8 << (extid & 0x01)) * (mtd->oobblock >> 9);
extid >>= 2;
/* Calc blocksize. Blocksize is multiples of 64KiB */
mtd->erasesize = (64 * 1024) << (extid & 0x03);
extid >>= 2;
/* Get buswidth information */
busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
} else {
/* Old devices have this data hardcoded in the
* device id table */
mtd->erasesize = nand_flash_ids[i].erasesize;
mtd->oobblock = nand_flash_ids[i].pagesize;
mtd->oobsize = mtd->oobblock / 32;
busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
}
/* Try to identify manufacturer */
for (maf_id = 0; nand_manuf_ids[maf_id].id != 0x0; maf_id++) {
if (nand_manuf_ids[maf_id].id == nand_maf_id)
break;
}
/* Check, if buswidth is correct. Hardware drivers should set
* this correct ! */
if (busw != (this->options & NAND_BUSWIDTH_16)) {
printk(KERN_INFO "NAND device: Manufacturer ID:"
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
nand_manuf_ids[maf_id].name, mtd->name);
printk(KERN_WARNING
"NAND bus width %d instead %d bit\n",
(this->options & NAND_BUSWIDTH_16) ? 16 : 8, busw ? 16 : 8);
this->select_chip(mtd, -1);
return 1;
}
/* Calculate the address shift from the page size */
this->page_shift = ffs(mtd->oobblock) - 1;
this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
this->chip_shift = ffs(this->chipsize) - 1;
/* Set the bad block position */
this->badblockpos = mtd->oobblock > 512 ? NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
/* Get chip options, preserve non chip based options */
this->options &= ~NAND_CHIPOPTIONS_MSK;
this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
/* Set this as a default. Board drivers can override it, if necessary */
this->options |= NAND_NO_AUTOINCR;
/* Check if this is a not a samsung device. Do not clear the options
* for chips which are not having an extended id.
*/
if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
/* Check for AND chips with 4 page planes */
if (this->options & NAND_4PAGE_ARRAY)
this->erase_cmd = multi_erase_cmd;
else
this->erase_cmd = single_erase_cmd;
/* Do not replace user supplied command function ! */
if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
this->cmdfunc = nand_command_lp;
printk(KERN_INFO "NAND device: Manufacturer ID:"
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
nand_manuf_ids[maf_id].name, nand_flash_ids[i].name);
break;
}
if (!nand_flash_ids[i].name) {
printk(KERN_WARNING "No NAND device found!!!\n");
this->select_chip(mtd, -1);
return 1;
}
for (i = 1; i < maxchips; i++) {
this->select_chip(mtd, i);
/* Send the command for reading device ID */
this->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
if (nand_maf_id != this->read_byte(mtd) ||
nand_dev_id != this->read_byte(mtd))
break;
}
if (i > 1)
printk(KERN_INFO "%d NAND chips detected\n", i);
/* Allocate buffers, if necessary */
if (!this->oob_buf) {
size_t len;
len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
this->oob_buf = kmalloc(len, GFP_KERNEL);
if (!this->oob_buf) {
printk(KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
return -ENOMEM;
}
this->options |= NAND_OOBBUF_ALLOC;
}
if (!this->data_buf) {
size_t len;
len = mtd->oobblock + mtd->oobsize;
this->data_buf = kmalloc(len, GFP_KERNEL);
if (!this->data_buf) {
printk(KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
nand_free_kmem(this);
return -ENOMEM;
}
this->options |= NAND_DATABUF_ALLOC;
}
/* Store the number of chips and calc total size for mtd */
this->numchips = i;
mtd->size = i * this->chipsize;
/* Convert chipsize to number of pages per chip -1. */
this->pagemask = (this->chipsize >> this->page_shift) - 1;
/* Preset the internal oob buffer */
memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
/* If no default placement scheme is given, select an
* appropriate one */
if (!this->autooob) {
/* Select the appropriate default oob placement scheme for
* placement agnostic filesystems */
switch (mtd->oobsize) {
case 8:
this->autooob = &nand_oob_8;
break;
case 16:
this->autooob = &nand_oob_16;
break;
case 64:
this->autooob = &nand_oob_64;
break;
default:
printk(KERN_WARNING "No oob scheme defined for oobsize %d\n", mtd->oobsize);
BUG();
}
}
/* The number of bytes available for the filesystem to place fs dependend
* oob data */
mtd->oobavail = 0;
for (i = 0; this->autooob->oobfree[i][1]; i++)
mtd->oobavail += this->autooob->oobfree[i][1];
