linux/drivers/gpu/drm/i915/intel_hdmi.c
Jani Nikula e87a005d90 drm/i915: add helpers for platform specific revision id range checks
Revision checks are almost always accompanied by a platform check. (The
exceptions are platform specific code.) Add helpers to check for a
platform and a revision range: IS_SKL_REVID() and IS_BXT_REVID(). In
most places this simplifies and clarifies the code. It will be obvious
that revid macros are used for the correct platform.

This should make it easier to find all the revision checks for
workarounds for each platform, and make it easier to remove them once we
drop support for early hardware revisions.

This should also make it easier to differentiate between Skylake and
Kabylake revision checks when Kabylake support is added.

v2: rebase

Acked-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1445343722-3312-3-git-send-email-jani.nikula@intel.com
2015-10-21 11:25:01 +03:00

2209 lines
65 KiB
C

/*
* Copyright 2006 Dave Airlie <airlied@linux.ie>
* Copyright © 2006-2009 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Jesse Barnes <jesse.barnes@intel.com>
*/
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/hdmi.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include "intel_drv.h"
#include <drm/i915_drm.h>
#include "i915_drv.h"
static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
{
return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
}
static void
assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
{
struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t enabled_bits;
enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
"HDMI port enabled, expecting disabled\n");
}
struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
{
struct intel_digital_port *intel_dig_port =
container_of(encoder, struct intel_digital_port, base.base);
return &intel_dig_port->hdmi;
}
static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
{
return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
}
static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
{
switch (type) {
case HDMI_INFOFRAME_TYPE_AVI:
return VIDEO_DIP_SELECT_AVI;
case HDMI_INFOFRAME_TYPE_SPD:
return VIDEO_DIP_SELECT_SPD;
case HDMI_INFOFRAME_TYPE_VENDOR:
return VIDEO_DIP_SELECT_VENDOR;
default:
DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
return 0;
}
}
static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
{
switch (type) {
case HDMI_INFOFRAME_TYPE_AVI:
return VIDEO_DIP_ENABLE_AVI;
case HDMI_INFOFRAME_TYPE_SPD:
return VIDEO_DIP_ENABLE_SPD;
case HDMI_INFOFRAME_TYPE_VENDOR:
return VIDEO_DIP_ENABLE_VENDOR;
default:
DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
return 0;
}
}
static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
{
switch (type) {
case HDMI_INFOFRAME_TYPE_AVI:
return VIDEO_DIP_ENABLE_AVI_HSW;
case HDMI_INFOFRAME_TYPE_SPD:
return VIDEO_DIP_ENABLE_SPD_HSW;
case HDMI_INFOFRAME_TYPE_VENDOR:
return VIDEO_DIP_ENABLE_VS_HSW;
default:
DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
return 0;
}
}
static u32 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder,
enum hdmi_infoframe_type type,
int i)
{
switch (type) {
case HDMI_INFOFRAME_TYPE_AVI:
return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
case HDMI_INFOFRAME_TYPE_SPD:
return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
case HDMI_INFOFRAME_TYPE_VENDOR:
return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
default:
DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
return 0;
}
}
static void g4x_write_infoframe(struct drm_encoder *encoder,
enum hdmi_infoframe_type type,
const void *frame, ssize_t len)
{
const uint32_t *data = frame;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val = I915_READ(VIDEO_DIP_CTL);
int i;
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
val &= ~g4x_infoframe_enable(type);
I915_WRITE(VIDEO_DIP_CTL, val);
mmiowb();
for (i = 0; i < len; i += 4) {
I915_WRITE(VIDEO_DIP_DATA, *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
I915_WRITE(VIDEO_DIP_DATA, 0);
mmiowb();
val |= g4x_infoframe_enable(type);
val &= ~VIDEO_DIP_FREQ_MASK;
val |= VIDEO_DIP_FREQ_VSYNC;
I915_WRITE(VIDEO_DIP_CTL, val);
POSTING_READ(VIDEO_DIP_CTL);
}
static bool g4x_infoframe_enabled(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
u32 val = I915_READ(VIDEO_DIP_CTL);
if ((val & VIDEO_DIP_ENABLE) == 0)
return false;
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
return false;
return val & (VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
}
static void ibx_write_infoframe(struct drm_encoder *encoder,
enum hdmi_infoframe_type type,
const void *frame, ssize_t len)
{
const uint32_t *data = frame;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
val &= ~g4x_infoframe_enable(type);
I915_WRITE(reg, val);
mmiowb();
for (i = 0; i < len; i += 4) {
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
mmiowb();
val |= g4x_infoframe_enable(type);
val &= ~VIDEO_DIP_FREQ_MASK;
val |= VIDEO_DIP_FREQ_VSYNC;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static bool ibx_infoframe_enabled(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
if ((val & VIDEO_DIP_ENABLE) == 0)
return false;
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
return false;
return val & (VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
}
static void cpt_write_infoframe(struct drm_encoder *encoder,
enum hdmi_infoframe_type type,
const void *frame, ssize_t len)
{
const uint32_t *data = frame;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
/* The DIP control register spec says that we need to update the AVI
* infoframe without clearing its enable bit */
if (type != HDMI_INFOFRAME_TYPE_AVI)
val &= ~g4x_infoframe_enable(type);
I915_WRITE(reg, val);
mmiowb();
for (i = 0; i < len; i += 4) {
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
mmiowb();
val |= g4x_infoframe_enable(type);
val &= ~VIDEO_DIP_FREQ_MASK;
val |= VIDEO_DIP_FREQ_VSYNC;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static bool cpt_infoframe_enabled(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
if ((val & VIDEO_DIP_ENABLE) == 0)
return false;
return val & (VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
}
static void vlv_write_infoframe(struct drm_encoder *encoder,
enum hdmi_infoframe_type type,
const void *frame, ssize_t len)
{
const uint32_t *data = frame;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
val |= g4x_infoframe_index(type);
val &= ~g4x_infoframe_enable(type);
I915_WRITE(reg, val);
mmiowb();
for (i = 0; i < len; i += 4) {
I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
mmiowb();
val |= g4x_infoframe_enable(type);
val &= ~VIDEO_DIP_FREQ_MASK;
val |= VIDEO_DIP_FREQ_VSYNC;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static bool vlv_infoframe_enabled(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
int reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
if ((val & VIDEO_DIP_ENABLE) == 0)
return false;
if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
return false;
return val & (VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
}
static void hsw_write_infoframe(struct drm_encoder *encoder,
enum hdmi_infoframe_type type,
const void *frame, ssize_t len)
{
const uint32_t *data = frame;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
u32 ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
u32 data_reg;
int i;
u32 val = I915_READ(ctl_reg);
data_reg = hsw_dip_data_reg(dev_priv, cpu_transcoder, type, 0);
if (data_reg == 0)
return;
val &= ~hsw_infoframe_enable(type);
I915_WRITE(ctl_reg, val);
mmiowb();
for (i = 0; i < len; i += 4) {
I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
type, i >> 2), *data);
data++;
}
/* Write every possible data byte to force correct ECC calculation. */
for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
type, i >> 2), 0);
mmiowb();
val |= hsw_infoframe_enable(type);
I915_WRITE(ctl_reg, val);
POSTING_READ(ctl_reg);
}
static bool hsw_infoframe_enabled(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
u32 val = I915_READ(ctl_reg);
return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
}
/*
* The data we write to the DIP data buffer registers is 1 byte bigger than the
* HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
* at 0). It's also a byte used by DisplayPort so the same DIP registers can be
* used for both technologies.
