linux/fs/btrfs/extent_io.c
Qu Wenruo cf3075fb36 btrfs: remove unnecessary parameter delalloc_start for writepage_delalloc()
In function __extent_writepage() we always pass page start to
@delalloc_start for writepage_delalloc().

Thus we don't really need @delalloc_start parameter as we can extract it
from @page.

Remove @delalloc_start parameter and make __extent_writepage() to
declare @page_start and @page_end as const.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26 19:08:03 +02:00

7389 lines
194 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/bio.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/page-flags.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include <linux/prefetch.h>
#include <linux/cleancache.h>
#include <linux/fsverity.h>
#include "misc.h"
#include "extent_io.h"
#include "extent-io-tree.h"
#include "extent_map.h"
#include "ctree.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "check-integrity.h"
#include "locking.h"
#include "rcu-string.h"
#include "backref.h"
#include "disk-io.h"
#include "subpage.h"
#include "zoned.h"
#include "block-group.h"
static struct kmem_cache *extent_state_cache;
static struct kmem_cache *extent_buffer_cache;
static struct bio_set btrfs_bioset;
static inline bool extent_state_in_tree(const struct extent_state *state)
{
return !RB_EMPTY_NODE(&state->rb_node);
}
#ifdef CONFIG_BTRFS_DEBUG
static LIST_HEAD(states);
static DEFINE_SPINLOCK(leak_lock);
static inline void btrfs_leak_debug_add(spinlock_t *lock,
struct list_head *new,
struct list_head *head)
{
unsigned long flags;
spin_lock_irqsave(lock, flags);
list_add(new, head);
spin_unlock_irqrestore(lock, flags);
}
static inline void btrfs_leak_debug_del(spinlock_t *lock,
struct list_head *entry)
{
unsigned long flags;
spin_lock_irqsave(lock, flags);
list_del(entry);
spin_unlock_irqrestore(lock, flags);
}
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
{
struct extent_buffer *eb;
unsigned long flags;
/*
* If we didn't get into open_ctree our allocated_ebs will not be
* initialized, so just skip this.
*/
if (!fs_info->allocated_ebs.next)
return;
spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
while (!list_empty(&fs_info->allocated_ebs)) {
eb = list_first_entry(&fs_info->allocated_ebs,
struct extent_buffer, leak_list);
pr_err(
"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
btrfs_header_owner(eb));
list_del(&eb->leak_list);
kmem_cache_free(extent_buffer_cache, eb);
}
spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
}
static inline void btrfs_extent_state_leak_debug_check(void)
{
struct extent_state *state;
while (!list_empty(&states)) {
state = list_entry(states.next, struct extent_state, leak_list);
pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
state->start, state->end, state->state,
extent_state_in_tree(state),
refcount_read(&state->refs));
list_del(&state->leak_list);
kmem_cache_free(extent_state_cache, state);
}
}
#define btrfs_debug_check_extent_io_range(tree, start, end) \
__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
static inline void __btrfs_debug_check_extent_io_range(const char *caller,
struct extent_io_tree *tree, u64 start, u64 end)
{
struct inode *inode = tree->private_data;
u64 isize;
if (!inode || !is_data_inode(inode))
return;
isize = i_size_read(inode);
if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
"%s: ino %llu isize %llu odd range [%llu,%llu]",
caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
}
}
#else
#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
#define btrfs_leak_debug_del(lock, entry) do {} while (0)
#define btrfs_extent_state_leak_debug_check() do {} while (0)
#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
#endif
struct tree_entry {
u64 start;
u64 end;
struct rb_node rb_node;
};
struct extent_page_data {
struct btrfs_bio_ctrl bio_ctrl;
/* tells writepage not to lock the state bits for this range
* it still does the unlocking
*/
unsigned int extent_locked:1;
/* tells the submit_bio code to use REQ_SYNC */
unsigned int sync_io:1;
};
static int add_extent_changeset(struct extent_state *state, u32 bits,
struct extent_changeset *changeset,
int set)
{
int ret;
if (!changeset)
return 0;
if (set && (state->state & bits) == bits)
return 0;
if (!set && (state->state & bits) == 0)
return 0;
changeset->bytes_changed += state->end - state->start + 1;
ret = ulist_add(&changeset->range_changed, state->start, state->end,
GFP_ATOMIC);
return ret;
}
int __must_check submit_one_bio(struct bio *bio, int mirror_num,
unsigned long bio_flags)
{
blk_status_t ret = 0;
struct extent_io_tree *tree = bio->bi_private;
bio->bi_private = NULL;
/* Caller should ensure the bio has at least some range added */
ASSERT(bio->bi_iter.bi_size);
if (is_data_inode(tree->private_data))
ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
bio_flags);
else
ret = btrfs_submit_metadata_bio(tree->private_data, bio,
mirror_num, bio_flags);
return blk_status_to_errno(ret);
}
/* Cleanup unsubmitted bios */
static void end_write_bio(struct extent_page_data *epd, int ret)
{
struct bio *bio = epd->bio_ctrl.bio;
if (bio) {
bio->bi_status = errno_to_blk_status(ret);
bio_endio(bio);
epd->bio_ctrl.bio = NULL;
}
}
/*
* Submit bio from extent page data via submit_one_bio
*
* Return 0 if everything is OK.
* Return <0 for error.
*/
static int __must_check flush_write_bio(struct extent_page_data *epd)
{
int ret = 0;
struct bio *bio = epd->bio_ctrl.bio;
if (bio) {
ret = submit_one_bio(bio, 0, 0);
/*
* Clean up of epd->bio is handled by its endio function.
* And endio is either triggered by successful bio execution
* or the error handler of submit bio hook.
* So at this point, no matter what happened, we don't need
* to clean up epd->bio.
*/
epd->bio_ctrl.bio = NULL;
}
return ret;
}
int __init extent_state_cache_init(void)
{
extent_state_cache = kmem_cache_create("btrfs_extent_state",
sizeof(struct extent_state), 0,
SLAB_MEM_SPREAD, NULL);
if (!extent_state_cache)
return -ENOMEM;
return 0;
}
int __init extent_io_init(void)
{
extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
sizeof(struct extent_buffer), 0,
SLAB_MEM_SPREAD, NULL);
if (!extent_buffer_cache)
return -ENOMEM;
if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
offsetof(struct btrfs_bio, bio),
BIOSET_NEED_BVECS))
goto free_buffer_cache;
if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
goto free_bioset;
return 0;
free_bioset:
bioset_exit(&btrfs_bioset);
free_buffer_cache:
kmem_cache_destroy(extent_buffer_cache);
extent_buffer_cache = NULL;
return -ENOMEM;
}
void __cold extent_state_cache_exit(void)
{
btrfs_extent_state_leak_debug_check();
kmem_cache_destroy(extent_state_cache);
}
void __cold extent_io_exit(void)
{
/*
* Make sure all delayed rcu free are flushed before we
* destroy caches.
*/
rcu_barrier();
kmem_cache_destroy(extent_buffer_cache);
bioset_exit(&btrfs_bioset);
}
/*
* For the file_extent_tree, we want to hold the inode lock when we lookup and
* update the disk_i_size, but lockdep will complain because our io_tree we hold
* the tree lock and get the inode lock when setting delalloc. These two things
* are unrelated, so make a class for the file_extent_tree so we don't get the
* two locking patterns mixed up.
*/
static struct lock_class_key file_extent_tree_class;
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
struct extent_io_tree *tree, unsigned int owner,
void *private_data)
{
tree->fs_info = fs_info;
tree->state = RB_ROOT;
tree->dirty_bytes = 0;
spin_lock_init(&tree->lock);
tree->private_data = private_data;
tree->owner = owner;
if (owner == IO_TREE_INODE_FILE_EXTENT)
lockdep_set_class(&tree->lock, &file_extent_tree_class);
}
void extent_io_tree_release(struct extent_io_tree *tree)
{
spin_lock(&tree->lock);
/*
* Do a single barrier for the waitqueue_active check here, the state
* of the waitqueue should not change once extent_io_tree_release is
* called.
*/
smp_mb();
while (!RB_EMPTY_ROOT(&tree->state)) {
struct rb_node *node;
struct extent_state *state;
node = rb_first(&tree->state);
state = rb_entry(node, struct extent_state, rb_node);
rb_erase(&state->rb_node, &tree->state);
RB_CLEAR_NODE(&state->rb_node);
/*
* btree io trees aren't supposed to have tasks waiting for
* changes in the flags of extent states ever.
*/
ASSERT(!waitqueue_active(&state->wq));
free_extent_state(state);
cond_resched_lock(&tree->lock);
}
spin_unlock(&tree->lock);
}
static struct extent_state *alloc_extent_state(gfp_t mask)
{
struct extent_state *state;
/*
* The given mask might be not appropriate for the slab allocator,
* drop the unsupported bits
*/
mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
state = kmem_cache_alloc(extent_state_cache, mask);
if (!state)
return state;
state->state = 0;
state->failrec = NULL;
RB_CLEAR_NODE(&state->rb_node);
btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
refcount_set(&state->refs, 1);
init_waitqueue_head(&state->wq);
trace_alloc_extent_state(state, mask, _RET_IP_);
return state;
}
void free_extent_state(struct extent_state *state)
{
if (!state)
return;
if (refcount_dec_and_test(&state->refs)) {
WARN_ON(extent_state_in_tree(state));
btrfs_leak_debug_del(&leak_lock, &state->leak_list);
trace_free_extent_state(state, _RET_IP_);
kmem_cache_free(extent_state_cache, state);
}
}
static struct rb_node *tree_insert(struct rb_root *root,
struct rb_node *search_start,
u64 offset,
struct rb_node *node,
struct rb_node ***p_in,
struct rb_node **parent_in)
{
struct rb_node **p;
struct rb_node *parent = NULL;
struct tree_entry *entry;
if (p_in && parent_in) {
p = *p_in;
parent = *parent_in;
goto do_insert;
}
p = search_start ? &search_start : &root->rb_node;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct tree_entry, rb_node);
if (offset < entry->start)
p = &(*p)->rb_left;
else if (offset > entry->end)
p = &(*p)->rb_right;
else
return parent;
}
do_insert:
rb_link_node(node, parent, p);
rb_insert_color(node, root);
return NULL;
}
/**
* Search @tree for an entry that contains @offset. Such entry would have
* entry->start <= offset && entry->end >= offset.
*
* @tree: the tree to search
* @offset: offset that should fall within an entry in @tree
* @next_ret: pointer to the first entry whose range ends after @offset
* @prev_ret: pointer to the first entry whose range begins before @offset
* @p_ret: pointer where new node should be anchored (used when inserting an
* entry in the tree)
* @parent_ret: points to entry which would have been the parent of the entry,
* containing @offset
*
* This function returns a pointer to the entry that contains @offset byte
* address. If no such entry exists, then NULL is returned and the other
* pointer arguments to the function are filled, otherwise the found entry is
* returned and other pointers are left untouched.
*/
static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
struct rb_node **next_ret,
struct rb_node **prev_ret,
struct rb_node ***p_ret,
struct rb_node **parent_ret)
{
struct rb_root *root = &tree->state;
struct rb_node **n = &root->rb_node;
struct rb_node *prev = NULL;
struct rb_node *orig_prev = NULL;
struct tree_entry *entry;
struct tree_entry *prev_entry = NULL;
while (*n) {
prev = *n;
entry = rb_entry(prev, struct tree_entry, rb_node);
prev_entry = entry;
if (offset < entry->start)
n = &(*n)->rb_left;
else if (offset > entry->end)
n = &(*n)->rb_right;
else
return *n;
}
if (p_ret)
*p_ret = n;
if (parent_ret)
*parent_ret = prev;
if (next_ret) {
orig_prev = prev;
while (prev && offset > prev_entry->end) {
prev = rb_next(prev);
prev_entry = rb_entry(prev, struct tree_entry, rb_node);
}
*next_ret = prev;
prev = orig_prev;
}
if (prev_ret) {
prev_entry = rb_entry(prev, struct tree_entry, rb_node);
while (prev && offset < prev_entry->start) {
prev = rb_prev(prev);
prev_entry = rb_entry(prev, struct tree_entry, rb_node);
}
*prev_ret = prev;
}
return NULL;
}
static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree *tree,
u64 offset,
struct rb_node ***p_ret,
struct rb_node **parent_ret)
{
struct rb_node *next= NULL;
struct rb_node *ret;
ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
if (!ret)
return next;
return ret;
}
static inline struct rb_node *tree_search(struct extent_io_tree *tree,
u64 offset)
{
return tree_search_for_insert(tree, offset, NULL, NULL);
}
/*
* utility function to look for merge candidates inside a given range.
* Any extents with matching state are merged together into a single
* extent in the tree. Extents with EXTENT_IO in their state field
* are not merged because the end_io handlers need to be able to do
* operations on them without sleeping (or doing allocations/splits).
*
* This should be called with the tree lock held.
*/
static void merge_state(struct extent_io_tree *tree,
struct extent_state *state)
{
struct extent_state *other;
struct rb_node *other_node;
if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
return;
other_node = rb_prev(&state->rb_node);
if (other_node) {
other = rb_entry(other_node, struct extent_state, rb_node);
if (other->end == state->start - 1 &&
other->state == state->state) {
if (tree->private_data &&
is_data_inode(tree->private_data))
btrfs_merge_delalloc_extent(tree->private_data,
state, other);
state->start = other->start;
rb_erase(&other->rb_node, &tree->state);
RB_CLEAR_NODE(&other->rb_node);
free_extent_state(other);
}
}
other_node = rb_next(&state->rb_node);
if (other_node) {
other = rb_entry(other_node, struct extent_state, rb_node);
if (other->start == state->end + 1 &&
other->state == state->state) {
if (tree->private_data &&
is_data_inode(tree->private_data))
btrfs_merge_delalloc_extent(tree->private_data,
state, other);
state->end = other->end;
rb_erase(&other->rb_node, &tree->state);
RB_CLEAR_NODE(&other->rb_node);
free_extent_state(other);
}
}
}
static void set_state_bits(struct extent_io_tree *tree,
struct extent_state *state, u32 *bits,
struct extent_changeset *changeset);
/*
* insert an extent_state struct into the tree. 'bits' are set on the
* struct before it is inserted.
*
* This may return -EEXIST if the extent is already there, in which case the
* state struct is freed.
*
* The tree lock is not taken internally. This is a utility function and
* probably isn't what you want to call (see set/clear_extent_bit).
*/
static int insert_state(struct extent_io_tree *tree,
struct extent_state *state, u64 start, u64 end,
struct rb_node ***p,
struct rb_node **parent,
u32 *bits, struct extent_changeset *changeset)
{
struct rb_node *node;
if (end < start) {
btrfs_err(tree->fs_info,
"insert state: end < start %llu %llu", end, start);
WARN_ON(1);
}
state->start = start;
state->end = end;
set_state_bits(tree, state, bits, changeset);
node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
if (node) {
struct extent_state *found;
found = rb_entry(node, struct extent_state, rb_node);
btrfs_err(tree->fs_info,
"found node %llu %llu on insert of %llu %llu",
found->start, found->end, start, end);
return -EEXIST;
}
merge_state(tree, state);
return 0;
}
/*
* split a given extent state struct in two, inserting the preallocated
* struct 'prealloc' as the newly created second half. 'split' indicates an
* offset inside 'orig' where it should be split.
*
* Before calling,
* the tree has 'orig' at [orig->start, orig->end]. After calling, there
* are two extent state structs in the tree:
* prealloc: [orig->start, split - 1]
* orig: [ split, orig->end ]
*
* The tree locks are not taken by this function. They need to be held
* by the caller.
*/
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
struct extent_state *prealloc, u64 split)
{
struct rb_node *node;
if (tree->private_data && is_data_inode(tree->private_data))
btrfs_split_delalloc_extent(tree->private_data, orig, split);
prealloc->start = orig->start;
prealloc->end = split - 1;
prealloc->state = orig->state;
orig->start = split;
node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
&prealloc->rb_node, NULL, NULL);
if (node) {
free_extent_state(prealloc);
return -EEXIST;
}
return 0;
}
static struct extent_state *next_state(struct extent_state *state)
{
struct rb_node *next = rb_next(&state->rb_node);
if (next)
return rb_entry(next, struct extent_state, rb_node);
else
return NULL;
}
/*
* utility function to clear some bits in an extent state struct.
* it will optionally wake up anyone waiting on this state (wake == 1).
*
* If no bits are set on the state struct after clearing things, the
* struct is freed and removed from the tree
*/
static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
struct extent_state *state,
u32 *bits, int wake,
struct extent_changeset *changeset)
{
struct extent_state *next;
u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
int ret;
if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
u64 range = state->end - state->start + 1;
WARN_ON(range > tree->dirty_bytes);
tree->dirty_bytes -= range;
}
if (tree->private_data && is_data_inode(tree->private_data))
btrfs_clear_delalloc_extent(tree->private_data, state, bits);
ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
BUG_ON(ret < 0);
state->state &= ~bits_to_clear;
if (wake)
wake_up(&state->wq);
if (state->state == 0) {
next = next_state(state);
if (extent_state_in_tree(state)) {
rb_erase(&state->rb_node, &tree->state);
RB_CLEAR_NODE(&state->rb_node);
free_extent_state(state);
} else {
WARN_ON(1);
}
} else {
merge_state(tree, state);
next = next_state(state);
}
return next;
}
static struct extent_state *
alloc_extent_state_atomic(struct extent_state *prealloc)
{
if (!prealloc)
prealloc = alloc_extent_state(GFP_ATOMIC);
return prealloc;
}
static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
{
btrfs_panic(tree->fs_info, err,
"locking error: extent tree was modified by another thread while locked");
}
/*
* clear some bits on a range in the tree. This may require splitting
* or inserting elements in the tree, so the gfp mask is used to
* indicate which allocations or sleeping are allowed.
*
* pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
* the given range from the tree regardless of state (ie for truncate).
*
* the range [start, end] is inclusive.
*
* This takes the tree lock, and returns 0 on success and < 0 on error.
*/
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits, int wake, int delete,
struct extent_state **cached_state,
gfp_t mask, struct extent_changeset *changeset)
{
struct extent_state *state;
struct extent_state *cached;
struct extent_state *prealloc = NULL;
struct rb_node *node;
u64 last_end;
int err;
int clear = 0;
btrfs_debug_check_extent_io_range(tree, start, end);
trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
if (bits & EXTENT_DELALLOC)
bits |= EXTENT_NORESERVE;
if (delete)
bits |= ~EXTENT_CTLBITS;
if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
clear = 1;
again:
if (!prealloc && gfpflags_allow_blocking(mask)) {
/*
* Don't care for allocation failure here because we might end
* up not needing the pre-allocated extent state at all, which
* is the case if we only have in the tree extent states that
* cover our input range and don't cover too any other range.
* If we end up needing a new extent state we allocate it later.
*/
prealloc = alloc_extent_state(mask);
}
spin_lock(&tree->lock);
if (cached_state) {
cached = *cached_state;
if (clear) {
*cached_state = NULL;
cached_state = NULL;
}
if (cached && extent_state_in_tree(cached) &&
cached->start <= start && cached->end > start) {
if (clear)
refcount_dec(&cached->refs);
state = cached;
goto hit_next;
}
if (clear)
free_extent_state(cached);
}
/*
* this search will find the extents that end after
* our range starts
*/
node = tree_search(tree, start);
if (!node)
goto out;
state = rb_entry(node, struct extent_state, rb_node);
hit_next:
if (state->start > end)
goto out;
WARN_ON(state->end < start);
last_end = state->end;
/* the state doesn't have the wanted bits, go ahead */
if (!(state->state & bits)) {
state = next_state(state);
goto next;
}
/*
* | ---- desired range ---- |
* | state | or
* | ------------- state -------------- |
*
* We need to split the extent we found, and may flip
* bits on second half.
*
* If the extent we found extends past our range, we
* just split and search again. It'll get split again
* the next time though.
*
* If the extent we found is inside our range, we clear
* the desired bit on it.
*/
if (state->start < start) {
prealloc = alloc_extent_state_atomic(prealloc);
BUG_ON(!prealloc);
err = split_state(tree, state, prealloc, start);
if (err)
extent_io_tree_panic(tree, err);
prealloc = NULL;
if (err)
goto out;
if (state->end <= end) {
state = clear_state_bit(tree, state, &bits, wake,
changeset);
goto next;
}
goto search_again;
}
/*
* | ---- desired range ---- |
* | state |
* We need to split the extent, and clear the bit
* on the first half
*/
if (state->start <= end && state->end > end) {
prealloc = alloc_extent_state_atomic(prealloc);
BUG_ON(!prealloc);
err = split_state(tree, state, prealloc, end + 1);
if (err)
extent_io_tree_panic(tree, err);
if (wake)
wake_up(&state->wq);
clear_state_bit(tree, prealloc, &bits, wake, changeset);
prealloc = NULL;
goto out;
}
state = clear_state_bit(tree, state, &bits, wake, changeset);
next:
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
if (start <= end && state && !need_resched())
goto hit_next;
search_again:
if (start > end)
goto out;
spin_unlock(&tree->lock);
if (gfpflags_allow_blocking(mask))
cond_resched();
goto again;
out:
spin_unlock(&tree->lock);
if (prealloc)
free_extent_state(prealloc);
return 0;
}
static void wait_on_state(struct extent_io_tree *tree,
struct extent_state *state)
__releases(tree->lock)
__acquires(tree->lock)
{
DEFINE_WAIT(wait);
prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock(&tree->lock);
schedule();
spin_lock(&tree->lock);
finish_wait(&state->wq, &wait);
}
/*
* waits for one or more bits to clear on a range in the state tree.
* The range [start, end] is inclusive.
