linux/drivers/crypto/ccp/ccp-crypto-sha.c
Gary R Hook 0ee991be4c crypto: ccp - Fill the result buffer only on digest, finup, and final ops
Any change to the result buffer should only happen on final, finup
and digest operations. Changes to the buffer for update, import, export,
etc, are not allowed.

Fixes: 66d7b9f6175e ("crypto: testmgr - test misuse of result in ahash")
Signed-off-by: Gary R Hook <gary.hook@amd.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-03-09 22:47:05 +08:00

541 lines
13 KiB
C

/*
* AMD Cryptographic Coprocessor (CCP) SHA crypto API support
*
* Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
* Author: Gary R Hook <gary.hook@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/scatterlist.h>
#include <linux/crypto.h>
#include <crypto/algapi.h>
#include <crypto/hash.h>
#include <crypto/hmac.h>
#include <crypto/internal/hash.h>
#include <crypto/sha.h>
#include <crypto/scatterwalk.h>
#include "ccp-crypto.h"
static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
{
struct ahash_request *req = ahash_request_cast(async_req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
unsigned int digest_size = crypto_ahash_digestsize(tfm);
if (ret)
goto e_free;
if (rctx->hash_rem) {
/* Save remaining data to buffer */
unsigned int offset = rctx->nbytes - rctx->hash_rem;
scatterwalk_map_and_copy(rctx->buf, rctx->src,
offset, rctx->hash_rem, 0);
rctx->buf_count = rctx->hash_rem;
} else {
rctx->buf_count = 0;
}
/* Update result area if supplied */
if (req->result && rctx->final)
memcpy(req->result, rctx->ctx, digest_size);
e_free:
sg_free_table(&rctx->data_sg);
return ret;
}
static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
unsigned int final)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct scatterlist *sg;
unsigned int block_size =
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
unsigned int sg_count;
gfp_t gfp;
u64 len;
int ret;
len = (u64)rctx->buf_count + (u64)nbytes;
if (!final && (len <= block_size)) {
scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
0, nbytes, 0);
rctx->buf_count += nbytes;
return 0;
}
rctx->src = req->src;
rctx->nbytes = nbytes;
rctx->final = final;
rctx->hash_rem = final ? 0 : len & (block_size - 1);
rctx->hash_cnt = len - rctx->hash_rem;
if (!final && !rctx->hash_rem) {
/* CCP can't do zero length final, so keep some data around */
rctx->hash_cnt -= block_size;
rctx->hash_rem = block_size;
}
/* Initialize the context scatterlist */
sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
sg = NULL;
if (rctx->buf_count && nbytes) {
/* Build the data scatterlist table - allocate enough entries
* for both data pieces (buffer and input data)
*/
gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
GFP_KERNEL : GFP_ATOMIC;
sg_count = sg_nents(req->src) + 1;
ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
if (ret)
return ret;
sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
if (!sg) {
ret = -EINVAL;
goto e_free;
}
sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
if (!sg) {
ret = -EINVAL;
goto e_free;
}
sg_mark_end(sg);
sg = rctx->data_sg.sgl;
} else if (rctx->buf_count) {
sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
sg = &rctx->buf_sg;
} else if (nbytes) {
sg = req->src;
}
rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
INIT_LIST_HEAD(&rctx->cmd.entry);
rctx->cmd.engine = CCP_ENGINE_SHA;
rctx->cmd.u.sha.type = rctx->type;
rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
switch (rctx->type) {
case CCP_SHA_TYPE_1:
rctx->cmd.u.sha.ctx_len = SHA1_DIGEST_SIZE;
break;
case CCP_SHA_TYPE_224:
rctx->cmd.u.sha.ctx_len = SHA224_DIGEST_SIZE;
break;
case CCP_SHA_TYPE_256:
rctx->cmd.u.sha.ctx_len = SHA256_DIGEST_SIZE;
break;
case CCP_SHA_TYPE_384:
rctx->cmd.u.sha.ctx_len = SHA384_DIGEST_SIZE;
break;
case CCP_SHA_TYPE_512:
rctx->cmd.u.sha.ctx_len = SHA512_DIGEST_SIZE;
break;
default:
/* Should never get here */
break;
}
rctx->cmd.u.sha.src = sg;
rctx->cmd.u.sha.src_len = rctx->hash_cnt;
rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