*
* DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
* DW1: DB3 | DB2 | DB1 | DB0
* DW2: DB7 | DB6 | DB5 | DB4
* DW3: ...
*
* (HB is Header Byte, DB is Data Byte)
*
* The hdmi pack() functions don't know about that hardware specific hole so we
* trick them by giving an offset into the buffer and moving back the header
* bytes by one.
*/
static void intel_write_infoframe(struct drm_encoder *encoder,
union hdmi_infoframe *frame)
{
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
uint8_t buffer[VIDEO_DIP_DATA_SIZE];
ssize_t len;
/* see comment above for the reason for this offset */
len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
if (len < 0)
return;
/* Insert the 'hole' (see big comment above) at position 3 */
buffer[0] = buffer[1];
buffer[1] = buffer[2];
buffer[2] = buffer[3];
buffer[3] = 0;
len++;
intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
}
static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
const struct drm_display_mode *adjusted_mode)
{
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
union hdmi_infoframe frame;
int ret;
ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
adjusted_mode);
if (ret < 0) {
DRM_ERROR("couldn't fill AVI infoframe\n");
return;
}
if (intel_hdmi->rgb_quant_range_selectable) {
if (intel_crtc->config->limited_color_range)
frame.avi.quantization_range =
HDMI_QUANTIZATION_RANGE_LIMITED;
else
frame.avi.quantization_range =
HDMI_QUANTIZATION_RANGE_FULL;
}
intel_write_infoframe(encoder, &frame);
}
static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
{
union hdmi_infoframe frame;
int ret;
ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
if (ret < 0) {
DRM_ERROR("couldn't fill SPD infoframe\n");
return;
}
frame.spd.sdi = HDMI_SPD_SDI_PC;
intel_write_infoframe(encoder, &frame);
}
static void
intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
const struct drm_display_mode *adjusted_mode)
{
union hdmi_infoframe frame;
int ret;
ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
adjusted_mode);
if (ret < 0)
return;
intel_write_infoframe(encoder, &frame);
}
static void g4x_set_infoframes(struct drm_encoder *encoder,
bool enable,
const struct drm_display_mode *adjusted_mode)
{
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
u32 reg = VIDEO_DIP_CTL;
u32 val = I915_READ(reg);
u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
assert_hdmi_port_disabled(intel_hdmi);
/* If the registers were not initialized yet, they might be zeroes,
* which means we're selecting the AVI DIP and we're setting its
* frequency to once. This seems to really confuse the HW and make
* things stop working (the register spec says the AVI always needs to
* be sent every VSync). So here we avoid writing to the register more
* than we need and also explicitly select the AVI DIP and explicitly
* set its frequency to every VSync. Avoiding to write it twice seems to
* be enough to solve the problem, but being defensive shouldn't hurt us
* either. */
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
if (!enable) {
if (!(val & VIDEO_DIP_ENABLE))
return;
if (port != (val & VIDEO_DIP_PORT_MASK)) {
DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
(val & VIDEO_DIP_PORT_MASK) >> 29);
return;
}
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
if (port != (val & VIDEO_DIP_PORT_MASK)) {
if (val & VIDEO_DIP_ENABLE) {
DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
(val & VIDEO_DIP_PORT_MASK) >> 29);
return;
}
val &= ~VIDEO_DIP_PORT_MASK;
val |= port;
}
val |= VIDEO_DIP_ENABLE;
val &= ~(VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
intel_hdmi_set_spd_infoframe(encoder);
intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
}
static bool hdmi_sink_is_deep_color(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct drm_connector *connector;
WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
/*
* HDMI cloning is only supported on g4x which doesn't
* support deep color or GCP infoframes anyway so no
* need to worry about multiple HDMI sinks here.
*/
list_for_each_entry(connector, &dev->mode_config.connector_list, head)
if (connector->encoder == encoder)
return connector->display_info.bpc > 8;
return false;
}
/*
* Determine if default_phase=1 can be indicated in the GCP infoframe.