* The tree lock is taken by this function
*/
static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits)
{
struct extent_state *state;
struct rb_node *node;
btrfs_debug_check_extent_io_range(tree, start, end);
spin_lock(&tree->lock);
again:
while (1) {
/*
* this search will find all the extents that end after
* our range starts
*/
node = tree_search(tree, start);
process_node:
if (!node)
break;
state = rb_entry(node, struct extent_state, rb_node);
if (state->start > end)
goto out;
if (state->state & bits) {
start = state->start;
refcount_inc(&state->refs);
wait_on_state(tree, state);
free_extent_state(state);
goto again;
}
start = state->end + 1;
if (start > end)
break;
if (!cond_resched_lock(&tree->lock)) {
node = rb_next(node);
goto process_node;
}
}
out:
spin_unlock(&tree->lock);
}
static void set_state_bits(struct extent_io_tree *tree,
struct extent_state *state,
u32 *bits, struct extent_changeset *changeset)
{
u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
int ret;
if (tree->private_data && is_data_inode(tree->private_data))
btrfs_set_delalloc_extent(tree->private_data, state, bits);
if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
u64 range = state->end - state->start + 1;
tree->dirty_bytes += range;
}
ret = add_extent_changeset(state, bits_to_set, changeset, 1);
BUG_ON(ret < 0);
state->state |= bits_to_set;
}
static void cache_state_if_flags(struct extent_state *state,
struct extent_state **cached_ptr,
unsigned flags)
{
if (cached_ptr && !(*cached_ptr)) {
if (!flags || (state->state & flags)) {
*cached_ptr = state;
refcount_inc(&state->refs);
}
}
}
static void cache_state(struct extent_state *state,
struct extent_state **cached_ptr)
{
return cache_state_if_flags(state, cached_ptr,
EXTENT_LOCKED | EXTENT_BOUNDARY);
}
/*
* set some bits on a range in the tree. This may require allocations or
* sleeping, so the gfp mask is used to indicate what is allowed.
*
* If any of the exclusive bits are set, this will fail with -EEXIST if some
* part of the range already has the desired bits set. The start of the
* existing range is returned in failed_start in this case.
*
* [start, end] is inclusive This takes the tree lock.
*/
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
u32 exclusive_bits, u64 *failed_start,
struct extent_state **cached_state, gfp_t mask,
struct extent_changeset *changeset)
{
struct extent_state *state;
struct extent_state *prealloc = NULL;
struct rb_node *node;
struct rb_node **p;
struct rb_node *parent;
int err = 0;
u64 last_start;
u64 last_end;
btrfs_debug_check_extent_io_range(tree, start, end);
trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
if (exclusive_bits)
ASSERT(failed_start);
else
ASSERT(failed_start == NULL);
again:
if (!prealloc && gfpflags_allow_blocking(mask)) {
/*
* Don't care for allocation failure here because we might end
* up not needing the pre-allocated extent state at all, which
* is the case if we only have in the tree extent states that
* cover our input range and don't cover too any other range.
* If we end up needing a new extent state we allocate it later.
*/
prealloc = alloc_extent_state(mask);
}
spin_lock(&tree->lock);
if (cached_state && *cached_state) {
state = *cached_state;
if (state->start <= start && state->end > start &&
extent_state_in_tree(state)) {
node = &state->rb_node;
goto hit_next;
}
}
/*
* this search will find all the extents that end after
* our range starts.
*/
node = tree_search_for_insert(tree, start, &p, &parent);
if (!node) {
prealloc = alloc_extent_state_atomic(prealloc);
BUG_ON(!prealloc);
err = insert_state(tree, prealloc, start, end,
&p, &parent, &bits, changeset);
if (err)
extent_io_tree_panic(tree, err);
cache_state(prealloc, cached_state);
prealloc = NULL;
goto out;
}
state = rb_entry(node, struct extent_state, rb_node);
hit_next:
last_start = state->start;
last_end = state->end;
/*
* | ---- desired range ---- |
* | state |
*
* Just lock what we found and keep going
*/
if (state->start == start && state->end <= end) {
if (state->state & exclusive_bits) {
*failed_start = state->start;
err = -EEXIST;
goto out;
}
set_state_bits(tree, state, &bits, changeset);
cache_state(state, cached_state);
merge_state(tree, state);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
state = next_state(state);
if (start < end && state && state->start == start &&
!need_resched())
goto hit_next;
goto search_again;
}
/*
* | ---- desired range ---- |
* | state |
* or
* | ------------- state -------------- |
*
* We need to split the extent we found, and may flip bits on
* second half.
*
* If the extent we found extends past our
* range, we just split and search again. It'll get split
* again the next time though.
*
* If the extent we found is inside our range, we set the
* desired bit on it.
*/
if (state->start < start) {
if (state->state & exclusive_bits) {
*failed_start = start;
err = -EEXIST;
goto out;
}
/*
* If this extent already has all the bits we want set, then
* skip it, not necessary to split it or do anything with it.
*/
if ((state->state & bits) == bits) {
start = state->end + 1;
cache_state(state, cached_state);
goto search_again;
}
prealloc = alloc_extent_state_atomic(prealloc);
BUG_ON(!prealloc);
err = split_state(tree, state, prealloc, start);
if (err)
extent_io_tree_panic(tree, err);
prealloc = NULL;
if (err)
goto out;
if (state->end <= end) {
set_state_bits(tree, state, &bits, changeset);
cache_state(state, cached_state);
merge_state(tree, state);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
state = next_state(state);
if (start < end && state && state->start == start &&
!need_resched())
goto hit_next;
}
goto search_again;
}
/*
* | ---- desired range ---- |
* | state | or | state |
*
* There's a hole, we need to insert something in it and
* ignore the extent we found.
*/
if (state->start > start) {
u64 this_end;
if (end < last_start)
this_end = end;
else
this_end = last_start - 1;
prealloc = alloc_extent_state_atomic(prealloc);
BUG_ON(!prealloc);
/*
* Avoid to free 'prealloc' if it can be merged with
* the later extent.
*/
err = insert_state(tree, prealloc, start, this_end,
NULL, NULL, &bits, changeset);
if (err)
extent_io_tree_panic(tree, err);
cache_state(prealloc, cached_state);
prealloc = NULL;
start = this_end + 1;
goto search_again;
}
/*
* | ---- desired range ---- |
* | state |
* We need to split the extent, and set the bit
* on the first half
*/
if (state->start <= end && state->end > end) {
if (state->state & exclusive_bits) {
*failed_start = start;
err = -EEXIST;
goto out;
}
prealloc = alloc_extent_state_atomic(prealloc);
BUG_ON(!prealloc);
err = split_state(tree, state, prealloc, end + 1);
if (err)
extent_io_tree_panic(tree, err);
set_state_bits(tree, prealloc, &bits, changeset);
cache_state(prealloc, cached_state);
merge_state(tree, prealloc);
prealloc = NULL;
goto out;
}
search_again:
if (start > end)
goto out;
spin_unlock(&tree->lock);
if (gfpflags_allow_blocking(mask))
cond_resched();
goto again;
out:
spin_unlock(&tree->lock);
if (prealloc)
free_extent_state(prealloc);
return err;
}
/**
* convert_extent_bit - convert all bits in a given range from one bit to
* another
* @tree: the io tree to search
* @start: the start offset in bytes
* @end: the end offset in bytes (inclusive)
* @bits: the bits to set in this range
* @clear_bits: the bits to clear in this range
* @cached_state: state that we're going to cache
*
* This will go through and set bits for the given range. If any states exist
* already in this range they are set with the given bit and cleared of the
* clear_bits. This is only meant to be used by things that are mergeable, ie
* converting from say DELALLOC to DIRTY. This is not meant to be used with
* boundary bits like LOCK.
*
* All allocations are done with GFP_NOFS.
*/
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits, u32 clear_bits,
struct extent_state **cached_state)
{
struct extent_state *state;
struct extent_state *prealloc = NULL;
struct rb_node *node;
struct rb_node **p;
struct rb_node *parent;
int err = 0;
u64 last_start;
u64 last_end;
bool first_iteration = true;
btrfs_debug_check_extent_io_range(tree, start, end);
trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
clear_bits);
again:
if (!prealloc) {
/*
* Best effort, don't worry if extent state allocation fails
* here for the first iteration. We might have a cached state
* that matches exactly the target range, in which case no
* extent state allocations are needed. We'll only know this
* after locking the tree.
*/
prealloc = alloc_extent_state(GFP_NOFS);
if (!prealloc && !first_iteration)
return -ENOMEM;
}
spin_lock(&tree->lock);
if (cached_state && *cached_state) {
state = *cached_state;
if (state->start <= start && state->end > start &&
extent_state_in_tree(state)) {
node = &state->rb_node;
goto hit_next;
}
}
/*
* this search will find all the extents that end after
* our range starts.
*/
node = tree_search_for_insert(tree, start, &p, &parent);
if (!node) {
prealloc = alloc_extent_state_atomic(prealloc);
if (!prealloc) {
err = -ENOMEM;
goto out;
}
err = insert_state(tree, prealloc, start, end,
&p, &parent, &bits, NULL);
if (err)
extent_io_tree_panic(tree, err);
cache_state(prealloc, cached_state);
prealloc = NULL;
goto out;
}
state = rb_entry(node, struct extent_state, rb_node);
hit_next:
last_start = state->start;
last_end = state->end;
/*
* | ---- desired range ---- |
* | state |
*
* Just lock what we found and keep going
*/
if (state->start == start && state->end <= end) {
set_state_bits(tree, state, &bits, NULL);
cache_state(state, cached_state);
state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
if (start < end && state && state->start == start &&
!need_resched())
goto hit_next;
goto search_again;
}
/*
* | ---- desired range ---- |
* | state |
* or
* | ------------- state -------------- |
*
* We need to split the extent we found, and may flip bits on
* second half.
*
* If the extent we found extends past our
* range, we just split and search again. It'll get split
* again the next time though.
*
* If the extent we found is inside our range, we set the
* desired bit on it.
*/
if (state->start < start) {
prealloc = alloc_extent_state_atomic(prealloc);
if (!prealloc) {
err = -ENOMEM;
goto out;
}
err = split_state(tree, state, prealloc, start);
if (err)
extent_io_tree_panic(tree, err);
prealloc = NULL;
if (err)
goto out;
if (state->end <= end) {
set_state_bits(tree, state, &bits, NULL);
cache_state(state, cached_state);
state = clear_state_bit(tree, state, &clear_bits, 0,
NULL);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
if (start < end && state && state->start == start &&
!need_resched())
goto hit_next;
}
goto search_again;
}
/*
* | ---- desired range ---- |
* | state | or | state |
*
* There's a hole, we need to insert something in it and
* ignore the extent we found.
*/
if (state->start > start) {
u64 this_end;
if (end < last_start)
this_end = end;
else
this_end = last_start - 1;
prealloc = alloc_extent_state_atomic(prealloc);
if (!prealloc) {
err = -ENOMEM;
goto out;
}
/*
* Avoid to free 'prealloc' if it can be merged with
* the later extent.
*/
err = insert_state(tree, prealloc, start, this_end,
NULL, NULL, &bits, NULL);
if (err)
extent_io_tree_panic(tree, err);
cache_state(prealloc, cached_state);
prealloc = NULL;
start = this_end + 1;
goto search_again;
}
/*
* | ---- desired range ---- |
* | state |
* We need to split the extent, and set the bit
* on the first half
*/
if (state->start <= end && state->end > end) {
prealloc = alloc_extent_state_atomic(prealloc);
if (!prealloc) {
err = -ENOMEM;
goto out;
}
err = split_state(tree, state, prealloc, end + 1);
if (err)
extent_io_tree_panic(tree, err);
set_state_bits(tree, prealloc, &bits, NULL);
cache_state(prealloc, cached_state);
clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
prealloc = NULL;
goto out;
}
search_again:
if (start > end)
goto out;
spin_unlock(&tree->lock);
cond_resched();
first_iteration = false;
goto again;
out:
spin_unlock(&tree->lock);
if (prealloc)
free_extent_state(prealloc);
return err;
}
/* wrappers around set/clear extent bit */
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits, struct extent_changeset *changeset)
{
/*
* We don't support EXTENT_LOCKED yet, as current changeset will
* record any bits changed, so for EXTENT_LOCKED case, it will
* either fail with -EEXIST or changeset will record the whole
* range.
*/
BUG_ON(bits & EXTENT_LOCKED);
return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
changeset);
}
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits)
{
return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
GFP_NOWAIT, NULL);
}
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits, int wake, int delete,
struct extent_state **cached)
{
return __clear_extent_bit(tree, start, end, bits, wake, delete,
cached, GFP_NOFS, NULL);
}
int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits, struct extent_changeset *changeset)
{
/*
* Don't support EXTENT_LOCKED case, same reason as
* set_record_extent_bits().
*/
BUG_ON(bits & EXTENT_LOCKED);
return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
changeset);
}
/*
* either insert or lock state struct between start and end use mask to tell
* us if waiting is desired.
*/
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
struct extent_state **cached_state)
{
int err;
u64 failed_start;
while (1) {
err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
EXTENT_LOCKED, &failed_start,
cached_state, GFP_NOFS, NULL);
if (err == -EEXIST) {
wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
start = failed_start;
} else
break;
WARN_ON(start > end);
}
return err;
}
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
{
int err;
u64 failed_start;
err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
&failed_start, NULL, GFP_NOFS, NULL);
if (err == -EEXIST) {
if (failed_start > start)
clear_extent_bit(tree, start, failed_start - 1,
EXTENT_LOCKED, 1, 0, NULL);
return 0;
}
return 1;
}
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
{
unsigned long index = start >> PAGE_SHIFT;
unsigned long end_index = end >> PAGE_SHIFT;
struct page *page;
while (index <= end_index) {
page = find_get_page(inode->i_mapping, index);
BUG_ON(!page); /* Pages should be in the extent_io_tree */
clear_page_dirty_for_io(page);
put_page(page);
index++;
}
}
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
{
unsigned long index = start >> PAGE_SHIFT;
unsigned long end_index = end >> PAGE_SHIFT;
struct page *page;
while (index <= end_index) {
page = find_get_page(inode->i_mapping, index);
BUG_ON(!page); /* Pages should be in the extent_io_tree */
__set_page_dirty_nobuffers(page);
account_page_redirty(page);
put_page(page);
index++;
}
}
/* find the first state struct with 'bits' set after 'start', and
* return it. tree->lock must be held. NULL will returned if
* nothing was found after 'start'
*/
static struct extent_state *
find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
{
struct rb_node *node;
struct extent_state *state;
/*
* this search will find all the extents that end after
* our range starts.
*/
node = tree_search(tree, start);
if (!node)
goto out;
while (1) {
state = rb_entry(node, struct extent_state, rb_node);
if (state->end >= start && (state->state & bits))
return state;
node = rb_next(node);
if (!node)
break;
}
out:
return NULL;
}
/*
* Find the first offset in the io tree with one or more @bits set.
*
* Note: If there are multiple bits set in @bits, any of them will match.
*
* Return 0 if we find something, and update @start_ret and @end_ret.
* Return 1 if we found nothing.
*/
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
u64 *start_ret, u64 *end_ret, u32 bits,
struct extent_state **cached_state)
{
struct extent_state *state;
int ret = 1;
spin_lock(&tree->lock);
if (cached_state && *cached_state) {
state = *cached_state;
if (state->end == start - 1 && extent_state_in_tree(state)) {
while ((state = next_state(state)) != NULL) {
if (state->state & bits)
goto got_it;
}
free_extent_state(*cached_state);
*cached_state = NULL;
goto out;
}
free_extent_state(*cached_state);
*cached_state = NULL;
}
state = find_first_extent_bit_state(tree, start, bits);
got_it:
if (state) {
cache_state_if_flags(state, cached_state, 0);
*start_ret = state->start;
*end_ret = state->end;
ret = 0;
}
out:
spin_unlock(&tree->lock);
return ret;
}
/**
* Find a contiguous area of bits
*
* @tree: io tree to check
* @start: offset to start the search from
* @start_ret: the first offset we found with the bits set
* @end_ret: the final contiguous range of the bits that were set
* @bits: bits to look for
*
* set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
* to set bits appropriately, and then merge them again. During this time it
* will drop the tree->lock, so use this helper if you want to find the actual
* contiguous area for given bits. We will search to the first bit we find, and
* then walk down the tree until we find a non-contiguous area. The area
* returned will be the full contiguous area with the bits set.
*/
int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
u64 *start_ret, u64 *end_ret, u32 bits)
{
struct extent_state *state;
int ret = 1;
spin_lock(&tree->lock);
state = find_first_extent_bit_state(tree, start, bits);
if (state) {
*start_ret = state->start;
*end_ret = state->end;
while ((state = next_state(state)) != NULL) {
if (state->start > (*end_ret + 1))
break;
*end_ret = state->end;
}
ret = 0;
}
spin_unlock(&tree->lock);
return ret;
}
/**
* Find the first range that has @bits not set. This range could start before
* @start.
*
* @tree: the tree to search
* @start: offset at/after which the found extent should start
* @start_ret: records the beginning of the range
* @end_ret: records the end of the range (inclusive)
* @bits: the set of bits which must be unset
*
* Since unallocated range is also considered one which doesn't have the bits
* set it's possible that @end_ret contains -1, this happens in case the range
* spans (last_range_end, end of device]. In this case it's up to the caller to
* trim @end_ret to the appropriate size.
*/
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
u64 *start_ret, u64 *end_ret, u32 bits)
{
struct extent_state *state;
struct rb_node *node, *prev = NULL, *next;
spin_lock(&tree->lock);
/* Find first extent with bits cleared */
while (1) {
node = __etree_search(tree, start, &next, &prev, NULL, NULL);
if (!node && !next && !prev) {
/*
* Tree is completely empty, send full range and let
* caller deal with it
*/
*start_ret = 0;
*end_ret = -1;
goto out;
} else if (!node && !next) {
/*
* We are past the last allocated chunk, set start at
* the end of the last extent.
*/
state = rb_entry(prev, struct extent_state, rb_node);
*start_ret = state->end + 1;
*end_ret = -1;
goto out;
} else if (!node) {
node = next;
}
/*
* At this point 'node' either contains 'start' or start is
* before 'node'
*/
state = rb_entry(node, struct extent_state, rb_node);
if (in_range(start, state->start, state->end - state->start + 1)) {
if (state->state & bits) {
/*
* |--range with bits sets--|
* |
* start
*/
start = state->end + 1;
} else {
/*
* 'start' falls within a range that doesn't
* have the bits set, so take its start as
* the beginning of the desired range
*
* |--range with bits cleared----|
* |
* start
*/
*start_ret = state->start;
break;
}
} else {
/*
* |---prev range---|---hole/unset---|---node range---|
* |
* start
*
* or
*
* |---hole/unset--||--first node--|
* 0 |
* start
*/
if (prev) {
state = rb_entry(prev, struct extent_state,
rb_node);
*start_ret = state->end + 1;
} else {
*start_ret = 0;
}
break;
}
}
/*
* Find the longest stretch from start until an entry which has the
* bits set
*/
while (1) {
state = rb_entry(node, struct extent_state, rb_node);
if (state->end >= start && !(state->state & bits)) {
*end_ret = state->end;
} else {
*end_ret = state->start - 1;
break;
}
node = rb_next(node);
if (!node)
break;
}
out:
spin_unlock(&tree->lock);
}
/*
* find a contiguous range of bytes in the file marked as delalloc, not
* more than 'max_bytes'. start and end are used to return the range,
*
* true is returned if we find something, false if nothing was in the tree
*/
bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
u64 *end, u64 max_bytes,
struct extent_state **cached_state)
{
struct rb_node *node;
struct extent_state *state;
u64 cur_start = *start;
bool found = false;
u64 total_bytes = 0;
spin_lock(&tree->lock);
/*
* this search will find all the extents that end after
* our range starts.
*/
node = tree_search(tree, cur_start);
if (!node) {
*end = (u64)-1;
goto out;
}
while (1) {
state = rb_entry(node, struct extent_state, rb_node);
if (found && (state->start != cur_start ||
(state->state & EXTENT_BOUNDARY))) {
goto out;
}
if (!(state->state & EXTENT_DELALLOC)) {
if (!found)
*end = state->end;
goto out;
}
if (!found) {
*start = state->start;
*cached_state = state;
refcount_inc(&state->refs);
}
found = true;
*end = state->end;
cur_start = state->end + 1;
node = rb_next(node);
total_bytes += state->end - state->start + 1;
if (total_bytes >= max_bytes)
break;
if (!node)
break;
}
out:
spin_unlock(&tree->lock);
return found;
}
/*
* Process one page for __process_pages_contig().
*
* Return >0 if we hit @page == @locked_page.
* Return 0 if we updated the page status.
* Return -EGAIN if the we need to try again.
* (For PAGE_LOCK case but got dirty page or page not belong to mapping)
*/
static int process_one_page(struct btrfs_fs_info *fs_info,
struct address_space *mapping,
struct page *page, struct page *locked_page,
unsigned long page_ops, u64 start, u64 end)
{
u32 len;
ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
len = end + 1 - start;
if (page_ops & PAGE_SET_ORDERED)
btrfs_page_clamp_set_ordered(fs_info, page, start, len);
if (page_ops & PAGE_SET_ERROR)
btrfs_page_clamp_set_error(fs_info, page, start, len);
if (page_ops & PAGE_START_WRITEBACK) {
btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
btrfs_page_clamp_set_writeback(fs_info, page, start, len);
}
if (page_ops & PAGE_END_WRITEBACK)
btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
if (page == locked_page)
return 1;
if (page_ops & PAGE_LOCK) {
int ret;
ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
if (ret)
return ret;
if (!PageDirty(page) || page->mapping != mapping) {
btrfs_page_end_writer_lock(fs_info, page, start, len);
return -EAGAIN;
}
}
if (page_ops & PAGE_UNLOCK)
btrfs_page_end_writer_lock(fs_info, page, start, len);
return 0;
}
static int __process_pages_contig(struct address_space *mapping,
struct page *locked_page,
u64 start, u64 end, unsigned long page_ops,
u64 *processed_end)
{
struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
pgoff_t start_index = start >> PAGE_SHIFT;
pgoff_t end_index = end >> PAGE_SHIFT;
pgoff_t index = start_index;
unsigned long nr_pages = end_index - start_index + 1;
unsigned long pages_processed = 0;
struct page *pages[16];
int err = 0;
int i;
if (page_ops & PAGE_LOCK) {
ASSERT(page_ops == PAGE_LOCK);
ASSERT(processed_end && *processed_end == start);
}
if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
mapping_set_error(mapping, -EIO);
while (nr_pages > 0) {
int found_pages;
found_pages = find_get_pages_contig(mapping, index,
min_t(unsigned long,
nr_pages, ARRAY_SIZE(pages)), pages);
if (found_pages == 0) {
/*
* Only if we're going to lock these pages, we can find
* nothing at @index.