/*
* check ECC mode, default to software
* if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
* fallback to software ECC
*/
this->eccsize = 256; /* set default eccsize */
this->eccbytes = 3;
switch (this->eccmode) {
case NAND_ECC_HW12_2048:
if (mtd->oobblock < 2048) {
printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
mtd->oobblock);
this->eccmode = NAND_ECC_SOFT;
this->calculate_ecc = nand_calculate_ecc;
this->correct_data = nand_correct_data;
} else
this->eccsize = 2048;
break;
case NAND_ECC_HW3_512:
case NAND_ECC_HW6_512:
case NAND_ECC_HW8_512:
if (mtd->oobblock == 256) {
printk(KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
this->eccmode = NAND_ECC_SOFT;
this->calculate_ecc = nand_calculate_ecc;
this->correct_data = nand_correct_data;
} else
this->eccsize = 512; /* set eccsize to 512 */
break;
case NAND_ECC_HW3_256:
break;
case NAND_ECC_NONE:
printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
this->eccmode = NAND_ECC_NONE;
break;
case NAND_ECC_SOFT:
this->calculate_ecc = nand_calculate_ecc;
this->correct_data = nand_correct_data;
break;
default:
printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
BUG();
}
/* Check hardware ecc function availability and adjust number of ecc bytes per
* calculation step
*/
switch (this->eccmode) {
case NAND_ECC_HW12_2048:
this->eccbytes += 4;
case NAND_ECC_HW8_512:
this->eccbytes += 2;
case NAND_ECC_HW6_512:
this->eccbytes += 3;
case NAND_ECC_HW3_512:
case NAND_ECC_HW3_256:
if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
break;
printk(KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
BUG();
}
mtd->eccsize = this->eccsize;
/* Set the number of read / write steps for one page to ensure ECC generation */
switch (this->eccmode) {
case NAND_ECC_HW12_2048:
this->eccsteps = mtd->oobblock / 2048;
break;
case NAND_ECC_HW3_512:
case NAND_ECC_HW6_512:
case NAND_ECC_HW8_512:
this->eccsteps = mtd->oobblock / 512;
break;
case NAND_ECC_HW3_256:
case NAND_ECC_SOFT:
this->eccsteps = mtd->oobblock / 256;
break;
case NAND_ECC_NONE:
this->eccsteps = 1;
break;
}
/* Initialize state, waitqueue and spinlock */
this->state = FL_READY;
if (!this->controller) {
this->controller = kzalloc(sizeof(struct nand_hw_control),
GFP_KERNEL);
if (!this->controller) {
nand_free_kmem(this);
return -ENOMEM;
}
this->options |= NAND_CONTROLLER_ALLOC;
}
init_waitqueue_head(&this->controller->wq);
spin_lock_init(&this->controller->lock);
/* De-select the device */
this->select_chip(mtd, -1);
/* Invalidate the pagebuffer reference */
this->pagebuf = -1;
/* Fill in remaining MTD driver data */
mtd->type = MTD_NANDFLASH;
mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
mtd->ecctype = MTD_ECC_SW;
mtd->erase = nand_erase;
mtd->point = NULL;
mtd->unpoint = NULL;
mtd->read = nand_read;
mtd->write = nand_write;
mtd->read_ecc = nand_read_ecc;
mtd->write_ecc = nand_write_ecc;
mtd->read_oob = nand_read_oob;
mtd->write_oob = nand_write_oob;
mtd->readv = NULL;
mtd->writev = nand_writev;
mtd->writev_ecc = nand_writev_ecc;
mtd->sync = nand_sync;
mtd->lock = NULL;
mtd->unlock = NULL;
mtd->suspend = nand_suspend;
mtd->resume = nand_resume;
mtd->block_isbad = nand_block_isbad;
mtd->block_markbad = nand_block_markbad;
/* and make the autooob the default one */
memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
/* Check, if we should skip the bad block table scan */
if (this->options & NAND_SKIP_BBTSCAN)
return 0;
/* Build bad block table */
return this->scan_bbt(mtd);
}
/**
* nand_release - [NAND Interface] Free resources held by the NAND device
* @mtd: MTD device structure
*/
void nand_release(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
#ifdef CONFIG_MTD_PARTITIONS
/* Deregister partitions */
del_mtd_partitions(mtd);
#endif
/* Deregister the device */
del_mtd_device(mtd);
/* Free bad block table memory */
kfree(this->bbt);
/* Free buffers */
nand_free_kmem(this);
}
EXPORT_SYMBOL_GPL(nand_scan);
EXPORT_SYMBOL_GPL(nand_release);
static int __init nand_base_init(void)
{
led_trigger_register_simple("nand-disk", &nand_led_trigger);
return 0;
}
static void __exit nand_base_exit(void)
{
led_trigger_unregister_simple(nand_led_trigger);
}
module_init(nand_base_init);
module_exit(nand_base_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
MODULE_DESCRIPTION("Generic NAND flash driver code");