*
* From HDMI specification 1.4a:
* - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
* - The first pixel following each Video Data Period shall have a pixel packing phase of 0
* - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
* - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
* phase of 0
*/
static bool gcp_default_phase_possible(int pipe_bpp,
const struct drm_display_mode *mode)
{
unsigned int pixels_per_group;
switch (pipe_bpp) {
case 30:
/* 4 pixels in 5 clocks */
pixels_per_group = 4;
break;
case 36:
/* 2 pixels in 3 clocks */
pixels_per_group = 2;
break;
case 48:
/* 1 pixel in 2 clocks */
pixels_per_group = 1;
break;
default:
/* phase information not relevant for 8bpc */
return false;
}
return mode->crtc_hdisplay % pixels_per_group == 0 &&
mode->crtc_htotal % pixels_per_group == 0 &&
mode->crtc_hblank_start % pixels_per_group == 0 &&
mode->crtc_hblank_end % pixels_per_group == 0 &&
mode->crtc_hsync_start % pixels_per_group == 0 &&
mode->crtc_hsync_end % pixels_per_group == 0 &&
((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
mode->crtc_htotal/2 % pixels_per_group == 0);
}
static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder *encoder)
{
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
u32 reg, val = 0;
if (HAS_DDI(dev_priv))
reg = HSW_TVIDEO_DIP_GCP(crtc->config->cpu_transcoder);
else if (IS_VALLEYVIEW(dev_priv))
reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
else if (HAS_PCH_SPLIT(dev_priv->dev))
reg = TVIDEO_DIP_GCP(crtc->pipe);
else
return false;
/* Indicate color depth whenever the sink supports deep color */
if (hdmi_sink_is_deep_color(encoder))
val |= GCP_COLOR_INDICATION;
/* Enable default_phase whenever the display mode is suitably aligned */
if (gcp_default_phase_possible(crtc->config->pipe_bpp,
&crtc->config->base.adjusted_mode))
val |= GCP_DEFAULT_PHASE_ENABLE;
I915_WRITE(reg, val);
return val != 0;
}
static void ibx_set_infoframes(struct drm_encoder *encoder,
bool enable,
const struct drm_display_mode *adjusted_mode)
{
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
assert_hdmi_port_disabled(intel_hdmi);
/* See the big comment in g4x_set_infoframes() */
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
if (!enable) {
if (!(val & VIDEO_DIP_ENABLE))
return;
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
if (port != (val & VIDEO_DIP_PORT_MASK)) {
WARN(val & VIDEO_DIP_ENABLE,
"DIP already enabled on port %c\n",
(val & VIDEO_DIP_PORT_MASK) >> 29);
val &= ~VIDEO_DIP_PORT_MASK;
val |= port;
}
val |= VIDEO_DIP_ENABLE;
val &= ~(VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
if (intel_hdmi_set_gcp_infoframe(encoder))
val |= VIDEO_DIP_ENABLE_GCP;
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
intel_hdmi_set_spd_infoframe(encoder);
intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
}
static void cpt_set_infoframes(struct drm_encoder *encoder,
bool enable,
const struct drm_display_mode *adjusted_mode)
{
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
assert_hdmi_port_disabled(intel_hdmi);
/* See the big comment in g4x_set_infoframes() */
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
if (!enable) {
if (!(val & VIDEO_DIP_ENABLE))
return;
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
/* Set both together, unset both together: see the spec. */
val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
if (intel_hdmi_set_gcp_infoframe(encoder))
val |= VIDEO_DIP_ENABLE_GCP;
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
intel_hdmi_set_spd_infoframe(encoder);
intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
}
static void vlv_set_infoframes(struct drm_encoder *encoder,
bool enable,
const struct drm_display_mode *adjusted_mode)
{
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
u32 val = I915_READ(reg);
u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
assert_hdmi_port_disabled(intel_hdmi);
/* See the big comment in g4x_set_infoframes() */
val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
if (!enable) {
if (!(val & VIDEO_DIP_ENABLE))
return;
val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
if (port != (val & VIDEO_DIP_PORT_MASK)) {
WARN(val & VIDEO_DIP_ENABLE,
"DIP already enabled on port %c\n",
(val & VIDEO_DIP_PORT_MASK) >> 29);
val &= ~VIDEO_DIP_PORT_MASK;
val |= port;
}
val |= VIDEO_DIP_ENABLE;
val &= ~(VIDEO_DIP_ENABLE_AVI |
VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
if (intel_hdmi_set_gcp_infoframe(encoder))
val |= VIDEO_DIP_ENABLE_GCP;
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
intel_hdmi_set_spd_infoframe(encoder);
intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
}
static void hsw_set_infoframes(struct drm_encoder *encoder,
bool enable,
const struct drm_display_mode *adjusted_mode)
{
struct drm_i915_private *dev_priv = encoder->dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
u32 val = I915_READ(reg);
assert_hdmi_port_disabled(intel_hdmi);
val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
if (!enable) {
I915_WRITE(reg, val);
POSTING_READ(reg);
return;
}
if (intel_hdmi_set_gcp_infoframe(encoder))
val |= VIDEO_DIP_ENABLE_GCP_HSW;
I915_WRITE(reg, val);
POSTING_READ(reg);
intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
intel_hdmi_set_spd_infoframe(encoder);
intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
}
static void intel_hdmi_prepare(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