*/
ASSERT(page_ops & PAGE_LOCK);
err = -EAGAIN;
goto out;
}
for (i = 0; i < found_pages; i++) {
int process_ret;
process_ret = process_one_page(fs_info, mapping,
pages[i], locked_page, page_ops,
start, end);
if (process_ret < 0) {
for (; i < found_pages; i++)
put_page(pages[i]);
err = -EAGAIN;
goto out;
}
put_page(pages[i]);
pages_processed++;
}
nr_pages -= found_pages;
index += found_pages;
cond_resched();
}
out:
if (err && processed_end) {
/*
* Update @processed_end. I know this is awful since it has
* two different return value patterns (inclusive vs exclusive).
*
* But the exclusive pattern is necessary if @start is 0, or we
* underflow and check against processed_end won't work as
* expected.
*/
if (pages_processed)
*processed_end = min(end,
((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
else
*processed_end = start;
}
return err;
}
static noinline void __unlock_for_delalloc(struct inode *inode,
struct page *locked_page,
u64 start, u64 end)
{
unsigned long index = start >> PAGE_SHIFT;
unsigned long end_index = end >> PAGE_SHIFT;
ASSERT(locked_page);
if (index == locked_page->index && end_index == index)
return;
__process_pages_contig(inode->i_mapping, locked_page, start, end,
PAGE_UNLOCK, NULL);
}
static noinline int lock_delalloc_pages(struct inode *inode,
struct page *locked_page,
u64 delalloc_start,
u64 delalloc_end)
{
unsigned long index = delalloc_start >> PAGE_SHIFT;
unsigned long end_index = delalloc_end >> PAGE_SHIFT;
u64 processed_end = delalloc_start;
int ret;
ASSERT(locked_page);
if (index == locked_page->index && index == end_index)
return 0;
ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
delalloc_end, PAGE_LOCK, &processed_end);
if (ret == -EAGAIN && processed_end > delalloc_start)
__unlock_for_delalloc(inode, locked_page, delalloc_start,
processed_end);
return ret;
}
/*
* Find and lock a contiguous range of bytes in the file marked as delalloc, no
* more than @max_bytes. @Start and @end are used to return the range,
*
* Return: true if we find something
* false if nothing was in the tree
*/
EXPORT_FOR_TESTS
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
struct page *locked_page, u64 *start,
u64 *end)
{
struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
u64 delalloc_start;
u64 delalloc_end;
bool found;
struct extent_state *cached_state = NULL;
int ret;
int loops = 0;
again:
/* step one, find a bunch of delalloc bytes starting at start */
delalloc_start = *start;
delalloc_end = 0;
found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
max_bytes, &cached_state);
if (!found || delalloc_end <= *start) {
*start = delalloc_start;
*end = delalloc_end;
free_extent_state(cached_state);
return false;
}
/*
* start comes from the offset of locked_page. We have to lock
* pages in order, so we can't process delalloc bytes before
* locked_page
*/
if (delalloc_start < *start)
delalloc_start = *start;
/*
* make sure to limit the number of pages we try to lock down
*/
if (delalloc_end + 1 - delalloc_start > max_bytes)
delalloc_end = delalloc_start + max_bytes - 1;
/* step two, lock all the pages after the page that has start */
ret = lock_delalloc_pages(inode, locked_page,
delalloc_start, delalloc_end);
ASSERT(!ret || ret == -EAGAIN);
if (ret == -EAGAIN) {
/* some of the pages are gone, lets avoid looping by
* shortening the size of the delalloc range we're searching
*/
free_extent_state(cached_state);
cached_state = NULL;
if (!loops) {
max_bytes = PAGE_SIZE;
loops = 1;
goto again;
} else {
found = false;
goto out_failed;
}
}
/* step three, lock the state bits for the whole range */
lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
/* then test to make sure it is all still delalloc */
ret = test_range_bit(tree, delalloc_start, delalloc_end,
EXTENT_DELALLOC, 1, cached_state);
if (!ret) {
unlock_extent_cached(tree, delalloc_start, delalloc_end,
&cached_state);
__unlock_for_delalloc(inode, locked_page,
delalloc_start, delalloc_end);
cond_resched();
goto again;
}
free_extent_state(cached_state);
*start = delalloc_start;
*end = delalloc_end;
out_failed:
return found;
}
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
struct page *locked_page,
u32 clear_bits, unsigned long page_ops)
{
clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
start, end, page_ops, NULL);
}
/*
* count the number of bytes in the tree that have a given bit(s)
* set. This can be fairly slow, except for EXTENT_DIRTY which is
* cached. The total number found is returned.
*/
u64 count_range_bits(struct extent_io_tree *tree,
u64 *start, u64 search_end, u64 max_bytes,
u32 bits, int contig)
{
struct rb_node *node;
struct extent_state *state;
u64 cur_start = *start;
u64 total_bytes = 0;
u64 last = 0;
int found = 0;
if (WARN_ON(search_end <= cur_start))
return 0;
spin_lock(&tree->lock);
if (cur_start == 0 && bits == EXTENT_DIRTY) {
total_bytes = tree->dirty_bytes;
goto out;
}
/*
* this search will find all the extents that end after
* our range starts.
*/
node = tree_search(tree, cur_start);
if (!node)
goto out;
while (1) {
state = rb_entry(node, struct extent_state, rb_node);
if (state->start > search_end)
break;
if (contig && found && state->start > last + 1)
break;
if (state->end >= cur_start && (state->state & bits) == bits) {
total_bytes += min(search_end, state->end) + 1 -
max(cur_start, state->start);
if (total_bytes >= max_bytes)
break;
if (!found) {
*start = max(cur_start, state->start);
found = 1;
}
last = state->end;
} else if (contig && found) {
break;
}
node = rb_next(node);
if (!node)
break;
}
out:
spin_unlock(&tree->lock);
return total_bytes;
}
/*
* set the private field for a given byte offset in the tree. If there isn't
* an extent_state there already, this does nothing.
*/
int set_state_failrec(struct extent_io_tree *tree, u64 start,
struct io_failure_record *failrec)
{
struct rb_node *node;
struct extent_state *state;
int ret = 0;
spin_lock(&tree->lock);
/*
* this search will find all the extents that end after
* our range starts.
*/
node = tree_search(tree, start);
if (!node) {
ret = -ENOENT;
goto out;
}
state = rb_entry(node, struct extent_state, rb_node);
if (state->start != start) {
ret = -ENOENT;
goto out;
}
state->failrec = failrec;
out:
spin_unlock(&tree->lock);
return ret;
}
struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
{
struct rb_node *node;
struct extent_state *state;
struct io_failure_record *failrec;
spin_lock(&tree->lock);
/*
* this search will find all the extents that end after
* our range starts.
*/
node = tree_search(tree, start);
if (!node) {
failrec = ERR_PTR(-ENOENT);
goto out;
}
state = rb_entry(node, struct extent_state, rb_node);
if (state->start != start) {
failrec = ERR_PTR(-ENOENT);
goto out;
}
failrec = state->failrec;
out:
spin_unlock(&tree->lock);
return failrec;
}
/*
* searches a range in the state tree for a given mask.
* If 'filled' == 1, this returns 1 only if every extent in the tree
* has the bits set. Otherwise, 1 is returned if any bit in the
* range is found set.
*/
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
u32 bits, int filled, struct extent_state *cached)
{
struct extent_state *state = NULL;
struct rb_node *node;
int bitset = 0;
spin_lock(&tree->lock);
if (cached && extent_state_in_tree(cached) && cached->start <= start &&
cached->end > start)
node = &cached->rb_node;
else
node = tree_search(tree, start);
while (node && start <= end) {
state = rb_entry(node, struct extent_state, rb_node);
if (filled && state->start > start) {
bitset = 0;
break;
}
if (state->start > end)
break;
if (state->state & bits) {
bitset = 1;
if (!filled)
break;
} else if (filled) {
bitset = 0;
break;
}
if (state->end == (u64)-1)
break;
start = state->end + 1;
if (start > end)
break;
node = rb_next(node);
if (!node) {
if (filled)
bitset = 0;
break;
}
}
spin_unlock(&tree->lock);
return bitset;
}
int free_io_failure(struct extent_io_tree *failure_tree,
struct extent_io_tree *io_tree,
struct io_failure_record *rec)
{
int ret;
int err = 0;
set_state_failrec(failure_tree, rec->start, NULL);
ret = clear_extent_bits(failure_tree, rec->start,
rec->start + rec->len - 1,
EXTENT_LOCKED | EXTENT_DIRTY);
if (ret)
err = ret;
ret = clear_extent_bits(io_tree, rec->start,
rec->start + rec->len - 1,
EXTENT_DAMAGED);
if (ret && !err)
err = ret;
kfree(rec);
return err;
}
/*
* this bypasses the standard btrfs submit functions deliberately, as
* the standard behavior is to write all copies in a raid setup. here we only
* want to write the one bad copy. so we do the mapping for ourselves and issue
* submit_bio directly.
* to avoid any synchronization issues, wait for the data after writing, which
* actually prevents the read that triggered the error from finishing.
* currently, there can be no more than two copies of every data bit. thus,
* exactly one rewrite is required.
*/
static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
u64 length, u64 logical, struct page *page,
unsigned int pg_offset, int mirror_num)
{
struct bio *bio;
struct btrfs_device *dev;
u64 map_length = 0;
u64 sector;
struct btrfs_io_context *bioc = NULL;
int ret;
ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
BUG_ON(!mirror_num);
if (btrfs_is_zoned(fs_info))
return btrfs_repair_one_zone(fs_info, logical);
bio = btrfs_bio_alloc(1);
bio->bi_iter.bi_size = 0;
map_length = length;
/*
* Avoid races with device replace and make sure our bioc has devices
* associated to its stripes that don't go away while we are doing the
* read repair operation.
*/
btrfs_bio_counter_inc_blocked(fs_info);
if (btrfs_is_parity_mirror(fs_info, logical, length)) {
/*
* Note that we don't use BTRFS_MAP_WRITE because it's supposed
* to update all raid stripes, but here we just want to correct
* bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
* stripe's dev and sector.
*/
ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
&map_length, &bioc, 0);
if (ret) {
btrfs_bio_counter_dec(fs_info);
bio_put(bio);
return -EIO;
}
ASSERT(bioc->mirror_num == 1);
} else {
ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
&map_length, &bioc, mirror_num);
if (ret) {
btrfs_bio_counter_dec(fs_info);
bio_put(bio);
return -EIO;
}
BUG_ON(mirror_num != bioc->mirror_num);
}
sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
bio->bi_iter.bi_sector = sector;
dev = bioc->stripes[bioc->mirror_num - 1].dev;
btrfs_put_bioc(bioc);
if (!dev || !dev->bdev ||
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
btrfs_bio_counter_dec(fs_info);
bio_put(bio);
return -EIO;
}
bio_set_dev(bio, dev->bdev);
bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
bio_add_page(bio, page, length, pg_offset);
if (btrfsic_submit_bio_wait(bio)) {
/* try to remap that extent elsewhere? */
btrfs_bio_counter_dec(fs_info);
bio_put(bio);
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
return -EIO;
}
btrfs_info_rl_in_rcu(fs_info,
"read error corrected: ino %llu off %llu (dev %s sector %llu)",
ino, start,
rcu_str_deref(dev->name), sector);
btrfs_bio_counter_dec(fs_info);
bio_put(bio);
return 0;
}
int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
u64 start = eb->start;
int i, num_pages = num_extent_pages(eb);
int ret = 0;
if (sb_rdonly(fs_info->sb))
return -EROFS;
for (i = 0; i < num_pages; i++) {
struct page *p = eb->pages[i];
ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
start - page_offset(p), mirror_num);
if (ret)
break;
start += PAGE_SIZE;
}
return ret;
}
/*
* each time an IO finishes, we do a fast check in the IO failure tree
* to see if we need to process or clean up an io_failure_record
*/
int clean_io_failure(struct btrfs_fs_info *fs_info,
struct extent_io_tree *failure_tree,
struct extent_io_tree *io_tree, u64 start,
struct page *page, u64 ino, unsigned int pg_offset)
{
u64 private;
struct io_failure_record *failrec;
struct extent_state *state;
int num_copies;
int ret;
private = 0;
ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
EXTENT_DIRTY, 0);
if (!ret)
return 0;
failrec = get_state_failrec(failure_tree, start);
if (IS_ERR(failrec))
return 0;
BUG_ON(!failrec->this_mirror);
if (sb_rdonly(fs_info->sb))
goto out;
spin_lock(&io_tree->lock);
state = find_first_extent_bit_state(io_tree,
failrec->start,
EXTENT_LOCKED);
spin_unlock(&io_tree->lock);
if (state && state->start <= failrec->start &&
state->end >= failrec->start + failrec->len - 1) {
num_copies = btrfs_num_copies(fs_info, failrec->logical,
failrec->len);
if (num_copies > 1) {
repair_io_failure(fs_info, ino, start, failrec->len,
failrec->logical, page, pg_offset,
failrec->failed_mirror);
}
}
out:
free_io_failure(failure_tree, io_tree, failrec);
return 0;
}
/*
* Can be called when
* - hold extent lock
* - under ordered extent
* - the inode is freeing
*/
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
{
struct extent_io_tree *failure_tree = &inode->io_failure_tree;
struct io_failure_record *failrec;
struct extent_state *state, *next;
if (RB_EMPTY_ROOT(&failure_tree->state))
return;
spin_lock(&failure_tree->lock);
state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
while (state) {
if (state->start > end)
break;
ASSERT(state->end <= end);
next = next_state(state);
failrec = state->failrec;
free_extent_state(state);
kfree(failrec);
state = next;
}
spin_unlock(&failure_tree->lock);
}
static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
u64 start)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct io_failure_record *failrec;
struct extent_map *em;
struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
const u32 sectorsize = fs_info->sectorsize;
int ret;
u64 logical;
failrec = get_state_failrec(failure_tree, start);
if (!IS_ERR(failrec)) {
btrfs_debug(fs_info,
"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
failrec->logical, failrec->start, failrec->len);
/*
* when data can be on disk more than twice, add to failrec here
* (e.g. with a list for failed_mirror) to make
* clean_io_failure() clean all those errors at once.
*/
return failrec;
}
failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
if (!failrec)
return ERR_PTR(-ENOMEM);
failrec->start = start;
failrec->len = sectorsize;
failrec->this_mirror = 0;
failrec->bio_flags = 0;
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, failrec->len);
if (!em) {
read_unlock(&em_tree->lock);
kfree(failrec);
return ERR_PTR(-EIO);
}
if (em->start > start || em->start + em->len <= start) {
free_extent_map(em);
em = NULL;
}
read_unlock(&em_tree->lock);
if (!em) {
kfree(failrec);
return ERR_PTR(-EIO);
}
logical = start - em->start;
logical = em->block_start + logical;
if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
logical = em->block_start;
failrec->bio_flags = EXTENT_BIO_COMPRESSED;
extent_set_compress_type(&failrec->bio_flags, em->compress_type);
}
btrfs_debug(fs_info,
"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
logical, start, failrec->len);
failrec->logical = logical;
free_extent_map(em);
/* Set the bits in the private failure tree */
ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
EXTENT_LOCKED | EXTENT_DIRTY);
if (ret >= 0) {
ret = set_state_failrec(failure_tree, start, failrec);
/* Set the bits in the inode's tree */
ret = set_extent_bits(tree, start, start + sectorsize - 1,
EXTENT_DAMAGED);
} else if (ret < 0) {
kfree(failrec);
return ERR_PTR(ret);
}
return failrec;
}
static bool btrfs_check_repairable(struct inode *inode,
struct io_failure_record *failrec,
int failed_mirror)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
int num_copies;
num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
if (num_copies == 1) {
/*
* we only have a single copy of the data, so don't bother with
* all the retry and error correction code that follows. no
* matter what the error is, it is very likely to persist.
*/
btrfs_debug(fs_info,
"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
num_copies, failrec->this_mirror, failed_mirror);
return false;
}
/* The failure record should only contain one sector */
ASSERT(failrec->len == fs_info->sectorsize);
/*
* There are two premises:
* a) deliver good data to the caller
* b) correct the bad sectors on disk
*
* Since we're only doing repair for one sector, we only need to get
* a good copy of the failed sector and if we succeed, we have setup
* everything for repair_io_failure to do the rest for us.
*/
failrec->failed_mirror = failed_mirror;
failrec->this_mirror++;
if (failrec->this_mirror == failed_mirror)
failrec->this_mirror++;
if (failrec->this_mirror > num_copies) {
btrfs_debug(fs_info,
"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
num_copies, failrec->this_mirror, failed_mirror);
return false;
}
return true;
}
int btrfs_repair_one_sector(struct inode *inode,
struct bio *failed_bio, u32 bio_offset,
struct page *page, unsigned int pgoff,
u64 start, int failed_mirror,
submit_bio_hook_t *submit_bio_hook)
{
struct io_failure_record *failrec;
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
const int icsum = bio_offset >> fs_info->sectorsize_bits;
struct bio *repair_bio;
struct btrfs_bio *repair_bbio;
blk_status_t status;
btrfs_debug(fs_info,
"repair read error: read error at %llu", start);
BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
failrec = btrfs_get_io_failure_record(inode, start);
if (IS_ERR(failrec))
return PTR_ERR(failrec);
if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
free_io_failure(failure_tree, tree, failrec);
return -EIO;
}
repair_bio = btrfs_bio_alloc(1);
repair_bbio = btrfs_bio(repair_bio);
repair_bio->bi_opf = REQ_OP_READ;
repair_bio->bi_end_io = failed_bio->bi_end_io;
repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
repair_bio->bi_private = failed_bio->bi_private;
if (failed_bbio->csum) {
const u32 csum_size = fs_info->csum_size;
repair_bbio->csum = repair_bbio->csum_inline;
memcpy(repair_bbio->csum,
failed_bbio->csum + csum_size * icsum, csum_size);
}
bio_add_page(repair_bio, page, failrec->len, pgoff);
repair_bbio->logical = failrec->start;
repair_bbio->iter = repair_bio->bi_iter;
btrfs_debug(btrfs_sb(inode->i_sb),
"repair read error: submitting new read to mirror %d",
failrec->this_mirror);
status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
failrec->bio_flags);
if (status) {
free_io_failure(failure_tree, tree, failrec);
bio_put(repair_bio);
}
return blk_status_to_errno(status);
}
static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
{
struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
ASSERT(page_offset(page) <= start &&
start + len <= page_offset(page) + PAGE_SIZE);
if (uptodate) {
if (fsverity_active(page->mapping->host) &&
!PageError(page) &&
!PageUptodate(page) &&
start < i_size_read(page->mapping->host) &&
!fsverity_verify_page(page)) {
btrfs_page_set_error(fs_info, page, start, len);
} else {
btrfs_page_set_uptodate(fs_info, page, start, len);
}
} else {
btrfs_page_clear_uptodate(fs_info, page, start, len);
btrfs_page_set_error(fs_info, page, start, len);
}
if (fs_info->sectorsize == PAGE_SIZE)
unlock_page(page);
else
btrfs_subpage_end_reader(fs_info, page, start, len);
}
static blk_status_t submit_read_repair(struct inode *inode,
struct bio *failed_bio, u32 bio_offset,
struct page *page, unsigned int pgoff,
u64 start, u64 end, int failed_mirror,
unsigned int error_bitmap,
submit_bio_hook_t *submit_bio_hook)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
const u32 sectorsize = fs_info->sectorsize;
const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
int error = 0;
int i;
BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
/* We're here because we had some read errors or csum mismatch */
ASSERT(error_bitmap);
/*
* We only get called on buffered IO, thus page must be mapped and bio
* must not be cloned.
*/
ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
/* Iterate through all the sectors in the range */
for (i = 0; i < nr_bits; i++) {
const unsigned int offset = i * sectorsize;
struct extent_state *cached = NULL;
bool uptodate = false;
int ret;
if (!(error_bitmap & (1U << i))) {
/*
* This sector has no error, just end the page read
* and unlock the range.
*/
uptodate = true;
goto next;
}
ret = btrfs_repair_one_sector(inode, failed_bio,
bio_offset + offset,
page, pgoff + offset, start + offset,
failed_mirror, submit_bio_hook);
if (!ret) {
/*
* We have submitted the read repair, the page release
* will be handled by the endio function of the
* submitted repair bio.
* Thus we don't need to do any thing here.
*/
continue;
}
/*
* Repair failed, just record the error but still continue.
* Or the remaining sectors will not be properly unlocked.
*/
if (!error)
error = ret;
next:
end_page_read(page, uptodate, start + offset, sectorsize);
if (uptodate)
set_extent_uptodate(&BTRFS_I(inode)->io_tree,
start + offset,
start + offset + sectorsize - 1,
&cached, GFP_ATOMIC);
unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
start + offset,
start + offset + sectorsize - 1,
&cached);
}
return errno_to_blk_status(error);
}
/* lots and lots of room for performance fixes in the end_bio funcs */
void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
{
struct btrfs_inode *inode;
const bool uptodate = (err == 0);
int ret = 0;
ASSERT(page && page->mapping);
inode = BTRFS_I(page->mapping->host);
btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
if (!uptodate) {
const struct btrfs_fs_info *fs_info = inode->root->fs_info;
u32 len;
ASSERT(end + 1 - start <= U32_MAX);
len = end + 1 - start;
btrfs_page_clear_uptodate(fs_info, page, start, len);
btrfs_page_set_error(fs_info, page, start, len);
ret = err < 0 ? err : -EIO;
mapping_set_error(page->mapping, ret);
}
}
/*
* after a writepage IO is done, we need to:
* clear the uptodate bits on error
* clear the writeback bits in the extent tree for this IO
* end_page_writeback if the page has no more pending IO
*
* Scheduling is not allowed, so the extent state tree is expected
* to have one and only one object corresponding to this IO.
*/
static void end_bio_extent_writepage(struct bio *bio)
{
int error = blk_status_to_errno(bio->bi_status);
struct bio_vec *bvec;
u64 start;
u64 end;
struct bvec_iter_all iter_all;
bool first_bvec = true;
ASSERT(!bio_flagged(bio, BIO_CLONED));
bio_for_each_segment_all(bvec, bio, iter_all) {
struct page *page = bvec->bv_page;
struct inode *inode = page->mapping->host;
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
const u32 sectorsize = fs_info->sectorsize;
/* Our read/write should always be sector aligned. */
if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
btrfs_err(fs_info,
"partial page write in btrfs with offset %u and length %u",
bvec->bv_offset, bvec->bv_len);
else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
btrfs_info(fs_info,
"incomplete page write with offset %u and length %u",
bvec->bv_offset, bvec->bv_len);
start = page_offset(page) + bvec->bv_offset;
end = start + bvec->bv_len - 1;
if (first_bvec) {
btrfs_record_physical_zoned(inode, start, bio);
first_bvec = false;
}
end_extent_writepage(page, error, start, end);
btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
}
bio_put(bio);
}
/*
* Record previously processed extent range
*
* For endio_readpage_release_extent() to handle a full extent range, reducing
* the extent io operations.