&ctx->u.sha.opad_sg : NULL;
rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
ctx->u.sha.opad_count : 0;
rctx->cmd.u.sha.first = rctx->first;
rctx->cmd.u.sha.final = rctx->final;
rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
rctx->first = 0;
ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
return ret;
e_free:
sg_free_table(&rctx->data_sg);
return ret;
}
static int ccp_sha_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct ccp_crypto_ahash_alg *alg =
ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
unsigned int block_size =
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
memset(rctx, 0, sizeof(*rctx));
rctx->type = alg->type;
rctx->first = 1;
if (ctx->u.sha.key_len) {
/* Buffer the HMAC key for first update */
memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
rctx->buf_count = block_size;
}
return 0;
}
static int ccp_sha_update(struct ahash_request *req)
{
return ccp_do_sha_update(req, req->nbytes, 0);
}
static int ccp_sha_final(struct ahash_request *req)
{
return ccp_do_sha_update(req, 0, 1);
}
static int ccp_sha_finup(struct ahash_request *req)
{
return ccp_do_sha_update(req, req->nbytes, 1);
}
static int ccp_sha_digest(struct ahash_request *req)
{
int ret;
ret = ccp_sha_init(req);
if (ret)
return ret;
return ccp_sha_finup(req);
}
static int ccp_sha_export(struct ahash_request *req, void *out)
{
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct ccp_sha_exp_ctx state;
/* Don't let anything leak to 'out' */
memset(&state, 0, sizeof(state));
state.type = rctx->type;
state.msg_bits = rctx->msg_bits;
state.first = rctx->first;
memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
state.buf_count = rctx->buf_count;
memcpy(state.buf, rctx->buf, sizeof(state.buf));
/* 'out' may not be aligned so memcpy from local variable */
memcpy(out, &state, sizeof(state));
return 0;
}
static int ccp_sha_import(struct ahash_request *req, const void *in)
{
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct ccp_sha_exp_ctx state;
/* 'in' may not be aligned so memcpy to local variable */
memcpy(&state, in, sizeof(state));
memset(rctx, 0, sizeof(*rctx));
rctx->type = state.type;
rctx->msg_bits = state.msg_bits;
rctx->first = state.first;
memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
rctx->buf_count = state.buf_count;
memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
return 0;
}
static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int key_len)
{
struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
SHASH_DESC_ON_STACK(sdesc, shash);
unsigned int block_size = crypto_shash_blocksize(shash);
unsigned int digest_size = crypto_shash_digestsize(shash);
int i, ret;
/* Set to zero until complete */
ctx->u.sha.key_len = 0;
/* Clear key area to provide zero padding for keys smaller
* than the block size
*/
memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
if (key_len > block_size) {
/* Must hash the input key */
sdesc->tfm = shash;
sdesc->flags = crypto_ahash_get_flags(tfm) &
CRYPTO_TFM_REQ_MAY_SLEEP;
ret = crypto_shash_digest(sdesc, key, key_len,
ctx->u.sha.key);
if (ret) {
crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
key_len = digest_size;
} else {
memcpy(ctx->u.sha.key, key, key_len);
}
for (i = 0; i < block_size; i++) {
ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ HMAC_IPAD_VALUE;
ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ HMAC_OPAD_VALUE;
}
sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
ctx->u.sha.opad_count = block_size;
ctx->u.sha.key_len = key_len;
return 0;
}
static int ccp_sha_cra_init(struct crypto_tfm *tfm)
{
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
ctx->complete = ccp_sha_complete;
ctx->u.sha.key_len = 0;
crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
return 0;
}
static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
{
}
static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
{
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
struct crypto_shash *hmac_tfm;
hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
if (IS_ERR(hmac_tfm)) {