u32 hdmi_val;
hdmi_val = SDVO_ENCODING_HDMI;
if (!HAS_PCH_SPLIT(dev) && crtc->config->limited_color_range)
hdmi_val |= HDMI_COLOR_RANGE_16_235;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
if (crtc->config->pipe_bpp > 24)
hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
else
hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
if (crtc->config->has_hdmi_sink)
hdmi_val |= HDMI_MODE_SELECT_HDMI;
if (HAS_PCH_CPT(dev))
hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
else if (IS_CHERRYVIEW(dev))
hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
else
hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
POSTING_READ(intel_hdmi->hdmi_reg);
}
static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
enum intel_display_power_domain power_domain;
u32 tmp;
power_domain = intel_display_port_power_domain(encoder);
if (!intel_display_power_is_enabled(dev_priv, power_domain))
return false;
tmp = I915_READ(intel_hdmi->hdmi_reg);
if (!(tmp & SDVO_ENABLE))
return false;
if (HAS_PCH_CPT(dev))
*pipe = PORT_TO_PIPE_CPT(tmp);
else if (IS_CHERRYVIEW(dev))
*pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
else
*pipe = PORT_TO_PIPE(tmp);
return true;
}
static void intel_hdmi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 tmp, flags = 0;
int dotclock;
tmp = I915_READ(intel_hdmi->hdmi_reg);
if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
if (tmp & HDMI_MODE_SELECT_HDMI)
pipe_config->has_hdmi_sink = true;
if (intel_hdmi->infoframe_enabled(&encoder->base))
pipe_config->has_infoframe = true;
if (tmp & SDVO_AUDIO_ENABLE)
pipe_config->has_audio = true;
if (!HAS_PCH_SPLIT(dev) &&
tmp & HDMI_COLOR_RANGE_16_235)
pipe_config->limited_color_range = true;
pipe_config->base.adjusted_mode.flags |= flags;
if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
dotclock = pipe_config->port_clock * 2 / 3;
else
dotclock = pipe_config->port_clock;
if (pipe_config->pixel_multiplier)
dotclock /= pipe_config->pixel_multiplier;
if (HAS_PCH_SPLIT(dev_priv->dev))
ironlake_check_encoder_dotclock(pipe_config, dotclock);
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
}
static void intel_enable_hdmi_audio(struct intel_encoder *encoder)
{
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
WARN_ON(!crtc->config->has_hdmi_sink);
DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
pipe_name(crtc->pipe));
intel_audio_codec_enable(encoder);
}
static void g4x_enable_hdmi(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
u32 temp;
temp = I915_READ(intel_hdmi->hdmi_reg);
temp |= SDVO_ENABLE;
if (crtc->config->has_audio)
temp |= SDVO_AUDIO_ENABLE;
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
if (crtc->config->has_audio)
intel_enable_hdmi_audio(encoder);
}
static void ibx_enable_hdmi(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
u32 temp;
temp = I915_READ(intel_hdmi->hdmi_reg);
temp |= SDVO_ENABLE;
if (crtc->config->has_audio)
temp |= SDVO_AUDIO_ENABLE;
/*
* HW workaround, need to write this twice for issue
* that may result in first write getting masked.
*/
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
/*
* HW workaround, need to toggle enable bit off and on
* for 12bpc with pixel repeat.
*
* FIXME: BSpec says this should be done at the end of
* of the modeset sequence, so not sure if this isn't too soon.
*/
if (crtc->config->pipe_bpp > 24 &&
crtc->config->pixel_multiplier > 1) {
I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
POSTING_READ(intel_hdmi->hdmi_reg);
/*
* HW workaround, need to write this twice for issue
* that may result in first write getting masked.
*/
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
}
if (crtc->config->has_audio)
intel_enable_hdmi_audio(encoder);
}
static void cpt_enable_hdmi(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
enum pipe pipe = crtc->pipe;
u32 temp;
temp = I915_READ(intel_hdmi->hdmi_reg);
temp |= SDVO_ENABLE;
if (crtc->config->has_audio)
temp |= SDVO_AUDIO_ENABLE;
/*
* WaEnableHDMI8bpcBefore12bpc:snb,ivb
*
* The procedure for 12bpc is as follows:
* 1. disable HDMI clock gating
* 2. enable HDMI with 8bpc
* 3. enable HDMI with 12bpc
* 4. enable HDMI clock gating
*/
if (crtc->config->pipe_bpp > 24) {
I915_WRITE(TRANS_CHICKEN1(pipe),
I915_READ(TRANS_CHICKEN1(pipe)) |
TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
temp &= ~SDVO_COLOR_FORMAT_MASK;
temp |= SDVO_COLOR_FORMAT_8bpc;
}
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
if (crtc->config->pipe_bpp > 24) {
temp &= ~SDVO_COLOR_FORMAT_MASK;
temp |= HDMI_COLOR_FORMAT_12bpc;
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
I915_WRITE(TRANS_CHICKEN1(pipe),
I915_READ(TRANS_CHICKEN1(pipe)) &
~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
}
if (crtc->config->has_audio)
intel_enable_hdmi_audio(encoder);
}
static void vlv_enable_hdmi(struct intel_encoder *encoder)
{
}
static void intel_disable_hdmi(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
u32 temp;
temp = I915_READ(intel_hdmi->hdmi_reg);
temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
/*
* HW workaround for IBX, we need to move the port
* to transcoder A after disabling it to allow the
* matching DP port to be enabled on transcoder A.
*/
if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B) {
temp &= ~SDVO_PIPE_B_SELECT;
temp |= SDVO_ENABLE;
/*
* HW workaround, need to write this twice for issue
* that may result in first write getting masked.