*/
struct processed_extent {
struct btrfs_inode *inode;
/* Start of the range in @inode */
u64 start;
/* End of the range in @inode */
u64 end;
bool uptodate;
};
/*
* Try to release processed extent range
*
* May not release the extent range right now if the current range is
* contiguous to processed extent.
*
* Will release processed extent when any of @inode, @uptodate, the range is
* no longer contiguous to the processed range.
*
* Passing @inode == NULL will force processed extent to be released.
*/
static void endio_readpage_release_extent(struct processed_extent *processed,
struct btrfs_inode *inode, u64 start, u64 end,
bool uptodate)
{
struct extent_state *cached = NULL;
struct extent_io_tree *tree;
/* The first extent, initialize @processed */
if (!processed->inode)
goto update;
/*
* Contiguous to processed extent, just uptodate the end.
*
* Several things to notice:
*
* - bio can be merged as long as on-disk bytenr is contiguous
* This means we can have page belonging to other inodes, thus need to
* check if the inode still matches.
* - bvec can contain range beyond current page for multi-page bvec
* Thus we need to do processed->end + 1 >= start check
*/
if (processed->inode == inode && processed->uptodate == uptodate &&
processed->end + 1 >= start && end >= processed->end) {
processed->end = end;
return;
}
tree = &processed->inode->io_tree;
/*
* Now we don't have range contiguous to the processed range, release
* the processed range now.
*/
if (processed->uptodate && tree->track_uptodate)
set_extent_uptodate(tree, processed->start, processed->end,
&cached, GFP_ATOMIC);
unlock_extent_cached_atomic(tree, processed->start, processed->end,
&cached);
update:
/* Update processed to current range */
processed->inode = inode;
processed->start = start;
processed->end = end;
processed->uptodate = uptodate;
}
static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
{
ASSERT(PageLocked(page));
if (fs_info->sectorsize == PAGE_SIZE)
return;
ASSERT(PagePrivate(page));
btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
}
/*
* Find extent buffer for a givne bytenr.
*
* This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
* in endio context.
*/
static struct extent_buffer *find_extent_buffer_readpage(
struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
struct extent_buffer *eb;
/*
* For regular sectorsize, we can use page->private to grab extent
* buffer
*/
if (fs_info->sectorsize == PAGE_SIZE) {
ASSERT(PagePrivate(page) && page->private);
return (struct extent_buffer *)page->private;
}
/* For subpage case, we need to lookup buffer radix tree */
rcu_read_lock();
eb = radix_tree_lookup(&fs_info->buffer_radix,
bytenr >> fs_info->sectorsize_bits);
rcu_read_unlock();
ASSERT(eb);
return eb;
}
/*
* after a readpage IO is done, we need to:
* clear the uptodate bits on error
* set the uptodate bits if things worked
* set the page up to date if all extents in the tree are uptodate
* clear the lock bit in the extent tree
* unlock the page if there are no other extents locked for it
*
* Scheduling is not allowed, so the extent state tree is expected
* to have one and only one object corresponding to this IO.
*/
static void end_bio_extent_readpage(struct bio *bio)
{
struct bio_vec *bvec;
struct btrfs_bio *bbio = btrfs_bio(bio);
struct extent_io_tree *tree, *failure_tree;
struct processed_extent processed = { 0 };
/*
* The offset to the beginning of a bio, since one bio can never be
* larger than UINT_MAX, u32 here is enough.
*/
u32 bio_offset = 0;
int mirror;
int ret;
struct bvec_iter_all iter_all;
ASSERT(!bio_flagged(bio, BIO_CLONED));
bio_for_each_segment_all(bvec, bio, iter_all) {
bool uptodate = !bio->bi_status;
struct page *page = bvec->bv_page;
struct inode *inode = page->mapping->host;
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
const u32 sectorsize = fs_info->sectorsize;
unsigned int error_bitmap = (unsigned int)-1;
u64 start;
u64 end;
u32 len;
btrfs_debug(fs_info,
"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
bio->bi_iter.bi_sector, bio->bi_status,
bbio->mirror_num);
tree = &BTRFS_I(inode)->io_tree;
failure_tree = &BTRFS_I(inode)->io_failure_tree;
/*
* We always issue full-sector reads, but if some block in a
* page fails to read, blk_update_request() will advance
* bv_offset and adjust bv_len to compensate. Print a warning
* for unaligned offsets, and an error if they don't add up to
* a full sector.
*/
if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
btrfs_err(fs_info,
"partial page read in btrfs with offset %u and length %u",
bvec->bv_offset, bvec->bv_len);
else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
sectorsize))
btrfs_info(fs_info,
"incomplete page read with offset %u and length %u",
bvec->bv_offset, bvec->bv_len);
start = page_offset(page) + bvec->bv_offset;
end = start + bvec->bv_len - 1;
len = bvec->bv_len;
mirror = bbio->mirror_num;
if (likely(uptodate)) {
if (is_data_inode(inode)) {
error_bitmap = btrfs_verify_data_csum(bbio,
bio_offset, page, start, end);
ret = error_bitmap;
} else {
ret = btrfs_validate_metadata_buffer(bbio,
page, start, end, mirror);
}
if (ret)
uptodate = false;
else
clean_io_failure(BTRFS_I(inode)->root->fs_info,
failure_tree, tree, start,
page,
btrfs_ino(BTRFS_I(inode)), 0);
}
if (likely(uptodate))
goto readpage_ok;
if (is_data_inode(inode)) {
/*
* btrfs_submit_read_repair() will handle all the good
* and bad sectors, we just continue to the next bvec.
*/
submit_read_repair(inode, bio, bio_offset, page,
start - page_offset(page), start,
end, mirror, error_bitmap,
btrfs_submit_data_bio);
ASSERT(bio_offset + len > bio_offset);
bio_offset += len;
continue;
} else {
struct extent_buffer *eb;
eb = find_extent_buffer_readpage(fs_info, page, start);
set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
eb->read_mirror = mirror;
atomic_dec(&eb->io_pages);
if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
&eb->bflags))
btree_readahead_hook(eb, -EIO);
}
readpage_ok:
if (likely(uptodate)) {
loff_t i_size = i_size_read(inode);
pgoff_t end_index = i_size >> PAGE_SHIFT;
/*
* Zero out the remaining part if this range straddles
* i_size.
*
* Here we should only zero the range inside the bvec,
* not touch anything else.
*
* NOTE: i_size is exclusive while end is inclusive.
*/
if (page->index == end_index && i_size <= end) {
u32 zero_start = max(offset_in_page(i_size),
offset_in_page(start));
zero_user_segment(page, zero_start,
offset_in_page(end) + 1);
}
}
ASSERT(bio_offset + len > bio_offset);
bio_offset += len;
/* Update page status and unlock */
end_page_read(page, uptodate, start, len);
endio_readpage_release_extent(&processed, BTRFS_I(inode),
start, end, PageUptodate(page));
}
/* Release the last extent */
endio_readpage_release_extent(&processed, NULL, 0, 0, false);
btrfs_bio_free_csum(bbio);
bio_put(bio);
}
/*
* Initialize the members up to but not including 'bio'. Use after allocating a
* new bio by bio_alloc_bioset as it does not initialize the bytes outside of
* 'bio' because use of __GFP_ZERO is not supported.
*/
static inline void btrfs_bio_init(struct btrfs_bio *bbio)
{
memset(bbio, 0, offsetof(struct btrfs_bio, bio));
}
/*
* Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
*
* The bio allocation is backed by bioset and does not fail.
*/
struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
{
struct bio *bio;
ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
btrfs_bio_init(btrfs_bio(bio));
return bio;
}
struct bio *btrfs_bio_clone(struct bio *bio)
{
struct btrfs_bio *bbio;
struct bio *new;
/* Bio allocation backed by a bioset does not fail */
new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
bbio = btrfs_bio(new);
btrfs_bio_init(bbio);
bbio->iter = bio->bi_iter;
return new;
}
struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
{
struct bio *bio;
struct btrfs_bio *bbio;
ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
/* this will never fail when it's backed by a bioset */
bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
ASSERT(bio);
bbio = btrfs_bio(bio);
btrfs_bio_init(bbio);
bio_trim(bio, offset >> 9, size >> 9);
bbio->iter = bio->bi_iter;
return bio;
}
/**
* Attempt to add a page to bio
*
* @bio: destination bio
* @page: page to add to the bio
* @disk_bytenr: offset of the new bio or to check whether we are adding
* a contiguous page to the previous one
* @pg_offset: starting offset in the page
* @size: portion of page that we want to write
* @prev_bio_flags: flags of previous bio to see if we can merge the current one
* @bio_flags: flags of the current bio to see if we can merge them
*
* Attempt to add a page to bio considering stripe alignment etc.
*
* Return >= 0 for the number of bytes added to the bio.
* Can return 0 if the current bio is already at stripe/zone boundary.
* Return <0 for error.
*/
static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
struct page *page,
u64 disk_bytenr, unsigned int size,
unsigned int pg_offset,
unsigned long bio_flags)
{
struct bio *bio = bio_ctrl->bio;
u32 bio_size = bio->bi_iter.bi_size;
u32 real_size;
const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
bool contig;
int ret;
ASSERT(bio);
/* The limit should be calculated when bio_ctrl->bio is allocated */
ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
if (bio_ctrl->bio_flags != bio_flags)
return 0;
if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
contig = bio->bi_iter.bi_sector == sector;
else
contig = bio_end_sector(bio) == sector;
if (!contig)
return 0;
real_size = min(bio_ctrl->len_to_oe_boundary,
bio_ctrl->len_to_stripe_boundary) - bio_size;
real_size = min(real_size, size);
/*
* If real_size is 0, never call bio_add_*_page(), as even size is 0,
* bio will still execute its endio function on the page!
*/
if (real_size == 0)
return 0;
if (bio_op(bio) == REQ_OP_ZONE_APPEND)
ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
else
ret = bio_add_page(bio, page, real_size, pg_offset);
return ret;
}
static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
struct btrfs_inode *inode, u64 file_offset)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct btrfs_io_geometry geom;
struct btrfs_ordered_extent *ordered;
struct extent_map *em;
u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
int ret;
/*
* Pages for compressed extent are never submitted to disk directly,
* thus it has no real boundary, just set them to U32_MAX.
*
* The split happens for real compressed bio, which happens in
* btrfs_submit_compressed_read/write().
*/
if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
bio_ctrl->len_to_oe_boundary = U32_MAX;
bio_ctrl->len_to_stripe_boundary = U32_MAX;
return 0;
}
em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
if (IS_ERR(em))
return PTR_ERR(em);
ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
logical, &geom);
free_extent_map(em);
if (ret < 0) {
return ret;
}
if (geom.len > U32_MAX)
bio_ctrl->len_to_stripe_boundary = U32_MAX;
else
bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
if (!btrfs_is_zoned(fs_info) ||
bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
bio_ctrl->len_to_oe_boundary = U32_MAX;
return 0;
}
/* Ordered extent not yet created, so we're good */
ordered = btrfs_lookup_ordered_extent(inode, file_offset);
if (!ordered) {
bio_ctrl->len_to_oe_boundary = U32_MAX;
return 0;
}
bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
ordered->disk_bytenr + ordered->disk_num_bytes - logical);
btrfs_put_ordered_extent(ordered);
return 0;
}
static int alloc_new_bio(struct btrfs_inode *inode,
struct btrfs_bio_ctrl *bio_ctrl,
struct writeback_control *wbc,
unsigned int opf,
bio_end_io_t end_io_func,
u64 disk_bytenr, u32 offset, u64 file_offset,
unsigned long bio_flags)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct bio *bio;
int ret;
bio = btrfs_bio_alloc(BIO_MAX_VECS);
/*
* For compressed page range, its disk_bytenr is always @disk_bytenr
* passed in, no matter if we have added any range into previous bio.
*/
if (bio_flags & EXTENT_BIO_COMPRESSED)
bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
else
bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
bio_ctrl->bio = bio;
bio_ctrl->bio_flags = bio_flags;
bio->bi_end_io = end_io_func;
bio->bi_private = &inode->io_tree;
bio->bi_write_hint = inode->vfs_inode.i_write_hint;
bio->bi_opf = opf;
ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
if (ret < 0)
goto error;
if (wbc) {
struct block_device *bdev;
bdev = fs_info->fs_devices->latest_dev->bdev;
bio_set_dev(bio, bdev);
wbc_init_bio(wbc, bio);
}
if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
struct btrfs_device *device;
device = btrfs_zoned_get_device(fs_info, disk_bytenr,
fs_info->sectorsize);
if (IS_ERR(device)) {
ret = PTR_ERR(device);
goto error;
}
btrfs_bio(bio)->device = device;
}
return 0;
error:
bio_ctrl->bio = NULL;
bio->bi_status = errno_to_blk_status(ret);
bio_endio(bio);
return ret;
}
/*
* @opf: bio REQ_OP_* and REQ_* flags as one value
* @wbc: optional writeback control for io accounting
* @page: page to add to the bio
* @disk_bytenr: logical bytenr where the write will be
* @size: portion of page that we want to write to
* @pg_offset: offset of the new bio or to check whether we are adding
* a contiguous page to the previous one
* @bio_ret: must be valid pointer, newly allocated bio will be stored there
* @end_io_func: end_io callback for new bio
* @mirror_num: desired mirror to read/write
* @prev_bio_flags: flags of previous bio to see if we can merge the current one
* @bio_flags: flags of the current bio to see if we can merge them
*/
static int submit_extent_page(unsigned int opf,
struct writeback_control *wbc,
struct btrfs_bio_ctrl *bio_ctrl,
struct page *page, u64 disk_bytenr,
size_t size, unsigned long pg_offset,
bio_end_io_t end_io_func,
int mirror_num,
unsigned long bio_flags,
bool force_bio_submit)
{
int ret = 0;
struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
unsigned int cur = pg_offset;
ASSERT(bio_ctrl);
ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
pg_offset + size <= PAGE_SIZE);
if (force_bio_submit && bio_ctrl->bio) {
ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
bio_ctrl->bio = NULL;
if (ret < 0)
return ret;
}
while (cur < pg_offset + size) {
u32 offset = cur - pg_offset;
int added;
/* Allocate new bio if needed */
if (!bio_ctrl->bio) {
ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
end_io_func, disk_bytenr, offset,
page_offset(page) + cur,
bio_flags);
if (ret < 0)
return ret;
}
/*
* We must go through btrfs_bio_add_page() to ensure each
* page range won't cross various boundaries.
*/
if (bio_flags & EXTENT_BIO_COMPRESSED)
added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
size - offset, pg_offset + offset,
bio_flags);
else
added = btrfs_bio_add_page(bio_ctrl, page,
disk_bytenr + offset, size - offset,
pg_offset + offset, bio_flags);
/* Metadata page range should never be split */
if (!is_data_inode(&inode->vfs_inode))
ASSERT(added == 0 || added == size - offset);
/* At least we added some page, update the account */
if (wbc && added)
wbc_account_cgroup_owner(wbc, page, added);
/* We have reached boundary, submit right now */
if (added < size - offset) {
/* The bio should contain some page(s) */
ASSERT(bio_ctrl->bio->bi_iter.bi_size);
ret = submit_one_bio(bio_ctrl->bio, mirror_num,
bio_ctrl->bio_flags);
bio_ctrl->bio = NULL;
if (ret < 0)
return ret;
}
cur += added;
}
return 0;
}
static int attach_extent_buffer_page(struct extent_buffer *eb,
struct page *page,
struct btrfs_subpage *prealloc)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
int ret = 0;
/*
* If the page is mapped to btree inode, we should hold the private
* lock to prevent race.
* For cloned or dummy extent buffers, their pages are not mapped and
* will not race with any other ebs.
*/
if (page->mapping)
lockdep_assert_held(&page->mapping->private_lock);
if (fs_info->sectorsize == PAGE_SIZE) {
if (!PagePrivate(page))
attach_page_private(page, eb);
else
WARN_ON(page->private != (unsigned long)eb);
return 0;
}
/* Already mapped, just free prealloc */
if (PagePrivate(page)) {
btrfs_free_subpage(prealloc);
return 0;
}
if (prealloc)
/* Has preallocated memory for subpage */
attach_page_private(page, prealloc);
else
/* Do new allocation to attach subpage */
ret = btrfs_attach_subpage(fs_info, page,
BTRFS_SUBPAGE_METADATA);
return ret;
}
int set_page_extent_mapped(struct page *page)
{
struct btrfs_fs_info *fs_info;
ASSERT(page->mapping);
if (PagePrivate(page))
return 0;
fs_info = btrfs_sb(page->mapping->host->i_sb);
if (fs_info->sectorsize < PAGE_SIZE)
return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
return 0;
}
void clear_page_extent_mapped(struct page *page)
{
struct btrfs_fs_info *fs_info;
ASSERT(page->mapping);
if (!PagePrivate(page))
return;
fs_info = btrfs_sb(page->mapping->host->i_sb);
if (fs_info->sectorsize < PAGE_SIZE)
return btrfs_detach_subpage(fs_info, page);
detach_page_private(page);
}
static struct extent_map *
__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
u64 start, u64 len, struct extent_map **em_cached)
{
struct extent_map *em;
if (em_cached && *em_cached) {
em = *em_cached;
if (extent_map_in_tree(em) && start >= em->start &&
start < extent_map_end(em)) {
refcount_inc(&em->refs);
return em;
}
free_extent_map(em);
*em_cached = NULL;
}
em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
if (em_cached && !IS_ERR_OR_NULL(em)) {
BUG_ON(*em_cached);
refcount_inc(&em->refs);
*em_cached = em;
}
return em;
}
/*
* basic readpage implementation. Locked extent state structs are inserted
* into the tree that are removed when the IO is done (by the end_io
* handlers)
* XXX JDM: This needs looking at to ensure proper page locking
* return 0 on success, otherwise return error
*/
int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
struct btrfs_bio_ctrl *bio_ctrl,
unsigned int read_flags, u64 *prev_em_start)
{
struct inode *inode = page->mapping->host;
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
u64 start = page_offset(page);
const u64 end = start + PAGE_SIZE - 1;
u64 cur = start;
u64 extent_offset;
u64 last_byte = i_size_read(inode);
u64 block_start;
u64 cur_end;
struct extent_map *em;
int ret = 0;
int nr = 0;
size_t pg_offset = 0;
size_t iosize;
size_t blocksize = inode->i_sb->s_blocksize;
struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ret = set_page_extent_mapped(page);
if (ret < 0) {
unlock_extent(tree, start, end);
btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
unlock_page(page);
goto out;
}
if (!PageUptodate(page)) {
if (cleancache_get_page(page) == 0) {
BUG_ON(blocksize != PAGE_SIZE);
unlock_extent(tree, start, end);
unlock_page(page);
goto out;
}
}
if (page->index == last_byte >> PAGE_SHIFT) {
size_t zero_offset = offset_in_page(last_byte);
if (zero_offset) {
iosize = PAGE_SIZE - zero_offset;
memzero_page(page, zero_offset, iosize);
flush_dcache_page(page);
}
}
begin_page_read(fs_info, page);
while (cur <= end) {
unsigned long this_bio_flag = 0;
bool force_bio_submit = false;
u64 disk_bytenr;
if (cur >= last_byte) {
struct extent_state *cached = NULL;
iosize = PAGE_SIZE - pg_offset;
memzero_page(page, pg_offset, iosize);
flush_dcache_page(page);
set_extent_uptodate(tree, cur, cur + iosize - 1,
&cached, GFP_NOFS);
unlock_extent_cached(tree, cur,
cur + iosize - 1, &cached);
end_page_read(page, true, cur, iosize);
break;
}
em = __get_extent_map(inode, page, pg_offset, cur,
end - cur + 1, em_cached);
if (IS_ERR_OR_NULL(em)) {
unlock_extent(tree, cur, end);
end_page_read(page, false, cur, end + 1 - cur);
break;
}
extent_offset = cur - em->start;
BUG_ON(extent_map_end(em) <= cur);
BUG_ON(end < cur);
if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
this_bio_flag |= EXTENT_BIO_COMPRESSED;
extent_set_compress_type(&this_bio_flag,
em->compress_type);
}
iosize = min(extent_map_end(em) - cur, end - cur + 1);
cur_end = min(extent_map_end(em) - 1, end);
iosize = ALIGN(iosize, blocksize);
if (this_bio_flag & EXTENT_BIO_COMPRESSED)
disk_bytenr = em->block_start;
else
disk_bytenr = em->block_start + extent_offset;
block_start = em->block_start;
if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
block_start = EXTENT_MAP_HOLE;
/*
* If we have a file range that points to a compressed extent
* and it's followed by a consecutive file range that points
* to the same compressed extent (possibly with a different
* offset and/or length, so it either points to the whole extent
* or only part of it), we must make sure we do not submit a
* single bio to populate the pages for the 2 ranges because
* this makes the compressed extent read zero out the pages
* belonging to the 2nd range. Imagine the following scenario:
*
* File layout
* [0 - 8K] [8K - 24K]
* | |
* | |
* points to extent X, points to extent X,
* offset 4K, length of 8K offset 0, length 16K
*
* [extent X, compressed length = 4K uncompressed length = 16K]
*
* If the bio to read the compressed extent covers both ranges,
* it will decompress extent X into the pages belonging to the
* first range and then it will stop, zeroing out the remaining
* pages that belong to the other range that points to extent X.
* So here we make sure we submit 2 bios, one for the first
* range and another one for the third range. Both will target
* the same physical extent from disk, but we can't currently
* make the compressed bio endio callback populate the pages
* for both ranges because each compressed bio is tightly
* coupled with a single extent map, and each range can have
* an extent map with a different offset value relative to the
* uncompressed data of our extent and different lengths. This
* is a corner case so we prioritize correctness over
* non-optimal behavior (submitting 2 bios for the same extent).