pr_warn("could not load driver %s need for HMAC support\n",
alg->child_alg);
return PTR_ERR(hmac_tfm);
}
ctx->u.sha.hmac_tfm = hmac_tfm;
return ccp_sha_cra_init(tfm);
}
static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
{
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
if (ctx->u.sha.hmac_tfm)
crypto_free_shash(ctx->u.sha.hmac_tfm);
ccp_sha_cra_exit(tfm);
}
struct ccp_sha_def {
unsigned int version;
const char *name;
const char *drv_name;
enum ccp_sha_type type;
u32 digest_size;
u32 block_size;
};
static struct ccp_sha_def sha_algs[] = {
{
.version = CCP_VERSION(3, 0),
.name = "sha1",
.drv_name = "sha1-ccp",
.type = CCP_SHA_TYPE_1,
.digest_size = SHA1_DIGEST_SIZE,
.block_size = SHA1_BLOCK_SIZE,
},
{
.version = CCP_VERSION(3, 0),
.name = "sha224",
.drv_name = "sha224-ccp",
.type = CCP_SHA_TYPE_224,
.digest_size = SHA224_DIGEST_SIZE,
.block_size = SHA224_BLOCK_SIZE,
},
{
.version = CCP_VERSION(3, 0),
.name = "sha256",
.drv_name = "sha256-ccp",
.type = CCP_SHA_TYPE_256,
.digest_size = SHA256_DIGEST_SIZE,
.block_size = SHA256_BLOCK_SIZE,
},
{
.version = CCP_VERSION(5, 0),
.name = "sha384",
.drv_name = "sha384-ccp",
.type = CCP_SHA_TYPE_384,
.digest_size = SHA384_DIGEST_SIZE,
.block_size = SHA384_BLOCK_SIZE,
},
{
.version = CCP_VERSION(5, 0),
.name = "sha512",
.drv_name = "sha512-ccp",
.type = CCP_SHA_TYPE_512,
.digest_size = SHA512_DIGEST_SIZE,
.block_size = SHA512_BLOCK_SIZE,
},
};
static int ccp_register_hmac_alg(struct list_head *head,
const struct ccp_sha_def *def,
const struct ccp_crypto_ahash_alg *base_alg)
{
struct ccp_crypto_ahash_alg *ccp_alg;
struct ahash_alg *alg;
struct hash_alg_common *halg;
struct crypto_alg *base;
int ret;
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
if (!ccp_alg)
return -ENOMEM;
/* Copy the base algorithm and only change what's necessary */
*ccp_alg = *base_alg;
INIT_LIST_HEAD(&ccp_alg->entry);
strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
alg = &ccp_alg->alg;
alg->setkey = ccp_sha_setkey;
halg = &alg->halg;
base = &halg->base;
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
def->drv_name);
base->cra_init = ccp_hmac_sha_cra_init;
base->cra_exit = ccp_hmac_sha_cra_exit;
ret = crypto_register_ahash(alg);
if (ret) {
pr_err("%s ahash algorithm registration error (%d)\n",
base->cra_name, ret);
kfree(ccp_alg);
return ret;
}
list_add(&ccp_alg->entry, head);
return ret;
}
static int ccp_register_sha_alg(struct list_head *head,
const struct ccp_sha_def *def)
{
struct ccp_crypto_ahash_alg *ccp_alg;
struct ahash_alg *alg;
struct hash_alg_common *halg;
struct crypto_alg *base;
int ret;
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
if (!ccp_alg)
return -ENOMEM;
INIT_LIST_HEAD(&ccp_alg->entry);
ccp_alg->type = def->type;
alg = &ccp_alg->alg;
alg->init = ccp_sha_init;
alg->update = ccp_sha_update;
alg->final = ccp_sha_final;
alg->finup = ccp_sha_finup;
alg->digest = ccp_sha_digest;
alg->export = ccp_sha_export;
alg->import = ccp_sha_import;
halg = &alg->halg;
halg->digestsize = def->digest_size;
halg->statesize = sizeof(struct ccp_sha_exp_ctx);
base = &halg->base;
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
def->drv_name);
base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK;
base->cra_blocksize = def->block_size;
base->cra_ctxsize = sizeof(struct ccp_ctx);
base->cra_priority = CCP_CRA_PRIORITY;
base->cra_type = &crypto_ahash_type;
base->cra_init = ccp_sha_cra_init;
base->cra_exit = ccp_sha_cra_exit;
base->cra_module = THIS_MODULE;
ret = crypto_register_ahash(alg);
if (ret) {
pr_err("%s ahash algorithm registration error (%d)\n",
base->cra_name, ret);
kfree(ccp_alg);
return ret;
}
list_add(&ccp_alg->entry, head);
ret = ccp_register_hmac_alg(head, def, ccp_alg);
return ret;
}
int ccp_register_sha_algs(struct list_head *head)
{
int i, ret;
unsigned int ccpversion = ccp_version();
for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
if (sha_algs[i].version > ccpversion)
continue;
ret = ccp_register_sha_alg(head, &sha_algs[i]);
if (ret)
return ret;
}
return 0;
}