*/
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
temp &= ~SDVO_ENABLE;
I915_WRITE(intel_hdmi->hdmi_reg, temp);
POSTING_READ(intel_hdmi->hdmi_reg);
}
intel_hdmi->set_infoframes(&encoder->base, false, NULL);
}
static void g4x_disable_hdmi(struct intel_encoder *encoder)
{
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
if (crtc->config->has_audio)
intel_audio_codec_disable(encoder);
intel_disable_hdmi(encoder);
}
static void pch_disable_hdmi(struct intel_encoder *encoder)
{
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
if (crtc->config->has_audio)
intel_audio_codec_disable(encoder);
}
static void pch_post_disable_hdmi(struct intel_encoder *encoder)
{
intel_disable_hdmi(encoder);
}
static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
{
struct drm_device *dev = intel_hdmi_to_dev(hdmi);
if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
return 165000;
else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
return 300000;
else
return 225000;
}
static enum drm_mode_status
hdmi_port_clock_valid(struct intel_hdmi *hdmi,
int clock, bool respect_dvi_limit)
{
struct drm_device *dev = intel_hdmi_to_dev(hdmi);
if (clock < 25000)
return MODE_CLOCK_LOW;
if (clock > hdmi_port_clock_limit(hdmi, respect_dvi_limit))
return MODE_CLOCK_HIGH;
/* BXT DPLL can't generate 223-240 MHz */
if (IS_BROXTON(dev) && clock > 223333 && clock < 240000)
return MODE_CLOCK_RANGE;
/* CHV DPLL can't generate 216-240 MHz */
if (IS_CHERRYVIEW(dev) && clock > 216000 && clock < 240000)
return MODE_CLOCK_RANGE;
return MODE_OK;
}
static enum drm_mode_status
intel_hdmi_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
struct drm_device *dev = intel_hdmi_to_dev(hdmi);
enum drm_mode_status status;
int clock;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
return MODE_NO_DBLESCAN;
clock = mode->clock;
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
clock *= 2;
/* check if we can do 8bpc */
status = hdmi_port_clock_valid(hdmi, clock, true);
/* if we can't do 8bpc we may still be able to do 12bpc */
if (!HAS_GMCH_DISPLAY(dev) && status != MODE_OK)
status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, true);
return status;
}
static bool hdmi_12bpc_possible(struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc_state->base.crtc->dev;
struct drm_atomic_state *state;
struct intel_encoder *encoder;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int count = 0, count_hdmi = 0;
int i;
if (HAS_GMCH_DISPLAY(dev))
return false;
state = crtc_state->base.state;
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != crtc_state->base.crtc)
continue;
encoder = to_intel_encoder(connector_state->best_encoder);
count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
count++;
}
/*
* HDMI 12bpc affects the clocks, so it's only possible
* when not cloning with other encoder types.
*/
return count_hdmi > 0 && count_hdmi == count;
}
bool intel_hdmi_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock;
int clock_12bpc = clock_8bpc * 3 / 2;
int desired_bpp;
pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
if (pipe_config->has_hdmi_sink)
pipe_config->has_infoframe = true;
if (intel_hdmi->color_range_auto) {
/* See CEA-861-E - 5.1 Default Encoding Parameters */
pipe_config->limited_color_range =
pipe_config->has_hdmi_sink &&
drm_match_cea_mode(adjusted_mode) > 1;
} else {
pipe_config->limited_color_range =
intel_hdmi->limited_color_range;
}
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
pipe_config->pixel_multiplier = 2;
clock_8bpc *= 2;
clock_12bpc *= 2;
}
if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
pipe_config->has_pch_encoder = true;
if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
pipe_config->has_audio = true;
/*
* HDMI is either 12 or 8, so if the display lets 10bpc sneak
* through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
* outputs. We also need to check that the higher clock still fits
* within limits.
*/
if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
hdmi_port_clock_valid(intel_hdmi, clock_12bpc, false) == MODE_OK &&
hdmi_12bpc_possible(pipe_config)) {
DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
desired_bpp = 12*3;
/* Need to adjust the port link by 1.5x for 12bpc. */
pipe_config->port_clock = clock_12bpc;
} else {
DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
desired_bpp = 8*3;
pipe_config->port_clock = clock_8bpc;
}
if (!pipe_config->bw_constrained) {
DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
pipe_config->pipe_bpp = desired_bpp;
}
if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock,
false) != MODE_OK) {
DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
return false;
}
/* Set user selected PAR to incoming mode's member */
adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
return true;
}
static void
intel_hdmi_unset_edid(struct drm_connector *connector)
{
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
intel_hdmi->has_hdmi_sink = false;
intel_hdmi->has_audio = false;
intel_hdmi->rgb_quant_range_selectable = false;
kfree(to_intel_connector(connector)->detect_edid);
to_intel_connector(connector)->detect_edid = NULL;
}
static bool
intel_hdmi_set_edid(struct drm_connector *connector, bool force)
{
struct drm_i915_private *dev_priv = to_i915(connector->dev);
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
struct intel_encoder *intel_encoder =
&hdmi_to_dig_port(intel_hdmi)->base;
enum intel_display_power_domain power_domain;
struct edid *edid = NULL;
bool connected = false;
power_domain = intel_display_port_power_domain(intel_encoder);
intel_display_power_get(dev_priv, power_domain);
if (force)
edid = drm_get_edid(connector,
intel_gmbus_get_adapter(dev_priv,
intel_hdmi->ddc_bus));
intel_display_power_put(dev_priv, power_domain);
to_intel_connector(connector)->detect_edid = edid;
if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
intel_hdmi->rgb_quant_range_selectable =
drm_rgb_quant_range_selectable(edid);
intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
intel_hdmi->has_audio =
intel_hdmi->force_audio == HDMI_AUDIO_ON;
if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
intel_hdmi->has_hdmi_sink =
drm_detect_hdmi_monitor(edid);
connected = true;
}
return connected;
}
static enum drm_connector_status
intel_hdmi_detect(struct drm_connector *connector, bool force)
{
enum drm_connector_status status;
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
struct drm_i915_private *dev_priv = to_i915(connector->dev);
bool live_status = false;
unsigned int retry = 3;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
while (!live_status && --retry) {
live_status = intel_digital_port_connected(dev_priv,
hdmi_to_dig_port(intel_hdmi));
mdelay(10);
}
if (!live_status)
DRM_DEBUG_KMS("Live status not up!");
intel_hdmi_unset_edid(connector);
if (intel_hdmi_set_edid(connector, live_status)) {
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
status = connector_status_connected;
} else
status = connector_status_disconnected;
return status;
}
static void
intel_hdmi_force(struct drm_connector *connector)
{