*/
if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
prev_em_start && *prev_em_start != (u64)-1 &&
*prev_em_start != em->start)
force_bio_submit = true;
if (prev_em_start)
*prev_em_start = em->start;
free_extent_map(em);
em = NULL;
/* we've found a hole, just zero and go on */
if (block_start == EXTENT_MAP_HOLE) {
struct extent_state *cached = NULL;
memzero_page(page, pg_offset, iosize);
flush_dcache_page(page);
set_extent_uptodate(tree, cur, cur + iosize - 1,
&cached, GFP_NOFS);
unlock_extent_cached(tree, cur,
cur + iosize - 1, &cached);
end_page_read(page, true, cur, iosize);
cur = cur + iosize;
pg_offset += iosize;
continue;
}
/* the get_extent function already copied into the page */
if (test_range_bit(tree, cur, cur_end,
EXTENT_UPTODATE, 1, NULL)) {
unlock_extent(tree, cur, cur + iosize - 1);
end_page_read(page, true, cur, iosize);
cur = cur + iosize;
pg_offset += iosize;
continue;
}
/* we have an inline extent but it didn't get marked up
* to date. Error out
*/
if (block_start == EXTENT_MAP_INLINE) {
unlock_extent(tree, cur, cur + iosize - 1);
end_page_read(page, false, cur, iosize);
cur = cur + iosize;
pg_offset += iosize;
continue;
}
ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
bio_ctrl, page, disk_bytenr, iosize,
pg_offset,
end_bio_extent_readpage, 0,
this_bio_flag,
force_bio_submit);
if (!ret) {
nr++;
} else {
unlock_extent(tree, cur, cur + iosize - 1);
end_page_read(page, false, cur, iosize);
goto out;
}
cur = cur + iosize;
pg_offset += iosize;
}
out:
return ret;
}
static inline void contiguous_readpages(struct page *pages[], int nr_pages,
u64 start, u64 end,
struct extent_map **em_cached,
struct btrfs_bio_ctrl *bio_ctrl,
u64 *prev_em_start)
{
struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
int index;
btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
for (index = 0; index < nr_pages; index++) {
btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
REQ_RAHEAD, prev_em_start);
put_page(pages[index]);
}
}
static void update_nr_written(struct writeback_control *wbc,
unsigned long nr_written)
{
wbc->nr_to_write -= nr_written;
}
/*
* helper for __extent_writepage, doing all of the delayed allocation setup.
*
* This returns 1 if btrfs_run_delalloc_range function did all the work required
* to write the page (copy into inline extent). In this case the IO has
* been started and the page is already unlocked.
*
* This returns 0 if all went well (page still locked)
* This returns < 0 if there were errors (page still locked)
*/
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
struct page *page, struct writeback_control *wbc,
unsigned long *nr_written)
{
u64 page_end = page_offset(page) + PAGE_SIZE - 1;
bool found;
u64 delalloc_start = page_offset(page);
u64 delalloc_to_write = 0;
u64 delalloc_end = 0;
int ret;
int page_started = 0;
while (delalloc_end < page_end) {
found = find_lock_delalloc_range(&inode->vfs_inode, page,
&delalloc_start,
&delalloc_end);
if (!found) {
delalloc_start = delalloc_end + 1;
continue;
}
ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
delalloc_end, &page_started, nr_written, wbc);
if (ret) {
btrfs_page_set_error(inode->root->fs_info, page,
page_offset(page), PAGE_SIZE);
return ret;
}
/*
* delalloc_end is already one less than the total length, so
* we don't subtract one from PAGE_SIZE
*/
delalloc_to_write += (delalloc_end - delalloc_start +
PAGE_SIZE) >> PAGE_SHIFT;
delalloc_start = delalloc_end + 1;
}
if (wbc->nr_to_write < delalloc_to_write) {
int thresh = 8192;
if (delalloc_to_write < thresh * 2)
thresh = delalloc_to_write;
wbc->nr_to_write = min_t(u64, delalloc_to_write,
thresh);
}
/* did the fill delalloc function already unlock and start
* the IO?
*/
if (page_started) {
/*
* we've unlocked the page, so we can't update
* the mapping's writeback index, just update
* nr_to_write.
*/
wbc->nr_to_write -= *nr_written;
return 1;
}
return 0;
}
/*
* Find the first byte we need to write.
*
* For subpage, one page can contain several sectors, and
* __extent_writepage_io() will just grab all extent maps in the page
* range and try to submit all non-inline/non-compressed extents.
*
* This is a big problem for subpage, we shouldn't re-submit already written
* data at all.
* This function will lookup subpage dirty bit to find which range we really
* need to submit.
*
* Return the next dirty range in [@start, @end).
* If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
*/
static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
struct page *page, u64 *start, u64 *end)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
struct btrfs_subpage_info *spi = fs_info->subpage_info;
u64 orig_start = *start;
/* Declare as unsigned long so we can use bitmap ops */
unsigned long flags;
int range_start_bit;
int range_end_bit;
/*
* For regular sector size == page size case, since one page only
* contains one sector, we return the page offset directly.
*/
if (fs_info->sectorsize == PAGE_SIZE) {
*start = page_offset(page);
*end = page_offset(page) + PAGE_SIZE;
return;
}
range_start_bit = spi->dirty_offset +
(offset_in_page(orig_start) >> fs_info->sectorsize_bits);
/* We should have the page locked, but just in case */
spin_lock_irqsave(&subpage->lock, flags);
bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
spi->dirty_offset + spi->bitmap_nr_bits);
spin_unlock_irqrestore(&subpage->lock, flags);
range_start_bit -= spi->dirty_offset;
range_end_bit -= spi->dirty_offset;
*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
}
/*
* helper for __extent_writepage. This calls the writepage start hooks,
* and does the loop to map the page into extents and bios.
*
* We return 1 if the IO is started and the page is unlocked,
* 0 if all went well (page still locked)
* < 0 if there were errors (page still locked)
*/
static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
struct page *page,
struct writeback_control *wbc,
struct extent_page_data *epd,
loff_t i_size,
unsigned long nr_written,
int *nr_ret)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
u64 cur = page_offset(page);
u64 end = cur + PAGE_SIZE - 1;
u64 extent_offset;
u64 block_start;
struct extent_map *em;
int ret = 0;
int nr = 0;
u32 opf = REQ_OP_WRITE;
const unsigned int write_flags = wbc_to_write_flags(wbc);
bool compressed;
ret = btrfs_writepage_cow_fixup(page);
if (ret) {
/* Fixup worker will requeue */
redirty_page_for_writepage(wbc, page);
update_nr_written(wbc, nr_written);
unlock_page(page);
return 1;
}
/*
* we don't want to touch the inode after unlocking the page,
* so we update the mapping writeback index now
*/
update_nr_written(wbc, nr_written + 1);
while (cur <= end) {
u64 disk_bytenr;
u64 em_end;
u64 dirty_range_start = cur;
u64 dirty_range_end;
u32 iosize;
if (cur >= i_size) {
btrfs_writepage_endio_finish_ordered(inode, page, cur,
end, true);
/*
* This range is beyond i_size, thus we don't need to
* bother writing back.
* But we still need to clear the dirty subpage bit, or
* the next time the page gets dirtied, we will try to
* writeback the sectors with subpage dirty bits,
* causing writeback without ordered extent.
*/
btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
break;
}
find_next_dirty_byte(fs_info, page, &dirty_range_start,
&dirty_range_end);
if (cur < dirty_range_start) {
cur = dirty_range_start;
continue;
}
em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
if (IS_ERR_OR_NULL(em)) {
btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
ret = PTR_ERR_OR_ZERO(em);
break;
}
extent_offset = cur - em->start;
em_end = extent_map_end(em);
ASSERT(cur <= em_end);
ASSERT(cur < end);
ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
block_start = em->block_start;
compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
disk_bytenr = em->block_start + extent_offset;
/*
* Note that em_end from extent_map_end() and dirty_range_end from
* find_next_dirty_byte() are all exclusive
*/
iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
if (btrfs_use_zone_append(inode, em->block_start))
opf = REQ_OP_ZONE_APPEND;
free_extent_map(em);
em = NULL;
/*
* compressed and inline extents are written through other
* paths in the FS
*/
if (compressed || block_start == EXTENT_MAP_HOLE ||
block_start == EXTENT_MAP_INLINE) {
if (compressed)
nr++;
else
btrfs_writepage_endio_finish_ordered(inode,
page, cur, cur + iosize - 1, true);
btrfs_page_clear_dirty(fs_info, page, cur, iosize);
cur += iosize;
continue;
}
btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
if (!PageWriteback(page)) {
btrfs_err(inode->root->fs_info,
"page %lu not writeback, cur %llu end %llu",
page->index, cur, end);
}
/*
* Although the PageDirty bit is cleared before entering this
* function, subpage dirty bit is not cleared.
* So clear subpage dirty bit here so next time we won't submit
* page for range already written to disk.
*/
btrfs_page_clear_dirty(fs_info, page, cur, iosize);
ret = submit_extent_page(opf | write_flags, wbc,
&epd->bio_ctrl, page,
disk_bytenr, iosize,
cur - page_offset(page),
end_bio_extent_writepage,
0, 0, false);
if (ret) {
btrfs_page_set_error(fs_info, page, cur, iosize);
if (PageWriteback(page))
btrfs_page_clear_writeback(fs_info, page, cur,
iosize);
}
cur += iosize;
nr++;
}
/*
* If we finish without problem, we should not only clear page dirty,
* but also empty subpage dirty bits
*/
if (!ret)
btrfs_page_assert_not_dirty(fs_info, page);
*nr_ret = nr;
return ret;
}
/*
* the writepage semantics are similar to regular writepage. extent
* records are inserted to lock ranges in the tree, and as dirty areas
* are found, they are marked writeback. Then the lock bits are removed
* and the end_io handler clears the writeback ranges
*
* Return 0 if everything goes well.
* Return <0 for error.
*/
static int __extent_writepage(struct page *page, struct writeback_control *wbc,
struct extent_page_data *epd)
{
struct inode *inode = page->mapping->host;
const u64 page_start = page_offset(page);
const u64 page_end = page_start + PAGE_SIZE - 1;
int ret;
int nr = 0;
size_t pg_offset;
loff_t i_size = i_size_read(inode);
unsigned long end_index = i_size >> PAGE_SHIFT;
unsigned long nr_written = 0;
trace___extent_writepage(page, inode, wbc);
WARN_ON(!PageLocked(page));
btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
page_offset(page), PAGE_SIZE);
pg_offset = offset_in_page(i_size);
if (page->index > end_index ||
(page->index == end_index && !pg_offset)) {
page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
unlock_page(page);
return 0;
}
if (page->index == end_index) {
memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
flush_dcache_page(page);
}
ret = set_page_extent_mapped(page);
if (ret < 0) {
SetPageError(page);
goto done;
}
if (!epd->extent_locked) {
ret = writepage_delalloc(BTRFS_I(inode), page, wbc, &nr_written);
if (ret == 1)
return 0;
if (ret)
goto done;
}
ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
nr_written, &nr);
if (ret == 1)
return 0;
done:
if (nr == 0) {
/* make sure the mapping tag for page dirty gets cleared */
set_page_writeback(page);
end_page_writeback(page);
}
/*
* Here we used to have a check for PageError() and then set @ret and
* call end_extent_writepage().
*
* But in fact setting @ret here will cause different error paths
* between subpage and regular sectorsize.
*
* For regular page size, we never submit current page, but only add
* current page to current bio.
* The bio submission can only happen in next page.
* Thus if we hit the PageError() branch, @ret is already set to
* non-zero value and will not get updated for regular sectorsize.
*
* But for subpage case, it's possible we submit part of current page,
* thus can get PageError() set by submitted bio of the same page,
* while our @ret is still 0.
*
* So here we unify the behavior and don't set @ret.
* Error can still be properly passed to higher layer as page will
* be set error, here we just don't handle the IO failure.
*
* NOTE: This is just a hotfix for subpage.
* The root fix will be properly ending ordered extent when we hit
* an error during writeback.
*
* But that needs a bigger refactoring, as we not only need to grab the
* submitted OE, but also need to know exactly at which bytenr we hit
* the error.
* Currently the full page based __extent_writepage_io() is not
* capable of that.
*/
if (PageError(page))
end_extent_writepage(page, ret, page_start, page_end);
unlock_page(page);
ASSERT(ret <= 0);
return ret;
}
void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
{
wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
TASK_UNINTERRUPTIBLE);
}
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
if (test_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags))
btrfs_zone_finish_endio(eb->fs_info, eb->start, eb->len);
clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
smp_mb__after_atomic();
wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}
/*
* Lock extent buffer status and pages for writeback.
*
* May try to flush write bio if we can't get the lock.
*
* Return 0 if the extent buffer doesn't need to be submitted.
* (E.g. the extent buffer is not dirty)
* Return >0 is the extent buffer is submitted to bio.
* Return <0 if something went wrong, no page is locked.
*/
static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
struct extent_page_data *epd)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
int i, num_pages, failed_page_nr;
int flush = 0;
int ret = 0;
if (!btrfs_try_tree_write_lock(eb)) {
ret = flush_write_bio(epd);
if (ret < 0)
return ret;
flush = 1;
btrfs_tree_lock(eb);
}
if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
btrfs_tree_unlock(eb);
if (!epd->sync_io)
return 0;
if (!flush) {
ret = flush_write_bio(epd);
if (ret < 0)
return ret;
flush = 1;
}
while (1) {
wait_on_extent_buffer_writeback(eb);
btrfs_tree_lock(eb);
if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
break;
btrfs_tree_unlock(eb);
}
}
/*
* We need to do this to prevent races in people who check if the eb is
* under IO since we can end up having no IO bits set for a short period
* of time.
*/
spin_lock(&eb->refs_lock);
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
spin_unlock(&eb->refs_lock);
btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
-eb->len,
fs_info->dirty_metadata_batch);
ret = 1;
} else {
spin_unlock(&eb->refs_lock);
}
btrfs_tree_unlock(eb);
/*
* Either we don't need to submit any tree block, or we're submitting
* subpage eb.
* Subpage metadata doesn't use page locking at all, so we can skip
* the page locking.
*/
if (!ret || fs_info->sectorsize < PAGE_SIZE)
return ret;
num_pages = num_extent_pages(eb);
for (i = 0; i < num_pages; i++) {
struct page *p = eb->pages[i];
if (!trylock_page(p)) {
if (!flush) {
int err;
err = flush_write_bio(epd);
if (err < 0) {
ret = err;
failed_page_nr = i;
goto err_unlock;
}
flush = 1;
}
lock_page(p);
}
}
return ret;
err_unlock:
/* Unlock already locked pages */
for (i = 0; i < failed_page_nr; i++)
unlock_page(eb->pages[i]);
/*
* Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
* Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
* be made and undo everything done before.
*/
btrfs_tree_lock(eb);
spin_lock(&eb->refs_lock);
set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
end_extent_buffer_writeback(eb);
spin_unlock(&eb->refs_lock);
percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
fs_info->dirty_metadata_batch);
btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
btrfs_tree_unlock(eb);
return ret;
}
static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
btrfs_page_set_error(fs_info, page, eb->start, eb->len);
if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
return;
/*
* If we error out, we should add back the dirty_metadata_bytes
* to make it consistent.
*/
percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
eb->len, fs_info->dirty_metadata_batch);
/*
* If writeback for a btree extent that doesn't belong to a log tree
* failed, increment the counter transaction->eb_write_errors.
* We do this because while the transaction is running and before it's
* committing (when we call filemap_fdata[write|wait]_range against
* the btree inode), we might have
* btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
* returns an error or an error happens during writeback, when we're
* committing the transaction we wouldn't know about it, since the pages
* can be no longer dirty nor marked anymore for writeback (if a
* subsequent modification to the extent buffer didn't happen before the
* transaction commit), which makes filemap_fdata[write|wait]_range not
* able to find the pages tagged with SetPageError at transaction
* commit time. So if this happens we must abort the transaction,
* otherwise we commit a super block with btree roots that point to
* btree nodes/leafs whose content on disk is invalid - either garbage
* or the content of some node/leaf from a past generation that got
* cowed or deleted and is no longer valid.
*
* Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
* not be enough - we need to distinguish between log tree extents vs
* non-log tree extents, and the next filemap_fdatawait_range() call
* will catch and clear such errors in the mapping - and that call might
* be from a log sync and not from a transaction commit. Also, checking
* for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
* not done and would not be reliable - the eb might have been released
* from memory and reading it back again means that flag would not be
* set (since it's a runtime flag, not persisted on disk).
*
* Using the flags below in the btree inode also makes us achieve the
* goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
* writeback for all dirty pages and before filemap_fdatawait_range()
* is called, the writeback for all dirty pages had already finished
* with errors - because we were not using AS_EIO/AS_ENOSPC,
* filemap_fdatawait_range() would return success, as it could not know
* that writeback errors happened (the pages were no longer tagged for
* writeback).
*/
switch (eb->log_index) {
case -1:
set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
break;
case 0:
set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
break;
case 1:
set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
break;
default:
BUG(); /* unexpected, logic error */
}
}
/*
* The endio specific version which won't touch any unsafe spinlock in endio
* context.
*/
static struct extent_buffer *find_extent_buffer_nolock(
struct btrfs_fs_info *fs_info, u64 start)
{
struct extent_buffer *eb;
rcu_read_lock();
eb = radix_tree_lookup(&fs_info->buffer_radix,
start >> fs_info->sectorsize_bits);
if (eb && atomic_inc_not_zero(&eb->refs)) {
rcu_read_unlock();
return eb;
}
rcu_read_unlock();
return NULL;
}
/*
* The endio function for subpage extent buffer write.
*
* Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
* after all extent buffers in the page has finished their writeback.
*/
static void end_bio_subpage_eb_writepage(struct bio *bio)
{
struct btrfs_fs_info *fs_info;
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
ASSERT(fs_info->sectorsize < PAGE_SIZE);
ASSERT(!bio_flagged(bio, BIO_CLONED));
bio_for_each_segment_all(bvec, bio, iter_all) {
struct page *page = bvec->bv_page;
u64 bvec_start = page_offset(page) + bvec->bv_offset;
u64 bvec_end = bvec_start + bvec->bv_len - 1;
u64 cur_bytenr = bvec_start;
ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
/* Iterate through all extent buffers in the range */
while (cur_bytenr <= bvec_end) {
struct extent_buffer *eb;
int done;
/*
* Here we can't use find_extent_buffer(), as it may
* try to lock eb->refs_lock, which is not safe in endio
* context.
*/
eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
ASSERT(eb);
cur_bytenr = eb->start + eb->len;
ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
done = atomic_dec_and_test(&eb->io_pages);
ASSERT(done);
if (bio->bi_status ||
test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
ClearPageUptodate(page);
set_btree_ioerr(page, eb);
}
btrfs_subpage_clear_writeback(fs_info, page, eb->start,
eb->len);
end_extent_buffer_writeback(eb);
/*
* free_extent_buffer() will grab spinlock which is not
* safe in endio context. Thus here we manually dec
* the ref.
*/
atomic_dec(&eb->refs);
}
}
bio_put(bio);
}
static void end_bio_extent_buffer_writepage(struct bio *bio)
{
struct bio_vec *bvec;
struct extent_buffer *eb;
int done;
struct bvec_iter_all iter_all;
ASSERT(!bio_flagged(bio, BIO_CLONED));
bio_for_each_segment_all(bvec, bio, iter_all) {
struct page *page = bvec->bv_page;
eb = (struct extent_buffer *)page->private;
BUG_ON(!eb);
done = atomic_dec_and_test(&eb->io_pages);
if (bio->bi_status ||
test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
ClearPageUptodate(page);
set_btree_ioerr(page, eb);
}
end_page_writeback(page);
if (!done)
continue;
end_extent_buffer_writeback(eb);
}
bio_put(bio);
}
static void prepare_eb_write(struct extent_buffer *eb)
{
u32 nritems;
unsigned long start;
unsigned long end;
clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
atomic_set(&eb->io_pages, num_extent_pages(eb));
/* Set btree blocks beyond nritems with 0 to avoid stale content */
nritems = btrfs_header_nritems(eb);
if (btrfs_header_level(eb) > 0) {
end = btrfs_node_key_ptr_offset(nritems);
memzero_extent_buffer(eb, end, eb->len - end);
} else {
/*
* Leaf:
* header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
*/
start = btrfs_item_nr_offset(nritems);
end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
memzero_extent_buffer(eb, start, end - start);
}
}
/*
* Unlike the work in write_one_eb(), we rely completely on extent locking.
* Page locking is only utilized at minimum to keep the VMM code happy.
*/
static int write_one_subpage_eb(struct extent_buffer *eb,
struct writeback_control *wbc,
struct extent_page_data *epd)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
struct page *page = eb->pages[0];
unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
bool no_dirty_ebs = false;
int ret;
prepare_eb_write(eb);
/* clear_page_dirty_for_io() in subpage helper needs page locked */
lock_page(page);
btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
/* Check if this is the last dirty bit to update nr_written */
no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
eb->start, eb->len);
if (no_dirty_ebs)
clear_page_dirty_for_io(page);
ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
&epd->bio_ctrl, page, eb->start, eb->len,
eb->start - page_offset(page),
end_bio_subpage_eb_writepage, 0, 0, false);
if (ret) {
btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
set_btree_ioerr(page, eb);
unlock_page(page);
if (atomic_dec_and_test(&eb->io_pages))
end_extent_buffer_writeback(eb);
return -EIO;
}
unlock_page(page);
/*
* Submission finished without problem, if no range of the page is
* dirty anymore, we have submitted a page. Update nr_written in wbc.
*/
if (no_dirty_ebs)
update_nr_written(wbc, 1);
return ret;
}
static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
struct writeback_control *wbc,
struct extent_page_data *epd)
{
u64 disk_bytenr = eb->start;
int i, num_pages;
unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
int ret = 0;
prepare_eb_write(eb);
num_pages = num_extent_pages(eb);
for (i = 0; i < num_pages; i++) {
struct page *p = eb->pages[i];
clear_page_dirty_for_io(p);
set_page_writeback(p);
ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
&epd->bio_ctrl, p, disk_bytenr,
PAGE_SIZE, 0,
end_bio_extent_buffer_writepage,
0, 0, false);
if (ret) {
set_btree_ioerr(p, eb);
if (PageWriteback(p))
end_page_writeback(p);
if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
end_extent_buffer_writeback(eb);
ret = -EIO;
break;
}
disk_bytenr += PAGE_SIZE;
update_nr_written(wbc, 1);
unlock_page(p);
}
if (unlikely(ret)) {
for (; i < num_pages; i++) {
struct page *p = eb->pages[i];
clear_page_dirty_for_io(p);
unlock_page(p);
}
}
return ret;
}
/*
* Submit one subpage btree page.
*
* The main difference to submit_eb_page() is:
* - Page locking
* For subpage, we don't rely on page locking at all.
*
* - Flush write bio
* We only flush bio if we may be unable to fit current extent buffers into
* current bio.
*
* Return >=0 for the number of submitted extent buffers.
* Return <0 for fatal error.
*/
static int submit_eb_subpage(struct page *page,
struct writeback_control *wbc,
struct extent_page_data *epd)
{
struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
int submitted = 0;
u64 page_start = page_offset(page);
int bit_start = 0;
int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
int ret;
/* Lock and write each dirty extent buffers in the range */
while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
struct extent_buffer *eb;
unsigned long flags;
u64 start;
/*
* Take private lock to ensure the subpage won't be detached
* in the meantime.
*/
spin_lock(&page->mapping->private_lock);
if (!PagePrivate(page)) {
spin_unlock(&page->mapping->private_lock);
break;
}
spin_lock_irqsave(&subpage->lock, flags);
if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
subpage->bitmaps)) {
spin_unlock_irqrestore(&subpage->lock, flags);
spin_unlock(&page->mapping->private_lock);
bit_start++;
continue;
}
start = page_start + bit_start * fs_info->sectorsize;
bit_start += sectors_per_node;
/*
* Here we just want to grab the eb without touching extra
* spin locks, so call find_extent_buffer_nolock().
*/
eb = find_extent_buffer_nolock(fs_info, start);
spin_unlock_irqrestore(&subpage->lock, flags);
spin_unlock(&page->mapping->private_lock);
/*
* The eb has already reached 0 refs thus find_extent_buffer()
* doesn't return it. We don't need to write back such eb
* anyway.
*/
if (!eb)
continue;
ret = lock_extent_buffer_for_io(eb, epd);
if (ret == 0) {
free_extent_buffer(eb);
continue;
}
if (ret < 0) {
free_extent_buffer(eb);
goto cleanup;
}
ret = write_one_subpage_eb(eb, wbc, epd);
free_extent_buffer(eb);
if (ret < 0)
goto cleanup;
submitted++;
}
return submitted;
cleanup:
/* We hit error, end bio for the submitted extent buffers */
end_write_bio(epd, ret);
return ret;
}
/*
* Submit all page(s) of one extent buffer.
*
* @page: the page of one extent buffer
* @eb_context: to determine if we need to submit this page, if current page
* belongs to this eb, we don't need to submit
*
* The caller should pass each page in their bytenr order, and here we use
* @eb_context to determine if we have submitted pages of one extent buffer.
*
* If we have, we just skip until we hit a new page that doesn't belong to
* current @eb_context.
*
* If not, we submit all the page(s) of the extent buffer.
*
* Return >0 if we have submitted the extent buffer successfully.
* Return 0 if we don't need to submit the page, as it's already submitted by
* previous call.
* Return <0 for fatal error.
*/
static int submit_eb_page(struct page *page, struct writeback_control *wbc,
struct extent_page_data *epd,
struct extent_buffer **eb_context)
{
struct address_space *mapping = page->mapping;
struct btrfs_block_group *cache = NULL;
struct extent_buffer *eb;
int ret;
if (!PagePrivate(page))
return 0;
if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
return submit_eb_subpage(page, wbc, epd);
spin_lock(&mapping->private_lock);
if (!PagePrivate(page)) {
spin_unlock(&mapping->private_lock);
return 0;
}
eb = (struct extent_buffer *)page->private;
/*
* Shouldn't happen and normally this would be a BUG_ON but no point
* crashing the machine for something we can survive anyway.
*/
if (WARN_ON(!eb)) {
spin_unlock(&mapping->private_lock);
return 0;
}
if (eb == *eb_context) {
spin_unlock(&mapping->private_lock);
return 0;
}
ret = atomic_inc_not_zero(&eb->refs);
spin_unlock(&mapping->private_lock);
if (!ret)
return 0;
if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
/*
* If for_sync, this hole will be filled with
* trasnsaction commit.
*/
if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
ret = -EAGAIN;
else
ret = 0;
free_extent_buffer(eb);
return ret;
}
*eb_context = eb;
ret = lock_extent_buffer_for_io(eb, epd);
if (ret <= 0) {
btrfs_revert_meta_write_pointer(cache, eb);
if (cache)
btrfs_put_block_group(cache);
free_extent_buffer(eb);
return ret;
}
if (cache) {
/* Impiles write in zoned mode */
btrfs_put_block_group(cache);
/* Mark the last eb in a block group */
if (cache->seq_zone && eb->start + eb->len == cache->zone_capacity)
set_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags);
}
ret = write_one_eb(eb, wbc, epd);
free_extent_buffer(eb);
if (ret < 0)
return ret;
return 1;
}
int btree_write_cache_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct extent_buffer *eb_context = NULL;
struct extent_page_data epd = {
.bio_ctrl = { 0 },
.extent_locked = 0,
.sync_io = wbc->sync_mode == WB_SYNC_ALL,
};
struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
int ret = 0;
int done = 0;
int nr_to_write_done = 0;
struct pagevec pvec;
int nr_pages;
pgoff_t index;
pgoff_t end; /* Inclusive */
int scanned = 0;
xa_mark_t tag;
pagevec_init(&pvec);
if (wbc->range_cyclic) {
index = mapping->writeback_index; /* Start from prev offset */
end = -1;
/*
* Start from the beginning does not need to cycle over the
* range, mark it as scanned.
*/
scanned = (index == 0);
} else {
index = wbc->range_start >> PAGE_SHIFT;
end = wbc->range_end >> PAGE_SHIFT;
scanned = 1;
}
if (wbc->sync_mode == WB_SYNC_ALL)
tag = PAGECACHE_TAG_TOWRITE;
else
tag = PAGECACHE_TAG_DIRTY;
btrfs_zoned_meta_io_lock(fs_info);
retry:
if (wbc->sync_mode == WB_SYNC_ALL)
tag_pages_for_writeback(mapping, index, end);
while (!done && !nr_to_write_done && (index <= end) &&
(nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
tag))) {
unsigned i;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
ret = submit_eb_page(page, wbc, &epd, &eb_context);
if (ret == 0)
continue;
if (ret < 0) {
done = 1;
break;
}
/*
* the filesystem may choose to bump up nr_to_write.
* We have to make sure to honor the new nr_to_write
* at any time
*/
nr_to_write_done = wbc->nr_to_write <= 0;
}
pagevec_release(&pvec);
cond_resched();
}
if (!scanned && !done) {
/*
* We hit the last page and there is more work to be done: wrap
* back to the start of the file
*/
scanned = 1;
index = 0;
goto retry;
}
if (ret < 0) {
end_write_bio(&epd, ret);
goto out;
}
/*
* If something went wrong, don't allow any metadata write bio to be
* submitted.
*
* This would prevent use-after-free if we had dirty pages not
* cleaned up, which can still happen by fuzzed images.
*
* - Bad extent tree
* Allowing existing tree block to be allocated for other trees.
*
* - Log tree operations
* Exiting tree blocks get allocated to log tree, bumps its
* generation, then get cleaned in tree re-balance.
* Such tree block will not be written back, since it's clean,
* thus no WRITTEN flag set.
* And after log writes back, this tree block is not traced by
* any dirty extent_io_tree.
*
* - Offending tree block gets re-dirtied from its original owner
* Since it has bumped generation, no WRITTEN flag, it can be
* reused without COWing. This tree block will not be traced
* by btrfs_transaction::dirty_pages.
*
* Now such dirty tree block will not be cleaned by any dirty
* extent io tree. Thus we don't want to submit such wild eb
* if the fs already has error.
*/
if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ret = flush_write_bio(&epd);
} else {
ret = -EROFS;
end_write_bio(&epd, ret);
}
out:
btrfs_zoned_meta_io_unlock(fs_info);
return ret;
}
/**
* Walk the list of dirty pages of the given address space and write all of them.
*
* @mapping: address space structure to write
* @wbc: subtract the number of written pages from *@wbc->nr_to_write
* @epd: holds context for the write, namely the bio
*
* If a page is already under I/O, write_cache_pages() skips it, even
* if it's dirty. This is desirable behaviour for memory-cleaning writeback,
* but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
* and msync() need to guarantee that all the data which was dirty at the time
* the call was made get new I/O started against them. If wbc->sync_mode is
* WB_SYNC_ALL then we were called for data integrity and we must wait for
* existing IO to complete.
*/
static int extent_write_cache_pages(struct address_space *mapping,
struct writeback_control *wbc,
struct extent_page_data *epd)
{
struct inode *inode = mapping->host;
int ret = 0;
int done = 0;
int nr_to_write_done = 0;
struct pagevec pvec;
int nr_pages;
pgoff_t index;
pgoff_t end; /* Inclusive */
pgoff_t done_index;
int range_whole = 0;
int scanned = 0;
xa_mark_t tag;
/*
* We have to hold onto the inode so that ordered extents can do their
* work when the IO finishes. The alternative to this is failing to add
* an ordered extent if the igrab() fails there and that is a huge pain
* to deal with, so instead just hold onto the inode throughout the
* writepages operation. If it fails here we are freeing up the inode
* anyway and we'd rather not waste our time writing out stuff that is
* going to be truncated anyway.
*/
if (!igrab(inode))
return 0;
pagevec_init(&pvec);
if (wbc->range_cyclic) {
index = mapping->writeback_index; /* Start from prev offset */
end = -1;
/*
* Start from the beginning does not need to cycle over the
* range, mark it as scanned.
*/
scanned = (index == 0);
} else {
index = wbc->range_start >> PAGE_SHIFT;
end = wbc->range_end >> PAGE_SHIFT;
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
range_whole = 1;
scanned = 1;
}
/*
* We do the tagged writepage as long as the snapshot flush bit is set
* and we are the first one who do the filemap_flush() on this inode.
*
* The nr_to_write == LONG_MAX is needed to make sure other flushers do
* not race in and drop the bit.
*/
if (range_whole && wbc->nr_to_write == LONG_MAX &&
test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
&BTRFS_I(inode)->runtime_flags))
wbc->tagged_writepages = 1;
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
tag = PAGECACHE_TAG_TOWRITE;
else
tag = PAGECACHE_TAG_DIRTY;
retry:
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
tag_pages_for_writeback(mapping, index, end);
done_index = index;
while (!done && !nr_to_write_done && (index <= end) &&
(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
&index, end, tag))) {
unsigned i;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
done_index = page->index + 1;
/*
* At this point we hold neither the i_pages lock nor
* the page lock: the page may be truncated or
* invalidated (changing page->mapping to NULL),
* or even swizzled back from swapper_space to
* tmpfs file mapping
*/
if (!trylock_page(page)) {
ret = flush_write_bio(epd);
BUG_ON(ret < 0);
lock_page(page);
}
if (unlikely(page->mapping != mapping)) {
unlock_page(page);
continue;
}
if (wbc->sync_mode != WB_SYNC_NONE) {
if (PageWriteback(page)) {
ret = flush_write_bio(epd);
BUG_ON(ret < 0);
}
wait_on_page_writeback(page);
}
if (PageWriteback(page) ||
!clear_page_dirty_for_io(page)) {
unlock_page(page);
continue;
}
ret = __extent_writepage(page, wbc, epd);
if (ret < 0) {
done = 1;
break;
}
/*
* the filesystem may choose to bump up nr_to_write.
* We have to make sure to honor the new nr_to_write
* at any time
*/
nr_to_write_done = wbc->nr_to_write <= 0;
}
pagevec_release(&pvec);
cond_resched();
}
if (!scanned && !done) {
/*
* We hit the last page and there is more work to be done: wrap
* back to the start of the file
*/
scanned = 1;
index = 0;
/*
* If we're looping we could run into a page that is locked by a
* writer and that writer could be waiting on writeback for a
* page in our current bio, and thus deadlock, so flush the
* write bio here.
*/
ret = flush_write_bio(epd);
if (!ret)
goto retry;
}
if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
mapping->writeback_index = done_index;
btrfs_add_delayed_iput(inode);
return ret;
}
int extent_write_full_page(struct page *page, struct writeback_control *wbc)
{
int ret;
struct extent_page_data epd = {
.bio_ctrl = { 0 },
.extent_locked = 0,
.sync_io = wbc->sync_mode == WB_SYNC_ALL,
};
ret = __extent_writepage(page, wbc, &epd);
ASSERT(ret <= 0);
if (ret < 0) {
end_write_bio(&epd, ret);
return ret;
}
ret = flush_write_bio(&epd);
ASSERT(ret <= 0);
return ret;
}
int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
int mode)
{
int ret = 0;
struct address_space *mapping = inode->i_mapping;
struct page *page;
unsigned long nr_pages = (end - start + PAGE_SIZE) >>
PAGE_SHIFT;
struct extent_page_data epd = {
.bio_ctrl = { 0 },
.extent_locked = 1,
.sync_io = mode == WB_SYNC_ALL,
};
struct writeback_control wbc_writepages = {
.sync_mode = mode,
.nr_to_write = nr_pages * 2,
.range_start = start,
.range_end = end + 1,
/* We're called from an async helper function */
.punt_to_cgroup = 1,
.no_cgroup_owner = 1,
};
wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
while (start <= end) {
page = find_get_page(mapping, start >> PAGE_SHIFT);
if (clear_page_dirty_for_io(page))
ret = __extent_writepage(page, &wbc_writepages, &epd);
else {
btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
page, start, start + PAGE_SIZE - 1, true);
unlock_page(page);
}
put_page(page);
start += PAGE_SIZE;
}
ASSERT(ret <= 0);
if (ret == 0)
ret = flush_write_bio(&epd);
else
end_write_bio(&epd, ret);
wbc_detach_inode(&wbc_writepages);
return ret;
}
int extent_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct inode *inode = mapping->host;
const bool data_reloc = btrfs_is_data_reloc_root(BTRFS_I(inode)->root);
const bool zoned = btrfs_is_zoned(BTRFS_I(inode)->root->fs_info);
int ret = 0;
struct extent_page_data epd = {
.bio_ctrl = { 0 },
.extent_locked = 0,
.sync_io = wbc->sync_mode == WB_SYNC_ALL,
};
/*
* Allow only a single thread to do the reloc work in zoned mode to
* protect the write pointer updates.
*/
if (data_reloc && zoned)
btrfs_inode_lock(inode, 0);
ret = extent_write_cache_pages(mapping, wbc, &epd);
if (data_reloc && zoned)
btrfs_inode_unlock(inode, 0);
ASSERT(ret <= 0);
if (ret < 0) {
end_write_bio(&epd, ret);
return ret;
}
ret = flush_write_bio(&epd);
return ret;
}
void extent_readahead(struct readahead_control *rac)
{
struct btrfs_bio_ctrl bio_ctrl = { 0 };
struct page *pagepool[16];
struct extent_map *em_cached = NULL;
u64 prev_em_start = (u64)-1;
int nr;
while ((nr = readahead_page_batch(rac, pagepool))) {
u64 contig_start = readahead_pos(rac);
u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
contiguous_readpages(pagepool, nr, contig_start, contig_end,
&em_cached, &bio_ctrl, &prev_em_start);
}
if (em_cached)
free_extent_map(em_cached);
if (bio_ctrl.bio) {
if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
return;
}
}
/*
* basic invalidatepage code, this waits on any locked or writeback
* ranges corresponding to the page, and then deletes any extent state
* records from the tree
*/
int extent_invalidatepage(struct extent_io_tree *tree,
struct page *page, unsigned long offset)
{
struct extent_state *cached_state = NULL;
u64 start = page_offset(page);
u64 end = start + PAGE_SIZE - 1;
size_t blocksize = page->mapping->host->i_sb->s_blocksize;
/* This function is only called for the btree inode */
ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
start += ALIGN(offset, blocksize);
if (start > end)
return 0;
lock_extent_bits(tree, start, end, &cached_state);
wait_on_page_writeback(page);
/*
* Currently for btree io tree, only EXTENT_LOCKED is utilized,
* so here we only need to unlock the extent range to free any
* existing extent state.
*/
unlock_extent_cached(tree, start, end, &cached_state);
return 0;
}
/*
* a helper for releasepage, this tests for areas of the page that
* are locked or under IO and drops the related state bits if it is safe
* to drop the page.
*/
static int try_release_extent_state(struct extent_io_tree *tree,
struct page *page, gfp_t mask)
{
u64 start = page_offset(page);
u64 end = start + PAGE_SIZE - 1;
int ret = 1;
if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
ret = 0;
} else {
/*
* At this point we can safely clear everything except the
* locked bit, the nodatasum bit and the delalloc new bit.
* The delalloc new bit will be cleared by ordered extent
* completion.
*/
ret = __clear_extent_bit(tree, start, end,
~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
0, 0, NULL, mask, NULL);
/* if clear_extent_bit failed for enomem reasons,
* we can't allow the release to continue.
*/
if (ret < 0)
ret = 0;
else
ret = 1;
}
return ret;
}
/*
* a helper for releasepage. As long as there are no locked extents
* in the range corresponding to the page, both state records and extent
* map records are removed
*/
int try_release_extent_mapping(struct page *page, gfp_t mask)
{
struct extent_map *em;
u64 start = page_offset(page);
u64 end = start + PAGE_SIZE - 1;
struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
struct extent_io_tree *tree = &btrfs_inode->io_tree;
struct extent_map_tree *map = &btrfs_inode->extent_tree;
if (gfpflags_allow_blocking(mask) &&
page->mapping->host->i_size > SZ_16M) {
u64 len;
while (start <= end) {
struct btrfs_fs_info *fs_info;
u64 cur_gen;
len = end - start + 1;
write_lock(&map->lock);
em = lookup_extent_mapping(map, start, len);
if (!em) {
write_unlock(&map->lock);
break;
}
if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
em->start != start) {
write_unlock(&map->lock);
free_extent_map(em);
break;
}
if (test_range_bit(tree, em->start,
extent_map_end(em) - 1,
EXTENT_LOCKED, 0, NULL))
goto next;
/*
* If it's not in the list of modified extents, used
* by a fast fsync, we can remove it. If it's being
* logged we can safely remove it since fsync took an
* extra reference on the em.
*/
if (list_empty(&em->list) ||
test_bit(EXTENT_FLAG_LOGGING, &em->flags))
goto remove_em;
/*
* If it's in the list of modified extents, remove it
* only if its generation is older then the current one,
* in which case we don't need it for a fast fsync.
* Otherwise don't remove it, we could be racing with an
* ongoing fast fsync that could miss the new extent.
*/
fs_info = btrfs_inode->root->fs_info;
spin_lock(&fs_info->trans_lock);
cur_gen = fs_info->generation;
spin_unlock(&fs_info->trans_lock);
if (em->generation >= cur_gen)
goto next;
remove_em:
/*
* We only remove extent maps that are not in the list of
* modified extents or that are in the list but with a
* generation lower then the current generation, so there
* is no need to set the full fsync flag on the inode (it
* hurts the fsync performance for workloads with a data
* size that exceeds or is close to the system's memory).
*/
remove_extent_mapping(map, em);
/* once for the rb tree */
free_extent_map(em);
next:
start = extent_map_end(em);
write_unlock(&map->lock);
/* once for us */
free_extent_map(em);
cond_resched(); /* Allow large-extent preemption. */
}
}
return try_release_extent_state(tree, page, mask);
}
/*
* helper function for fiemap, which doesn't want to see any holes.
* This maps until we find something past 'last'
*/
static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
u64 offset, u64 last)
{
u64 sectorsize = btrfs_inode_sectorsize(inode);
struct extent_map *em;
u64 len;
if (offset >= last)
return NULL;
while (1) {
len = last - offset;
if (len == 0)
break;
len = ALIGN(len, sectorsize);
em = btrfs_get_extent_fiemap(inode, offset, len);
if (IS_ERR_OR_NULL(em))
return em;
/* if this isn't a hole return it */
if (em->block_start != EXTENT_MAP_HOLE)
return em;
/* this is a hole, advance to the next extent */
offset = extent_map_end(em);
free_extent_map(em);
if (offset >= last)
break;
}
return NULL;
}
/*
* To cache previous fiemap extent
*
* Will be used for merging fiemap extent
*/
struct fiemap_cache {
u64 offset;
u64 phys;
u64 len;
u32 flags;
bool cached;
};
/*
* Helper to submit fiemap extent.
*
* Will try to merge current fiemap extent specified by @offset, @phys,
* @len and @flags with cached one.
* And only when we fails to merge, cached one will be submitted as
* fiemap extent.
*
* Return value is the same as fiemap_fill_next_extent().
*/
static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
struct fiemap_cache *cache,
u64 offset, u64 phys, u64 len, u32 flags)
{
int ret = 0;
if (!cache->cached)
goto assign;
/*
* Sanity check, extent_fiemap() should have ensured that new
* fiemap extent won't overlap with cached one.
* Not recoverable.
*
* NOTE: Physical address can overlap, due to compression
*/
if (cache->offset + cache->len > offset) {
WARN_ON(1);
return -EINVAL;
}
/*
* Only merges fiemap extents if
* 1) Their logical addresses are continuous
*
* 2) Their physical addresses are continuous
* So truly compressed (physical size smaller than logical size)
* extents won't get merged with each other
*
* 3) Share same flags except FIEMAP_EXTENT_LAST
* So regular extent won't get merged with prealloc extent
*/
if (cache->offset + cache->len == offset &&
cache->phys + cache->len == phys &&
(cache->flags & ~FIEMAP_EXTENT_LAST) ==
(flags & ~FIEMAP_EXTENT_LAST)) {
cache->len += len;
cache->flags |= flags;
goto try_submit_last;
}
/* Not mergeable, need to submit cached one */
ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
cache->len, cache->flags);
cache->cached = false;
if (ret)
return ret;
assign:
cache->cached = true;
cache->offset = offset;
cache->phys = phys;
cache->len = len;
cache->flags = flags;
try_submit_last:
if (cache->flags & FIEMAP_EXTENT_LAST) {
ret = fiemap_fill_next_extent(fieinfo, cache->offset,
cache->phys, cache->len, cache->flags);
cache->cached = false;
}
return ret;
}
/*
* Emit last fiemap cache
*
* The last fiemap cache may still be cached in the following case:
* 0 4k 8k
* |<- Fiemap range ->|
* |<------------ First extent ----------->|
*
* In this case, the first extent range will be cached but not emitted.
* So we must emit it before ending extent_fiemap().