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
intel_hdmi_unset_edid(connector);
if (connector->status != connector_status_connected)
return;
intel_hdmi_set_edid(connector, true);
hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
}
static int intel_hdmi_get_modes(struct drm_connector *connector)
{
struct edid *edid;
edid = to_intel_connector(connector)->detect_edid;
if (edid == NULL)
return 0;
return intel_connector_update_modes(connector, edid);
}
static bool
intel_hdmi_detect_audio(struct drm_connector *connector)
{
bool has_audio = false;
struct edid *edid;
edid = to_intel_connector(connector)->detect_edid;
if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
has_audio = drm_detect_monitor_audio(edid);
return has_audio;
}
static int
intel_hdmi_set_property(struct drm_connector *connector,
struct drm_property *property,
uint64_t val)
{
struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
struct intel_digital_port *intel_dig_port =
hdmi_to_dig_port(intel_hdmi);
struct drm_i915_private *dev_priv = connector->dev->dev_private;
int ret;
ret = drm_object_property_set_value(&connector->base, property, val);
if (ret)
return ret;
if (property == dev_priv->force_audio_property) {
enum hdmi_force_audio i = val;
bool has_audio;
if (i == intel_hdmi->force_audio)
return 0;
intel_hdmi->force_audio = i;
if (i == HDMI_AUDIO_AUTO)
has_audio = intel_hdmi_detect_audio(connector);
else
has_audio = (i == HDMI_AUDIO_ON);
if (i == HDMI_AUDIO_OFF_DVI)
intel_hdmi->has_hdmi_sink = 0;
intel_hdmi->has_audio = has_audio;
goto done;
}
if (property == dev_priv->broadcast_rgb_property) {
bool old_auto = intel_hdmi->color_range_auto;
bool old_range = intel_hdmi->limited_color_range;
switch (val) {
case INTEL_BROADCAST_RGB_AUTO:
intel_hdmi->color_range_auto = true;
break;
case INTEL_BROADCAST_RGB_FULL:
intel_hdmi->color_range_auto = false;
intel_hdmi->limited_color_range = false;
break;
case INTEL_BROADCAST_RGB_LIMITED:
intel_hdmi->color_range_auto = false;
intel_hdmi->limited_color_range = true;
break;
default:
return -EINVAL;
}
if (old_auto == intel_hdmi->color_range_auto &&
old_range == intel_hdmi->limited_color_range)
return 0;
goto done;
}
if (property == connector->dev->mode_config.aspect_ratio_property) {
switch (val) {
case DRM_MODE_PICTURE_ASPECT_NONE:
intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
break;
case DRM_MODE_PICTURE_ASPECT_4_3:
intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
break;
case DRM_MODE_PICTURE_ASPECT_16_9:
intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
break;
default:
return -EINVAL;
}
goto done;
}
return -EINVAL;
done:
if (intel_dig_port->base.base.crtc)
intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
return 0;
}
static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
{
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
intel_hdmi_prepare(encoder);
intel_hdmi->set_infoframes(&encoder->base,
intel_crtc->config->has_hdmi_sink,
adjusted_mode);
}
static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct intel_hdmi *intel_hdmi = &dport->hdmi;
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(encoder->base.crtc);
const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
enum dpio_channel port = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
u32 val;
/* Enable clock channels for this port */
mutex_lock(&dev_priv->sb_lock);
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
val = 0;
if (pipe)
val |= (1<<21);
else
val &= ~(1<<21);
val |= 0x001000c4;
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
/* HDMI 1.0V-2dB */
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
/* Program lane clock */
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
mutex_unlock(&dev_priv->sb_lock);
intel_hdmi->set_infoframes(&encoder->base,
intel_crtc->config->has_hdmi_sink,
adjusted_mode);
g4x_enable_hdmi(encoder);
vlv_wait_port_ready(dev_priv, dport, 0x0);
}
static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(encoder->base.crtc);
enum dpio_channel port = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
intel_hdmi_prepare(encoder);
/* Program Tx lane resets to default */
mutex_lock(&dev_priv->sb_lock);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
DPIO_PCS_TX_LANE2_RESET |
DPIO_PCS_TX_LANE1_RESET);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
(1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
DPIO_PCS_CLK_SOFT_RESET);
/* Fix up inter-pair skew failure */
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
mutex_unlock(&dev_priv->sb_lock);
}
static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
bool reset)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
enum pipe pipe = crtc->pipe;
uint32_t val;
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
if (reset)
val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
else
val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
if (crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
if (reset)
val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
else
val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
}
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
val |= CHV_PCS_REQ_SOFTRESET_EN;
if (reset)
val &= ~DPIO_PCS_CLK_SOFT_RESET;
else
val |= DPIO_PCS_CLK_SOFT_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
if (crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
val |= CHV_PCS_REQ_SOFTRESET_EN;
if (reset)
val &= ~DPIO_PCS_CLK_SOFT_RESET;
else
val |= DPIO_PCS_CLK_SOFT_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
}
}
static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(encoder->base.crtc);
enum dpio_channel ch = vlv_dport_to_channel(dport);
enum pipe pipe = intel_crtc->pipe;
u32 val;
intel_hdmi_prepare(encoder);
/*
* Must trick the second common lane into life.
* Otherwise we can't even access the PLL.
*/
if (ch == DPIO_CH0 && pipe == PIPE_B)
dport->release_cl2_override =
!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
chv_phy_powergate_lanes(encoder, true, 0x0);
mutex_lock(&dev_priv->sb_lock);
/* Assert data lane reset */
chv_data_lane_soft_reset(encoder, true);
/* program left/right clock distribution */
if (pipe != PIPE_B) {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
if (ch == DPIO_CH0)
val |= CHV_BUFLEFTENA1_FORCE;
if (ch == DPIO_CH1)
val |= CHV_BUFRIGHTENA1_FORCE;
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
} else {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
if (ch == DPIO_CH0)
val |= CHV_BUFLEFTENA2_FORCE;
if (ch == DPIO_CH1)
val |= CHV_BUFRIGHTENA2_FORCE;
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
}
/* program clock channel usage */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
if (pipe != PIPE_B)
val &= ~CHV_PCS_USEDCLKCHANNEL;
else
val |= CHV_PCS_USEDCLKCHANNEL;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
if (pipe != PIPE_B)
val &= ~CHV_PCS_USEDCLKCHANNEL;
else
val |= CHV_PCS_USEDCLKCHANNEL;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
/*
* This a a bit weird since generally CL
* matches the pipe, but here we need to
* pick the CL based on the port.