*/
static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
struct fiemap_cache *cache)
{
int ret;
if (!cache->cached)
return 0;
ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
cache->len, cache->flags);
cache->cached = false;
if (ret > 0)
ret = 0;
return ret;
}
int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
u64 start, u64 len)
{
int ret = 0;
u64 off;
u64 max = start + len;
u32 flags = 0;
u32 found_type;
u64 last;
u64 last_for_get_extent = 0;
u64 disko = 0;
u64 isize = i_size_read(&inode->vfs_inode);
struct btrfs_key found_key;
struct extent_map *em = NULL;
struct extent_state *cached_state = NULL;
struct btrfs_path *path;
struct btrfs_root *root = inode->root;
struct fiemap_cache cache = { 0 };
struct ulist *roots;
struct ulist *tmp_ulist;
int end = 0;
u64 em_start = 0;
u64 em_len = 0;
u64 em_end = 0;
if (len == 0)
return -EINVAL;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
roots = ulist_alloc(GFP_KERNEL);
tmp_ulist = ulist_alloc(GFP_KERNEL);
if (!roots || !tmp_ulist) {
ret = -ENOMEM;
goto out_free_ulist;
}
/*
* We can't initialize that to 'start' as this could miss extents due
* to extent item merging
*/
off = 0;
start = round_down(start, btrfs_inode_sectorsize(inode));
len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
/*
* lookup the last file extent. We're not using i_size here
* because there might be preallocation past i_size
*/
ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
0);
if (ret < 0) {
goto out_free_ulist;
} else {
WARN_ON(!ret);
if (ret == 1)
ret = 0;
}
path->slots[0]--;
btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
found_type = found_key.type;
/* No extents, but there might be delalloc bits */
if (found_key.objectid != btrfs_ino(inode) ||
found_type != BTRFS_EXTENT_DATA_KEY) {
/* have to trust i_size as the end */
last = (u64)-1;
last_for_get_extent = isize;
} else {
/*
* remember the start of the last extent. There are a
* bunch of different factors that go into the length of the
* extent, so its much less complex to remember where it started
*/
last = found_key.offset;
last_for_get_extent = last + 1;
}
btrfs_release_path(path);
/*
* we might have some extents allocated but more delalloc past those
* extents. so, we trust isize unless the start of the last extent is
* beyond isize
*/
if (last < isize) {
last = (u64)-1;
last_for_get_extent = isize;
}
lock_extent_bits(&inode->io_tree, start, start + len - 1,
&cached_state);
em = get_extent_skip_holes(inode, start, last_for_get_extent);
if (!em)
goto out;
if (IS_ERR(em)) {
ret = PTR_ERR(em);
goto out;
}
while (!end) {
u64 offset_in_extent = 0;
/* break if the extent we found is outside the range */
if (em->start >= max || extent_map_end(em) < off)
break;
/*
* get_extent may return an extent that starts before our
* requested range. We have to make sure the ranges
* we return to fiemap always move forward and don't
* overlap, so adjust the offsets here
*/
em_start = max(em->start, off);
/*
* record the offset from the start of the extent
* for adjusting the disk offset below. Only do this if the
* extent isn't compressed since our in ram offset may be past
* what we have actually allocated on disk.
*/
if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
offset_in_extent = em_start - em->start;
em_end = extent_map_end(em);
em_len = em_end - em_start;
flags = 0;
if (em->block_start < EXTENT_MAP_LAST_BYTE)
disko = em->block_start + offset_in_extent;
else
disko = 0;
/*
* bump off for our next call to get_extent
*/
off = extent_map_end(em);
if (off >= max)
end = 1;
if (em->block_start == EXTENT_MAP_LAST_BYTE) {
end = 1;
flags |= FIEMAP_EXTENT_LAST;
} else if (em->block_start == EXTENT_MAP_INLINE) {
flags |= (FIEMAP_EXTENT_DATA_INLINE |
FIEMAP_EXTENT_NOT_ALIGNED);
} else if (em->block_start == EXTENT_MAP_DELALLOC) {
flags |= (FIEMAP_EXTENT_DELALLOC |
FIEMAP_EXTENT_UNKNOWN);
} else if (fieinfo->fi_extents_max) {
u64 bytenr = em->block_start -
(em->start - em->orig_start);
/*
* As btrfs supports shared space, this information
* can be exported to userspace tools via
* flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
* then we're just getting a count and we can skip the
* lookup stuff.
*/
ret = btrfs_check_shared(root, btrfs_ino(inode),
bytenr, roots, tmp_ulist);
if (ret < 0)
goto out_free;
if (ret)
flags |= FIEMAP_EXTENT_SHARED;
ret = 0;
}
if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
flags |= FIEMAP_EXTENT_ENCODED;
if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
flags |= FIEMAP_EXTENT_UNWRITTEN;
free_extent_map(em);
em = NULL;
if ((em_start >= last) || em_len == (u64)-1 ||
(last == (u64)-1 && isize <= em_end)) {
flags |= FIEMAP_EXTENT_LAST;
end = 1;
}
/* now scan forward to see if this is really the last extent. */
em = get_extent_skip_holes(inode, off, last_for_get_extent);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
goto out;
}
if (!em) {
flags |= FIEMAP_EXTENT_LAST;
end = 1;
}
ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
em_len, flags);
if (ret) {
if (ret == 1)
ret = 0;
goto out_free;
}
}
out_free:
if (!ret)
ret = emit_last_fiemap_cache(fieinfo, &cache);
free_extent_map(em);
out:
unlock_extent_cached(&inode->io_tree, start, start + len - 1,
&cached_state);
out_free_ulist:
btrfs_free_path(path);
ulist_free(roots);
ulist_free(tmp_ulist);
return ret;
}
static void __free_extent_buffer(struct extent_buffer *eb)
{
kmem_cache_free(extent_buffer_cache, eb);
}
int extent_buffer_under_io(const struct extent_buffer *eb)
{
return (atomic_read(&eb->io_pages) ||
test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
}
static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
{
struct btrfs_subpage *subpage;
lockdep_assert_held(&page->mapping->private_lock);
if (PagePrivate(page)) {
subpage = (struct btrfs_subpage *)page->private;
if (atomic_read(&subpage->eb_refs))
return true;
/*
* Even there is no eb refs here, we may still have
* end_page_read() call relying on page::private.
*/
if (atomic_read(&subpage->readers))
return true;
}
return false;
}
static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
/*
* For mapped eb, we're going to change the page private, which should
* be done under the private_lock.
*/
if (mapped)
spin_lock(&page->mapping->private_lock);
if (!PagePrivate(page)) {
if (mapped)
spin_unlock(&page->mapping->private_lock);
return;
}
if (fs_info->sectorsize == PAGE_SIZE) {
/*
* We do this since we'll remove the pages after we've
* removed the eb from the radix tree, so we could race
* and have this page now attached to the new eb. So
* only clear page_private if it's still connected to
* this eb.
*/
if (PagePrivate(page) &&
page->private == (unsigned long)eb) {
BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
BUG_ON(PageDirty(page));
BUG_ON(PageWriteback(page));
/*
* We need to make sure we haven't be attached
* to a new eb.
*/
detach_page_private(page);
}
if (mapped)
spin_unlock(&page->mapping->private_lock);
return;
}
/*
* For subpage, we can have dummy eb with page private. In this case,
* we can directly detach the private as such page is only attached to
* one dummy eb, no sharing.
*/
if (!mapped) {
btrfs_detach_subpage(fs_info, page);
return;
}
btrfs_page_dec_eb_refs(fs_info, page);
/*
* We can only detach the page private if there are no other ebs in the
* page range and no unfinished IO.
*/
if (!page_range_has_eb(fs_info, page))
btrfs_detach_subpage(fs_info, page);
spin_unlock(&page->mapping->private_lock);
}
/* Release all pages attached to the extent buffer */
static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
{
int i;
int num_pages;
ASSERT(!extent_buffer_under_io(eb));
num_pages = num_extent_pages(eb);
for (i = 0; i < num_pages; i++) {
struct page *page = eb->pages[i];
if (!page)
continue;
detach_extent_buffer_page(eb, page);
/* One for when we allocated the page */
put_page(page);
}
}
/*
* Helper for releasing the extent buffer.
*/
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
{
btrfs_release_extent_buffer_pages(eb);
btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
__free_extent_buffer(eb);
}
static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
unsigned long len)
{
struct extent_buffer *eb = NULL;
eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
eb->start = start;
eb->len = len;
eb->fs_info = fs_info;
eb->bflags = 0;
init_rwsem(&eb->lock);
btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
&fs_info->allocated_ebs);
INIT_LIST_HEAD(&eb->release_list);
spin_lock_init(&eb->refs_lock);
atomic_set(&eb->refs, 1);
atomic_set(&eb->io_pages, 0);
ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
return eb;
}
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
{
int i;
struct page *p;
struct extent_buffer *new;
int num_pages = num_extent_pages(src);
new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
if (new == NULL)
return NULL;
/*
* Set UNMAPPED before calling btrfs_release_extent_buffer(), as
* btrfs_release_extent_buffer() have different behavior for
* UNMAPPED subpage extent buffer.
*/
set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
for (i = 0; i < num_pages; i++) {
int ret;
p = alloc_page(GFP_NOFS);
if (!p) {
btrfs_release_extent_buffer(new);
return NULL;
}
ret = attach_extent_buffer_page(new, p, NULL);
if (ret < 0) {
put_page(p);
btrfs_release_extent_buffer(new);
return NULL;
}
WARN_ON(PageDirty(p));
new->pages[i] = p;
copy_page(page_address(p), page_address(src->pages[i]));
}
set_extent_buffer_uptodate(new);
return new;
}
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
u64 start, unsigned long len)
{
struct extent_buffer *eb;
int num_pages;
int i;
eb = __alloc_extent_buffer(fs_info, start, len);
if (!eb)
return NULL;
num_pages = num_extent_pages(eb);
for (i = 0; i < num_pages; i++) {
int ret;
eb->pages[i] = alloc_page(GFP_NOFS);
if (!eb->pages[i])
goto err;
ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
if (ret < 0)
goto err;
}
set_extent_buffer_uptodate(eb);
btrfs_set_header_nritems(eb, 0);
set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
return eb;
err:
for (; i > 0; i--) {
detach_extent_buffer_page(eb, eb->pages[i - 1]);
__free_page(eb->pages[i - 1]);
}
__free_extent_buffer(eb);
return NULL;
}
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
u64 start)
{
return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
}
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
int refs;
/*
* The TREE_REF bit is first set when the extent_buffer is added
* to the radix tree. It is also reset, if unset, when a new reference
* is created by find_extent_buffer.
*
* It is only cleared in two cases: freeing the last non-tree
* reference to the extent_buffer when its STALE bit is set or
* calling releasepage when the tree reference is the only reference.
*
* In both cases, care is taken to ensure that the extent_buffer's
* pages are not under io. However, releasepage can be concurrently
* called with creating new references, which is prone to race
* conditions between the calls to check_buffer_tree_ref in those
* codepaths and clearing TREE_REF in try_release_extent_buffer.
*
* The actual lifetime of the extent_buffer in the radix tree is
* adequately protected by the refcount, but the TREE_REF bit and
* its corresponding reference are not. To protect against this
* class of races, we call check_buffer_tree_ref from the codepaths
* which trigger io after they set eb->io_pages. Note that once io is
* initiated, TREE_REF can no longer be cleared, so that is the
* moment at which any such race is best fixed.
*/
refs = atomic_read(&eb->refs);
if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
return;
spin_lock(&eb->refs_lock);
if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
atomic_inc(&eb->refs);
spin_unlock(&eb->refs_lock);
}
static void mark_extent_buffer_accessed(struct extent_buffer *eb,
struct page *accessed)
{
int num_pages, i;
check_buffer_tree_ref(eb);
num_pages = num_extent_pages(eb);
for (i = 0; i < num_pages; i++) {
struct page *p = eb->pages[i];
if (p != accessed)
mark_page_accessed(p);
}
}
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
u64 start)
{
struct extent_buffer *eb;
eb = find_extent_buffer_nolock(fs_info, start);
if (!eb)
return NULL;
/*
* Lock our eb's refs_lock to avoid races with free_extent_buffer().
* When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
* another task running free_extent_buffer() might have seen that flag
* set, eb->refs == 2, that the buffer isn't under IO (dirty and
* writeback flags not set) and it's still in the tree (flag
* EXTENT_BUFFER_TREE_REF set), therefore being in the process of
* decrementing the extent buffer's reference count twice. So here we
* could race and increment the eb's reference count, clear its stale
* flag, mark it as dirty and drop our reference before the other task
* finishes executing free_extent_buffer, which would later result in
* an attempt to free an extent buffer that is dirty.
*/
if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
spin_lock(&eb->refs_lock);
spin_unlock(&eb->refs_lock);
}
mark_extent_buffer_accessed(eb, NULL);
return eb;
}
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
u64 start)
{
struct extent_buffer *eb, *exists = NULL;
int ret;
eb = find_extent_buffer(fs_info, start);
if (eb)
return eb;
eb = alloc_dummy_extent_buffer(fs_info, start);
if (!eb)
return ERR_PTR(-ENOMEM);
eb->fs_info = fs_info;
again:
ret = radix_tree_preload(GFP_NOFS);
if (ret) {
exists = ERR_PTR(ret);
goto free_eb;
}
spin_lock(&fs_info->buffer_lock);
ret = radix_tree_insert(&fs_info->buffer_radix,
start >> fs_info->sectorsize_bits, eb);
spin_unlock(&fs_info->buffer_lock);
radix_tree_preload_end();
if (ret == -EEXIST) {
exists = find_extent_buffer(fs_info, start);
if (exists)
goto free_eb;
else
goto again;
}
check_buffer_tree_ref(eb);
set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
return eb;
free_eb:
btrfs_release_extent_buffer(eb);
return exists;
}
#endif
static struct extent_buffer *grab_extent_buffer(
struct btrfs_fs_info *fs_info, struct page *page)
{
struct extent_buffer *exists;
/*
* For subpage case, we completely rely on radix tree to ensure we
* don't try to insert two ebs for the same bytenr. So here we always
* return NULL and just continue.
*/
if (fs_info->sectorsize < PAGE_SIZE)
return NULL;
/* Page not yet attached to an extent buffer */
if (!PagePrivate(page))
return NULL;
/*
* We could have already allocated an eb for this page and attached one
* so lets see if we can get a ref on the existing eb, and if we can we
* know it's good and we can just return that one, else we know we can
* just overwrite page->private.
*/
exists = (struct extent_buffer *)page->private;
if (atomic_inc_not_zero(&exists->refs))
return exists;
WARN_ON(PageDirty(page));
detach_page_private(page);
return NULL;
}
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
u64 start, u64 owner_root, int level)
{
unsigned long len = fs_info->nodesize;
int num_pages;
int i;
unsigned long index = start >> PAGE_SHIFT;
struct extent_buffer *eb;
struct extent_buffer *exists = NULL;
struct page *p;
struct address_space *mapping = fs_info->btree_inode->i_mapping;
int uptodate = 1;
int ret;
if (!IS_ALIGNED(start, fs_info->sectorsize)) {
btrfs_err(fs_info, "bad tree block start %llu", start);
return ERR_PTR(-EINVAL);
}
#if BITS_PER_LONG == 32
if (start >= MAX_LFS_FILESIZE) {
btrfs_err_rl(fs_info,
"extent buffer %llu is beyond 32bit page cache limit", start);
btrfs_err_32bit_limit(fs_info);
return ERR_PTR(-EOVERFLOW);
}
if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
btrfs_warn_32bit_limit(fs_info);
#endif
if (fs_info->sectorsize < PAGE_SIZE &&
offset_in_page(start) + len > PAGE_SIZE) {
btrfs_err(fs_info,
"tree block crosses page boundary, start %llu nodesize %lu",
start, len);
return ERR_PTR(-EINVAL);
}
eb = find_extent_buffer(fs_info, start);
if (eb)
return eb;
eb = __alloc_extent_buffer(fs_info, start, len);
if (!eb)
return ERR_PTR(-ENOMEM);
btrfs_set_buffer_lockdep_class(owner_root, eb, level);
num_pages = num_extent_pages(eb);
for (i = 0; i < num_pages; i++, index++) {
struct btrfs_subpage *prealloc = NULL;
p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
if (!p) {
exists = ERR_PTR(-ENOMEM);
goto free_eb;
}
/*
* Preallocate page->private for subpage case, so that we won't
* allocate memory with private_lock hold. The memory will be
* freed by attach_extent_buffer_page() or freed manually if
* we exit earlier.
*
* Although we have ensured one subpage eb can only have one
* page, but it may change in the future for 16K page size
* support, so we still preallocate the memory in the loop.
*/
if (fs_info->sectorsize < PAGE_SIZE) {
prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
if (IS_ERR(prealloc)) {
ret = PTR_ERR(prealloc);
unlock_page(p);
put_page(p);
exists = ERR_PTR(ret);
goto free_eb;
}
}
spin_lock(&mapping->private_lock);
exists = grab_extent_buffer(fs_info, p);
if (exists) {
spin_unlock(&mapping->private_lock);
unlock_page(p);
put_page(p);
mark_extent_buffer_accessed(exists, p);
btrfs_free_subpage(prealloc);
goto free_eb;
}
/* Should not fail, as we have preallocated the memory */
ret = attach_extent_buffer_page(eb, p, prealloc);
ASSERT(!ret);
/*
* To inform we have extra eb under allocation, so that
* detach_extent_buffer_page() won't release the page private
* when the eb hasn't yet been inserted into radix tree.
*
* The ref will be decreased when the eb released the page, in
* detach_extent_buffer_page().
* Thus needs no special handling in error path.
*/
btrfs_page_inc_eb_refs(fs_info, p);
spin_unlock(&mapping->private_lock);
WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
eb->pages[i] = p;
if (!PageUptodate(p))
uptodate = 0;
/*
* We can't unlock the pages just yet since the extent buffer
* hasn't been properly inserted in the radix tree, this
* opens a race with btree_releasepage which can free a page
* while we are still filling in all pages for the buffer and
* we could crash.
*/
}
if (uptodate)
set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
again:
ret = radix_tree_preload(GFP_NOFS);
if (ret) {
exists = ERR_PTR(ret);
goto free_eb;
}
spin_lock(&fs_info->buffer_lock);
ret = radix_tree_insert(&fs_info->buffer_radix,
start >> fs_info->sectorsize_bits, eb);
spin_unlock(&fs_info->buffer_lock);
radix_tree_preload_end();
if (ret == -EEXIST) {
exists = find_extent_buffer(fs_info, start);
if (exists)
goto free_eb;
else
goto again;
}
/* add one reference for the tree */
check_buffer_tree_ref(eb);
set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
/*
* Now it's safe to unlock the pages because any calls to
* btree_releasepage will correctly detect that a page belongs to a
* live buffer and won't free them prematurely.
*/
for (i = 0; i < num_pages; i++)
unlock_page(eb->pages[i]);
return eb;
free_eb:
WARN_ON(!atomic_dec_and_test(&eb->refs));
for (i = 0; i < num_pages; i++) {
if (eb->pages[i])
unlock_page(eb->pages[i]);
}
btrfs_release_extent_buffer(eb);
return exists;
}
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
{
struct extent_buffer *eb =
container_of(head, struct extent_buffer, rcu_head);
__free_extent_buffer(eb);
}
static int release_extent_buffer(struct extent_buffer *eb)
__releases(&eb->refs_lock)
{
lockdep_assert_held(&eb->refs_lock);
WARN_ON(atomic_read(&eb->refs) == 0);
if (atomic_dec_and_test(&eb->refs)) {
if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
struct btrfs_fs_info *fs_info = eb->fs_info;
spin_unlock(&eb->refs_lock);
spin_lock(&fs_info->buffer_lock);
radix_tree_delete(&fs_info->buffer_radix,
eb->start >> fs_info->sectorsize_bits);
spin_unlock(&fs_info->buffer_lock);
} else {
spin_unlock(&eb->refs_lock);
}
btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
/* Should be safe to release our pages at this point */
btrfs_release_extent_buffer_pages(eb);
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
__free_extent_buffer(eb);
return 1;
}
#endif
call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
return 1;
}
spin_unlock(&eb->refs_lock);
return 0;
}
void free_extent_buffer(struct extent_buffer *eb)
{
int refs;
int old;
if (!eb)
return;
while (1) {
refs = atomic_read(&eb->refs);
if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
|| (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
refs == 1))
break;
old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
if (old == refs)
return;
}
spin_lock(&eb->refs_lock);
if (atomic_read(&eb->refs) == 2 &&
test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
!extent_buffer_under_io(eb) &&
test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
atomic_dec(&eb->refs);
/*
* I know this is terrible, but it's temporary until we stop tracking
* the uptodate bits and such for the extent buffers.
*/
release_extent_buffer(eb);
}
void free_extent_buffer_stale(struct extent_buffer *eb)
{
if (!eb)
return;
spin_lock(&eb->refs_lock);
set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
atomic_dec(&eb->refs);
release_extent_buffer(eb);
}
static void btree_clear_page_dirty(struct page *page)
{
ASSERT(PageDirty(page));
ASSERT(PageLocked(page));
clear_page_dirty_for_io(page);
xa_lock_irq(&page->mapping->i_pages);
if (!PageDirty(page))
__xa_clear_mark(&page->mapping->i_pages,
page_index(page), PAGECACHE_TAG_DIRTY);
xa_unlock_irq(&page->mapping->i_pages);
}
static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
struct page *page = eb->pages[0];
bool last;
/* btree_clear_page_dirty() needs page locked */
lock_page(page);
last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
eb->len);
if (last)
btree_clear_page_dirty(page);
unlock_page(page);
WARN_ON(atomic_read(&eb->refs) == 0);
}
void clear_extent_buffer_dirty(const struct extent_buffer *eb)
{
int i;
int num_pages;
struct page *page;
if (eb->fs_info->sectorsize < PAGE_SIZE)
return clear_subpage_extent_buffer_dirty(eb);
num_pages = num_extent_pages(eb);
for (i = 0; i < num_pages; i++) {
page = eb->pages[i];
if (!PageDirty(page))
continue;
lock_page(page);
btree_clear_page_dirty(page);
ClearPageError(page);
unlock_page(page);
}
WARN_ON(atomic_read(&eb->refs) == 0);
}
bool set_extent_buffer_dirty(struct extent_buffer *eb)
{
int i;
int num_pages;
bool was_dirty;
check_buffer_tree_ref(eb);
was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
num_pages = num_extent_pages(eb);
WARN_ON(atomic_read(&eb->refs) == 0);
WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
if (!was_dirty) {
bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
/*
* For subpage case, we can have other extent buffers in the
* same page, and in clear_subpage_extent_buffer_dirty() we
* have to clear page dirty without subpage lock held.
* This can cause race where our page gets dirty cleared after
* we just set it.
*
* Thankfully, clear_subpage_extent_buffer_dirty() has locked
* its page for other reasons, we can use page lock to prevent
* the above race.
*/
if (subpage)
lock_page(eb->pages[0]);
for (i = 0; i < num_pages; i++)
btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
eb->start, eb->len);
if (subpage)
unlock_page(eb->pages[0]);
}
#ifdef CONFIG_BTRFS_DEBUG
for (i = 0; i < num_pages; i++)
ASSERT(PageDirty(eb->pages[i]));
#endif
return was_dirty;
}
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
struct page *page;
int num_pages;
int i;
clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
num_pages = num_extent_pages(eb);
for (i = 0; i < num_pages; i++) {
page = eb->pages[i];
if (page)
btrfs_page_clear_uptodate(fs_info, page,
eb->start, eb->len);
}
}
void set_extent_buffer_uptodate(struct extent_buffer *eb)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
struct page *page;
int num_pages;
int i;
set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
num_pages = num_extent_pages(eb);
for (i = 0; i < num_pages; i++) {
page = eb->pages[i];
btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
}
}
static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
int mirror_num)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
struct extent_io_tree *io_tree;
struct page *page = eb->pages[0];
struct btrfs_bio_ctrl bio_ctrl = { 0 };
int ret = 0;
ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
ASSERT(PagePrivate(page));
io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
if (wait == WAIT_NONE) {
if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
return -EAGAIN;
} else {
ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
if (ret < 0)
return ret;
}
ret = 0;
if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
PageUptodate(page) ||
btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
return ret;
}
clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
eb->read_mirror = 0;
atomic_set(&eb->io_pages, 1);
check_buffer_tree_ref(eb);
btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
page, eb->start, eb->len,
eb->start - page_offset(page),
end_bio_extent_readpage, mirror_num, 0,
true);
if (ret) {
/*
* In the endio function, if we hit something wrong we will
* increase the io_pages, so here we need to decrease it for
* error path.
*/
atomic_dec(&eb->io_pages);
}
if (bio_ctrl.bio) {
int tmp;
tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
bio_ctrl.bio = NULL;
if (tmp < 0)
return tmp;
}
if (ret || wait != WAIT_COMPLETE)
return ret;
wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
ret = -EIO;
return ret;
}
int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
{
int i;
struct page *page;
int err;
int ret = 0;
int locked_pages = 0;
int all_uptodate = 1;
int num_pages;
unsigned long num_reads = 0;
struct btrfs_bio_ctrl bio_ctrl = { 0 };
if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
return 0;
if (eb->fs_info->sectorsize < PAGE_SIZE)
return read_extent_buffer_subpage(eb, wait, mirror_num);
num_pages = num_extent_pages(eb);
for (i = 0; i < num_pages; i++) {
page = eb->pages[i];
if (wait == WAIT_NONE) {
/*
* WAIT_NONE is only utilized by readahead. If we can't
* acquire the lock atomically it means either the eb
* is being read out or under modification.
* Either way the eb will be or has been cached,
* readahead can exit safely.
*/
if (!trylock_page(page))
goto unlock_exit;
} else {
lock_page(page);
}
locked_pages++;
}
/*
* We need to firstly lock all pages to make sure that
* the uptodate bit of our pages won't be affected by
* clear_extent_buffer_uptodate().
*/
for (i = 0; i < num_pages; i++) {
page = eb->pages[i];
if (!PageUptodate(page)) {
num_reads++;
all_uptodate = 0;
}
}
if (all_uptodate) {
set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
goto unlock_exit;
}
clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
eb->read_mirror = 0;
atomic_set(&eb->io_pages, num_reads);
/*
* It is possible for releasepage to clear the TREE_REF bit before we
* set io_pages. See check_buffer_tree_ref for a more detailed comment.
*/
check_buffer_tree_ref(eb);
for (i = 0; i < num_pages; i++) {
page = eb->pages[i];
if (!PageUptodate(page)) {
if (ret) {
atomic_dec(&eb->io_pages);
unlock_page(page);
continue;
}
ClearPageError(page);
err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
&bio_ctrl, page, page_offset(page),
PAGE_SIZE, 0, end_bio_extent_readpage,
mirror_num, 0, false);
if (err) {
/*
* We failed to submit the bio so it's the
* caller's responsibility to perform cleanup
* i.e unlock page/set error bit.
*/
ret = err;
SetPageError(page);
unlock_page(page);
atomic_dec(&eb->io_pages);
}
} else {
unlock_page(page);
}
}
if (bio_ctrl.bio) {
err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
bio_ctrl.bio = NULL;
if (err)
return err;
}
if (ret || wait != WAIT_COMPLETE)
return ret;
for (i = 0; i < num_pages; i++) {
page = eb->pages[i];
wait_on_page_locked(page);
if (!PageUptodate(page))
ret = -EIO;
}
return ret;
unlock_exit:
while (locked_pages > 0) {
locked_pages--;
page = eb->pages[locked_pages];
unlock_page(page);
}
return ret;
}
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
unsigned long len)
{
btrfs_warn(eb->fs_info,
"access to eb bytenr %llu len %lu out of range start %lu len %lu",
eb->start, eb->len, start, len);
WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
return true;
}
/*
* Check if the [start, start + len) range is valid before reading/writing
* the eb.
* NOTE: @start and @len are offset inside the eb, not logical address.
*
* Caller should not touch the dst/src memory if this function returns error.
*/
static inline int check_eb_range(const struct extent_buffer *eb,
unsigned long start, unsigned long len)
{
unsigned long offset;
/* start, start + len should not go beyond eb->len nor overflow */
if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
return report_eb_range(eb, start, len);
return false;
}
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
unsigned long start, unsigned long len)
{
size_t cur;
size_t offset;
struct page *page;
char *kaddr;
char *dst = (char *)dstv;
unsigned long i = get_eb_page_index(start);
if (check_eb_range(eb, start, len))
return;
offset = get_eb_offset_in_page(eb, start);
while (len > 0) {
page = eb->pages[i];
cur = min(len, (PAGE_SIZE - offset));
kaddr = page_address(page);
memcpy(dst, kaddr + offset, cur);
dst += cur;
len -= cur;
offset = 0;
i++;
}
}
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
void __user *dstv,
unsigned long start, unsigned long len)
{
size_t cur;
size_t offset;
struct page *page;
char *kaddr;
char __user *dst = (char __user *)dstv;
unsigned long i = get_eb_page_index(start);
int ret = 0;
WARN_ON(start > eb->len);
WARN_ON(start + len > eb->start + eb->len);
offset = get_eb_offset_in_page(eb, start);
while (len > 0) {
page = eb->pages[i];
cur = min(len, (PAGE_SIZE - offset));
kaddr = page_address(page);
if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
ret = -EFAULT;
break;
}
dst += cur;
len -= cur;
offset = 0;
i++;
}
return ret;
}
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
unsigned long start, unsigned long len)
{
size_t cur;
size_t offset;
struct page *page;
char *kaddr;
char *ptr = (char *)ptrv;
unsigned long i = get_eb_page_index(start);
int ret = 0;
if (check_eb_range(eb, start, len))
return -EINVAL;
offset = get_eb_offset_in_page(eb, start);
while (len > 0) {
page = eb->pages[i];
cur = min(len, (PAGE_SIZE - offset));
kaddr = page_address(page);
ret = memcmp(ptr, kaddr + offset, cur);
if (ret)
break;
ptr += cur;
len -= cur;
offset = 0;
i++;
}
return ret;
}
/*
* Check that the extent buffer is uptodate.
*
* For regular sector size == PAGE_SIZE case, check if @page is uptodate.
* For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
*/
static void assert_eb_page_uptodate(const struct extent_buffer *eb,
struct page *page)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
if (fs_info->sectorsize < PAGE_SIZE) {
bool uptodate;
uptodate = btrfs_subpage_test_uptodate(fs_info, page,
eb->start, eb->len);
WARN_ON(!uptodate);
} else {
WARN_ON(!PageUptodate(page));
}
}
void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
const void *srcv)
{
char *kaddr;
assert_eb_page_uptodate(eb, eb->pages[0]);
kaddr = page_address(eb->pages[0]) +
get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
chunk_tree_uuid));
memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
}
void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
{
char *kaddr;
assert_eb_page_uptodate(eb, eb->pages[0]);
kaddr = page_address(eb->pages[0]) +
get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
}
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
unsigned long start, unsigned long len)
{
size_t cur;
size_t offset;
struct page *page;
char *kaddr;
char *src = (char *)srcv;
unsigned long i = get_eb_page_index(start);
WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
if (check_eb_range(eb, start, len))
return;
offset = get_eb_offset_in_page(eb, start);
while (len > 0) {
page = eb->pages[i];
assert_eb_page_uptodate(eb, page);
cur = min(len, PAGE_SIZE - offset);
kaddr = page_address(page);
memcpy(kaddr + offset, src, cur);
src += cur;
len -= cur;
offset = 0;
i++;
}
}
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
unsigned long len)
{
size_t cur;
size_t offset;
struct page *page;
char *kaddr;
unsigned long i = get_eb_page_index(start);
if (check_eb_range(eb, start, len))
return;
offset = get_eb_offset_in_page(eb, start);
while (len > 0) {
page = eb->pages[i];
assert_eb_page_uptodate(eb, page);
cur = min(len, PAGE_SIZE - offset);
kaddr = page_address(page);
memset(kaddr + offset, 0, cur);
len -= cur;
offset = 0;
i++;
}
}
void copy_extent_buffer_full(const struct extent_buffer *dst,
const struct extent_buffer *src)
{
int i;
int num_pages;
ASSERT(dst->len == src->len);
if (dst->fs_info->sectorsize == PAGE_SIZE) {
num_pages = num_extent_pages(dst);
for (i = 0; i < num_pages; i++)
copy_page(page_address(dst->pages[i]),
page_address(src->pages[i]));
} else {
size_t src_offset = get_eb_offset_in_page(src, 0);
size_t dst_offset = get_eb_offset_in_page(dst, 0);
ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
memcpy(page_address(dst->pages[0]) + dst_offset,
page_address(src->pages[0]) + src_offset,
src->len);
}
}
void copy_extent_buffer(const struct extent_buffer *dst,
const struct extent_buffer *src,
unsigned long dst_offset, unsigned long src_offset,
unsigned long len)
{
u64 dst_len = dst->len;
size_t cur;
size_t offset;
struct page *page;
char *kaddr;
unsigned long i = get_eb_page_index(dst_offset);
if (check_eb_range(dst, dst_offset, len) ||
check_eb_range(src, src_offset, len))
return;
WARN_ON(src->len != dst_len);
offset = get_eb_offset_in_page(dst, dst_offset);
while (len > 0) {
page = dst->pages[i];
assert_eb_page_uptodate(dst, page);
cur = min(len, (unsigned long)(PAGE_SIZE - offset));
kaddr = page_address(page);
read_extent_buffer(src, kaddr + offset, src_offset, cur);
src_offset += cur;
len -= cur;
offset = 0;
i++;
}
}
/*
* eb_bitmap_offset() - calculate the page and offset of the byte containing the
* given bit number
* @eb: the extent buffer
* @start: offset of the bitmap item in the extent buffer
* @nr: bit number
* @page_index: return index of the page in the extent buffer that contains the
* given bit number
* @page_offset: return offset into the page given by page_index
*
* This helper hides the ugliness of finding the byte in an extent buffer which
* contains a given bit.
*/
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
unsigned long start, unsigned long nr,
unsigned long *page_index,
size_t *page_offset)
{
size_t byte_offset = BIT_BYTE(nr);
size_t offset;
/*
* The byte we want is the offset of the extent buffer + the offset of
* the bitmap item in the extent buffer + the offset of the byte in the
* bitmap item.
*/
offset = start + offset_in_page(eb->start) + byte_offset;
*page_index = offset >> PAGE_SHIFT;
*page_offset = offset_in_page(offset);
}
/**
* extent_buffer_test_bit - determine whether a bit in a bitmap item is set
* @eb: the extent buffer
* @start: offset of the bitmap item in the extent buffer
* @nr: bit number to test
*/
int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
unsigned long nr)
{
u8 *kaddr;
struct page *page;
unsigned long i;
size_t offset;
eb_bitmap_offset(eb, start, nr, &i, &offset);
page = eb->pages[i];
assert_eb_page_uptodate(eb, page);
kaddr = page_address(page);
return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
}
/**
* extent_buffer_bitmap_set - set an area of a bitmap
* @eb: the extent buffer
* @start: offset of the bitmap item in the extent buffer
* @pos: bit number of the first bit
* @len: number of bits to set
*/
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
unsigned long pos, unsigned long len)
{
u8 *kaddr;
struct page *page;
unsigned long i;
size_t offset;
const unsigned int size = pos + len;
int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
eb_bitmap_offset(eb, start, pos, &i, &offset);
page = eb->pages[i];
assert_eb_page_uptodate(eb, page);
kaddr = page_address(page);
while (len >= bits_to_set) {
kaddr[offset] |= mask_to_set;
len -= bits_to_set;
bits_to_set = BITS_PER_BYTE;
mask_to_set = ~0;
if (++offset >= PAGE_SIZE && len > 0) {
offset = 0;
page = eb->pages[++i];
assert_eb_page_uptodate(eb, page);
kaddr = page_address(page);
}
}
if (len) {
mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
kaddr[offset] |= mask_to_set;
}
}
/**
* extent_buffer_bitmap_clear - clear an area of a bitmap
* @eb: the extent buffer
* @start: offset of the bitmap item in the extent buffer
* @pos: bit number of the first bit
* @len: number of bits to clear
*/
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
unsigned long start, unsigned long pos,
unsigned long len)
{
u8 *kaddr;
struct page *page;
unsigned long i;
size_t offset;
const unsigned int size = pos + len;
int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
eb_bitmap_offset(eb, start, pos, &i, &offset);
page = eb->pages[i];
assert_eb_page_uptodate(eb, page);
kaddr = page_address(page);
while (len >= bits_to_clear) {
kaddr[offset] &= ~mask_to_clear;
len -= bits_to_clear;
bits_to_clear = BITS_PER_BYTE;
mask_to_clear = ~0;
if (++offset >= PAGE_SIZE && len > 0) {
offset = 0;
page = eb->pages[++i];
assert_eb_page_uptodate(eb, page);
kaddr = page_address(page);
}
}
if (len) {
mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
kaddr[offset] &= ~mask_to_clear;
}
}
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
{
unsigned long distance = (src > dst) ? src - dst : dst - src;
return distance < len;
}
static void copy_pages(struct page *dst_page, struct page *src_page,
unsigned long dst_off, unsigned long src_off,
unsigned long len)
{
char *dst_kaddr = page_address(dst_page);
char *src_kaddr;
int must_memmove = 0;
if (dst_page != src_page) {
src_kaddr = page_address(src_page);
} else {
src_kaddr = dst_kaddr;
if (areas_overlap(src_off, dst_off, len))
must_memmove = 1;
}
if (must_memmove)
memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
else
memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
}
void memcpy_extent_buffer(const struct extent_buffer *dst,
unsigned long dst_offset, unsigned long src_offset,
unsigned long len)
{
size_t cur;
size_t dst_off_in_page;
size_t src_off_in_page;
unsigned long dst_i;
unsigned long src_i;
if (check_eb_range(dst, dst_offset, len) ||
check_eb_range(dst, src_offset, len))
return;
while (len > 0) {
dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
src_off_in_page = get_eb_offset_in_page(dst, src_offset);
dst_i = get_eb_page_index(dst_offset);
src_i = get_eb_page_index(src_offset);
cur = min(len, (unsigned long)(PAGE_SIZE -
src_off_in_page));
cur = min_t(unsigned long, cur,
(unsigned long)(PAGE_SIZE - dst_off_in_page));
copy_pages(dst->pages[dst_i], dst->pages[src_i],
dst_off_in_page, src_off_in_page, cur);
src_offset += cur;
dst_offset += cur;
len -= cur;
}
}
void memmove_extent_buffer(const struct extent_buffer *dst,
unsigned long dst_offset, unsigned long src_offset,
unsigned long len)
{
size_t cur;
size_t dst_off_in_page;
size_t src_off_in_page;
unsigned long dst_end = dst_offset + len - 1;
unsigned long src_end = src_offset + len - 1;
unsigned long dst_i;
unsigned long src_i;
if (check_eb_range(dst, dst_offset, len) ||
check_eb_range(dst, src_offset, len))
return;
if (dst_offset < src_offset) {
memcpy_extent_buffer(dst, dst_offset, src_offset, len);
return;
}
while (len > 0) {
dst_i = get_eb_page_index(dst_end);
src_i = get_eb_page_index(src_end);
dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
src_off_in_page = get_eb_offset_in_page(dst, src_end);
cur = min_t(unsigned long, len, src_off_in_page + 1);
cur = min(cur, dst_off_in_page + 1);
copy_pages(dst->pages[dst_i], dst->pages[src_i],
dst_off_in_page - cur + 1,
src_off_in_page - cur + 1, cur);
dst_end -= cur;
src_end -= cur;
len -= cur;
}
}
#define GANG_LOOKUP_SIZE 16
static struct extent_buffer *get_next_extent_buffer(
struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
{
struct extent_buffer *gang[GANG_LOOKUP_SIZE];
struct extent_buffer *found = NULL;
u64 page_start = page_offset(page);
u64 cur = page_start;
ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
lockdep_assert_held(&fs_info->buffer_lock);
while (cur < page_start + PAGE_SIZE) {
int ret;
int i;
ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
(void **)gang, cur >> fs_info->sectorsize_bits,
min_t(unsigned int, GANG_LOOKUP_SIZE,
PAGE_SIZE / fs_info->nodesize));
if (ret == 0)
goto out;
for (i = 0; i < ret; i++) {
/* Already beyond page end */
if (gang[i]->start >= page_start + PAGE_SIZE)
goto out;
/* Found one */
if (gang[i]->start >= bytenr) {
found = gang[i];
goto out;
}
}
cur = gang[ret - 1]->start + gang[ret - 1]->len;
}
out:
return found;
}
static int try_release_subpage_extent_buffer(struct page *page)
{
struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
u64 cur = page_offset(page);
const u64 end = page_offset(page) + PAGE_SIZE;
int ret;
while (cur < end) {
struct extent_buffer *eb = NULL;
/*
* Unlike try_release_extent_buffer() which uses page->private
* to grab buffer, for subpage case we rely on radix tree, thus
* we need to ensure radix tree consistency.
*
* We also want an atomic snapshot of the radix tree, thus go
* with spinlock rather than RCU.
*/
spin_lock(&fs_info->buffer_lock);
eb = get_next_extent_buffer(fs_info, page, cur);
if (!eb) {
/* No more eb in the page range after or at cur */
spin_unlock(&fs_info->buffer_lock);
break;
}
cur = eb->start + eb->len;
/*
* The same as try_release_extent_buffer(), to ensure the eb
* won't disappear out from under us.
*/
spin_lock(&eb->refs_lock);
if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
spin_unlock(&eb->refs_lock);
spin_unlock(&fs_info->buffer_lock);
break;
}
spin_unlock(&fs_info->buffer_lock);
/*
* If tree ref isn't set then we know the ref on this eb is a
* real ref, so just return, this eb will likely be freed soon
* anyway.
*/
if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
spin_unlock(&eb->refs_lock);
break;
}
/*
* Here we don't care about the return value, we will always
* check the page private at the end. And
* release_extent_buffer() will release the refs_lock.
*/
release_extent_buffer(eb);
}
/*
* Finally to check if we have cleared page private, as if we have
* released all ebs in the page, the page private should be cleared now.
*/
spin_lock(&page->mapping->private_lock);
if (!PagePrivate(page))
ret = 1;
else
ret = 0;
spin_unlock(&page->mapping->private_lock);
return ret;
}
int try_release_extent_buffer(struct page *page)
{
struct extent_buffer *eb;
if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
return try_release_subpage_extent_buffer(page);
/*
* We need to make sure nobody is changing page->private, as we rely on
* page->private as the pointer to extent buffer.
*/
spin_lock(&page->mapping->private_lock);
if (!PagePrivate(page)) {
spin_unlock(&page->mapping->private_lock);
return 1;
}
eb = (struct extent_buffer *)page->private;
BUG_ON(!eb);
/*
* This is a little awful but should be ok, we need to make sure that
* the eb doesn't disappear out from under us while we're looking at
* this page.
*/
spin_lock(&eb->refs_lock);
if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
spin_unlock(&eb->refs_lock);
spin_unlock(&page->mapping->private_lock);
return 0;
}
spin_unlock(&page->mapping->private_lock);
/*
* If tree ref isn't set then we know the ref on this eb is a real ref,
* so just return, this page will likely be freed soon anyway.
*/
if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
spin_unlock(&eb->refs_lock);
return 0;
}
return release_extent_buffer(eb);
}
/*
* btrfs_readahead_tree_block - attempt to readahead a child block
* @fs_info: the fs_info
* @bytenr: bytenr to read
* @owner_root: objectid of the root that owns this eb
* @gen: generation for the uptodate check, can be 0
* @level: level for the eb
*
* Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
* normal uptodate check of the eb, without checking the generation. If we have
* to read the block we will not block on anything.
*/
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
u64 bytenr, u64 owner_root, u64 gen, int level)
{
struct extent_buffer *eb;
int ret;
eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
if (IS_ERR(eb))
return;
if (btrfs_buffer_uptodate(eb, gen, 1)) {
free_extent_buffer(eb);
return;
}
ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
if (ret < 0)
free_extent_buffer_stale(eb);
else
free_extent_buffer(eb);
}
/*
* btrfs_readahead_node_child - readahead a node's child block
* @node: parent node we're reading from
* @slot: slot in the parent node for the child we want to read
*
* A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
* the slot in the node provided.
*/
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
btrfs_readahead_tree_block(node->fs_info,
btrfs_node_blockptr(node, slot),
btrfs_header_owner(node),
btrfs_node_ptr_generation(node, slot),
btrfs_header_level(node) - 1);
}