*/
val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
if (pipe != PIPE_B)
val &= ~CHV_CMN_USEDCLKCHANNEL;
else
val |= CHV_CMN_USEDCLKCHANNEL;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
mutex_unlock(&dev_priv->sb_lock);
}
static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
u32 val;
mutex_lock(&dev_priv->sb_lock);
/* disable left/right clock distribution */
if (pipe != PIPE_B) {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
} else {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
}
mutex_unlock(&dev_priv->sb_lock);
/*
* Leave the power down bit cleared for at least one
* lane so that chv_powergate_phy_ch() will power
* on something when the channel is otherwise unused.
* When the port is off and the override is removed
* the lanes power down anyway, so otherwise it doesn't
* really matter what the state of power down bits is
* after this.
*/
chv_phy_powergate_lanes(encoder, false, 0x0);
}
static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(encoder->base.crtc);
enum dpio_channel port = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
/* Reset lanes to avoid HDMI flicker (VLV w/a) */
mutex_lock(&dev_priv->sb_lock);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
mutex_unlock(&dev_priv->sb_lock);
}
static void chv_hdmi_post_disable(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_lock(&dev_priv->sb_lock);
/* Assert data lane reset */
chv_data_lane_soft_reset(encoder, true);
mutex_unlock(&dev_priv->sb_lock);
}
static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct intel_hdmi *intel_hdmi = &dport->hdmi;
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(encoder->base.crtc);
const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
enum dpio_channel ch = vlv_dport_to_channel(dport);
int pipe = intel_crtc->pipe;
int data, i, stagger;
u32 val;
mutex_lock(&dev_priv->sb_lock);
/* allow hardware to manage TX FIFO reset source */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
/* Program Tx latency optimal setting */
for (i = 0; i < 4; i++) {
/* Set the upar bit */
data = (i == 1) ? 0x0 : 0x1;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
data << DPIO_UPAR_SHIFT);
}
/* Data lane stagger programming */
if (intel_crtc->config->port_clock > 270000)
stagger = 0x18;
else if (intel_crtc->config->port_clock > 135000)
stagger = 0xd;
else if (intel_crtc->config->port_clock > 67500)
stagger = 0x7;
else if (intel_crtc->config->port_clock > 33750)
stagger = 0x4;
else
stagger = 0x2;
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
val |= DPIO_TX2_STAGGER_MASK(0x1f);
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
val |= DPIO_TX2_STAGGER_MASK(0x1f);
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
DPIO_LANESTAGGER_STRAP(stagger) |
DPIO_LANESTAGGER_STRAP_OVRD |
DPIO_TX1_STAGGER_MASK(0x1f) |
DPIO_TX1_STAGGER_MULT(6) |
DPIO_TX2_STAGGER_MULT(0));
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
DPIO_LANESTAGGER_STRAP(stagger) |
DPIO_LANESTAGGER_STRAP_OVRD |
DPIO_TX1_STAGGER_MASK(0x1f) |
DPIO_TX1_STAGGER_MULT(7) |
DPIO_TX2_STAGGER_MULT(5));
/* Deassert data lane reset */
chv_data_lane_soft_reset(encoder, false);
/* Clear calc init */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
/* FIXME: Program the support xxx V-dB */
/* Use 800mV-0dB */
for (i = 0; i < 4; i++) {
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
val &= ~DPIO_SWING_DEEMPH9P5_MASK;
val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
}
for (i = 0; i < 4; i++) {
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
val &= ~DPIO_SWING_MARGIN000_MASK;
val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
/*
* Supposedly this value shouldn't matter when unique transition
* scale is disabled, but in fact it does matter. Let's just
* always program the same value and hope it's OK.
*/
val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
}
/*
* The document said it needs to set bit 27 for ch0 and bit 26
* for ch1. Might be a typo in the doc.
* For now, for this unique transition scale selection, set bit
* 27 for ch0 and ch1.
*/
for (i = 0; i < 4; i++) {
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
}
/* Start swing calculation */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
mutex_unlock(&dev_priv->sb_lock);
intel_hdmi->set_infoframes(&encoder->base,
intel_crtc->config->has_hdmi_sink,
adjusted_mode);
g4x_enable_hdmi(encoder);
vlv_wait_port_ready(dev_priv, dport, 0x0);
/* Second common lane will stay alive on its own now */
if (dport->release_cl2_override) {
chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
dport->release_cl2_override = false;
}
}
static void intel_hdmi_destroy(struct drm_connector *connector)
{
kfree(to_intel_connector(connector)->detect_edid);
drm_connector_cleanup(connector);
kfree(connector);
}
static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
.dpms = drm_atomic_helper_connector_dpms,
.detect = intel_hdmi_detect,
.force = intel_hdmi_force,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = intel_hdmi_set_property,
.atomic_get_property = intel_connector_atomic_get_property,
.destroy = intel_hdmi_destroy,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
};
static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
.get_modes = intel_hdmi_get_modes,
.mode_valid = intel_hdmi_mode_valid,
.best_encoder = intel_best_encoder,
};
static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
.destroy = intel_encoder_destroy,
};
static void
intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
{
intel_attach_force_audio_property(connector);
intel_attach_broadcast_rgb_property(connector);
intel_hdmi->color_range_auto = true;
intel_attach_aspect_ratio_property(connector);
intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
}
void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
struct intel_connector *intel_connector)
{
struct drm_connector *connector = &intel_connector->base;
struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_dig_port->port;
uint8_t alternate_ddc_pin;
drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA);
drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
connector->interlace_allowed = 1;
connector->doublescan_allowed = 0;
connector->stereo_allowed = 1;
switch (port) {
case PORT_B:
if (IS_BROXTON(dev_priv))
intel_hdmi->ddc_bus = GMBUS_PIN_1_BXT;
else
intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
/*
* On BXT A0/A1, sw needs to activate DDIA HPD logic and
* interrupts to check the external panel connection.
*/
if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
intel_encoder->hpd_pin = HPD_PORT_A;
else
intel_encoder->hpd_pin = HPD_PORT_B;
break;
case PORT_C:
if (IS_BROXTON(dev_priv))
intel_hdmi->ddc_bus = GMBUS_PIN_2_BXT;
else
intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
intel_encoder->hpd_pin = HPD_PORT_C;
break;
case PORT_D:
if (WARN_ON(IS_BROXTON(dev_priv)))
intel_hdmi->ddc_bus = GMBUS_PIN_DISABLED;
else if (IS_CHERRYVIEW(dev_priv))
intel_hdmi->ddc_bus = GMBUS_PIN_DPD_CHV;
else
intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
intel_encoder->hpd_pin = HPD_PORT_D;
break;
case PORT_E:
/* On SKL PORT E doesn't have seperate GMBUS pin
* We rely on VBT to set a proper alternate GMBUS pin. */
alternate_ddc_pin =
dev_priv->vbt.ddi_port_info[PORT_E].alternate_ddc_pin;
switch (alternate_ddc_pin) {
case DDC_PIN_B:
intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
break;
case DDC_PIN_C:
intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
break;
case DDC_PIN_D:
intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
break;
default:
MISSING_CASE(alternate_ddc_pin);
}
intel_encoder->hpd_pin = HPD_PORT_E;
break;
case PORT_A:
intel_encoder->hpd_pin = HPD_PORT_A;
/* Internal port only for eDP. */
default:
BUG();
}
if (IS_VALLEYVIEW(dev)) {
intel_hdmi->write_infoframe = vlv_write_infoframe;
intel_hdmi->set_infoframes = vlv_set_infoframes;
intel_hdmi->infoframe_enabled = vlv_infoframe_enabled;
} else if (IS_G4X(dev)) {
intel_hdmi->write_infoframe = g4x_write_infoframe;
intel_hdmi->set_infoframes = g4x_set_infoframes;
intel_hdmi->infoframe_enabled = g4x_infoframe_enabled;
} else if (HAS_DDI(dev)) {
intel_hdmi->write_infoframe = hsw_write_infoframe;
intel_hdmi->set_infoframes = hsw_set_infoframes;
intel_hdmi->infoframe_enabled = hsw_infoframe_enabled;
} else if (HAS_PCH_IBX(dev)) {
intel_hdmi->write_infoframe = ibx_write_infoframe;
intel_hdmi->set_infoframes = ibx_set_infoframes;
intel_hdmi->infoframe_enabled = ibx_infoframe_enabled;
} else {
intel_hdmi->write_infoframe = cpt_write_infoframe;
intel_hdmi->set_infoframes = cpt_set_infoframes;
intel_hdmi->infoframe_enabled = cpt_infoframe_enabled;
}
if (HAS_DDI(dev))
intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
else
intel_connector->get_hw_state = intel_connector_get_hw_state;
intel_connector->unregister = intel_connector_unregister;
intel_hdmi_add_properties(intel_hdmi, connector);
intel_connector_attach_encoder(intel_connector, intel_encoder);
drm_connector_register(connector);
intel_hdmi->attached_connector = intel_connector;
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
* 0xd. Failure to do so will result in spurious interrupts being
* generated on the port when a cable is not attached.
*/
if (IS_G4X(dev) && !IS_GM45(dev)) {
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
}
}
void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
{
struct intel_digital_port *intel_dig_port;
struct intel_encoder *intel_encoder;
struct intel_connector *intel_connector;
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
if (!intel_dig_port)
return;
intel_connector = intel_connector_alloc();
if (!intel_connector) {
kfree(intel_dig_port);
return;
}
intel_encoder = &intel_dig_port->base;
drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
DRM_MODE_ENCODER_TMDS);
intel_encoder->compute_config = intel_hdmi_compute_config;
if (HAS_PCH_SPLIT(dev)) {
intel_encoder->disable = pch_disable_hdmi;
intel_encoder->post_disable = pch_post_disable_hdmi;
} else {
intel_encoder->disable = g4x_disable_hdmi;
}
intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
intel_encoder->get_config = intel_hdmi_get_config;
if (IS_CHERRYVIEW(dev)) {
intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
intel_encoder->pre_enable = chv_hdmi_pre_enable;
intel_encoder->enable = vlv_enable_hdmi;
intel_encoder->post_disable = chv_hdmi_post_disable;
intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
} else if (IS_VALLEYVIEW(dev)) {
intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
intel_encoder->pre_enable = vlv_hdmi_pre_enable;
intel_encoder->enable = vlv_enable_hdmi;
intel_encoder->post_disable = vlv_hdmi_post_disable;
} else {
intel_encoder->pre_enable = intel_hdmi_pre_enable;
if (HAS_PCH_CPT(dev))
intel_encoder->enable = cpt_enable_hdmi;
else if (HAS_PCH_IBX(dev))
intel_encoder->enable = ibx_enable_hdmi;
else
intel_encoder->enable = g4x_enable_hdmi;
}
intel_encoder->type = INTEL_OUTPUT_HDMI;
if (IS_CHERRYVIEW(dev)) {
if (port == PORT_D)
intel_encoder->crtc_mask = 1 << 2;
else
intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
} else {
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
}
intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
/*
* BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
* to work on real hardware. And since g4x can send infoframes to
* only one port anyway, nothing is lost by allowing it.
*/
if (IS_G4X(dev))
intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
intel_dig_port->port = port;
intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
intel_dig_port->dp.output_reg = 0;
intel_hdmi_init_connector(intel_dig_port, intel_connector);
}