d3a56931f9
When registering a umem area that is sufficiently large (>1G on an x86), kmalloc cannot be used to allocate one of the internal data structures, as the size requested gets too large. Use kvmalloc instead that falls back on vmalloc if the allocation is too large for kmalloc. Also add accounting for this structure as it is triggered by a user space action (the XDP_UMEM_REG setsockopt) and it is by far the largest structure of kernel allocated memory in xsk. Reported-by: Ryan Goodfellow <rgoodfel@isi.edu> Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com> Link: https://lore.kernel.org/bpf/1578995365-7050-1-git-send-email-magnus.karlsson@intel.com
462 lines
9.4 KiB
C
462 lines
9.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* XDP user-space packet buffer
|
|
* Copyright(c) 2018 Intel Corporation.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include "xdp_umem.h"
|
|
#include "xsk_queue.h"
|
|
|
|
#define XDP_UMEM_MIN_CHUNK_SIZE 2048
|
|
|
|
static DEFINE_IDA(umem_ida);
|
|
|
|
void xdp_add_sk_umem(struct xdp_umem *umem, struct xdp_sock *xs)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!xs->tx)
|
|
return;
|
|
|
|
spin_lock_irqsave(&umem->xsk_list_lock, flags);
|
|
list_add_rcu(&xs->list, &umem->xsk_list);
|
|
spin_unlock_irqrestore(&umem->xsk_list_lock, flags);
|
|
}
|
|
|
|
void xdp_del_sk_umem(struct xdp_umem *umem, struct xdp_sock *xs)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!xs->tx)
|
|
return;
|
|
|
|
spin_lock_irqsave(&umem->xsk_list_lock, flags);
|
|
list_del_rcu(&xs->list);
|
|
spin_unlock_irqrestore(&umem->xsk_list_lock, flags);
|
|
}
|
|
|
|
/* The umem is stored both in the _rx struct and the _tx struct as we do
|
|
* not know if the device has more tx queues than rx, or the opposite.
|
|
* This might also change during run time.
|
|
*/
|
|
static int xdp_reg_umem_at_qid(struct net_device *dev, struct xdp_umem *umem,
|
|
u16 queue_id)
|
|
{
|
|
if (queue_id >= max_t(unsigned int,
|
|
dev->real_num_rx_queues,
|
|
dev->real_num_tx_queues))
|
|
return -EINVAL;
|
|
|
|
if (queue_id < dev->real_num_rx_queues)
|
|
dev->_rx[queue_id].umem = umem;
|
|
if (queue_id < dev->real_num_tx_queues)
|
|
dev->_tx[queue_id].umem = umem;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct xdp_umem *xdp_get_umem_from_qid(struct net_device *dev,
|
|
u16 queue_id)
|
|
{
|
|
if (queue_id < dev->real_num_rx_queues)
|
|
return dev->_rx[queue_id].umem;
|
|
if (queue_id < dev->real_num_tx_queues)
|
|
return dev->_tx[queue_id].umem;
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(xdp_get_umem_from_qid);
|
|
|
|
static void xdp_clear_umem_at_qid(struct net_device *dev, u16 queue_id)
|
|
{
|
|
if (queue_id < dev->real_num_rx_queues)
|
|
dev->_rx[queue_id].umem = NULL;
|
|
if (queue_id < dev->real_num_tx_queues)
|
|
dev->_tx[queue_id].umem = NULL;
|
|
}
|
|
|
|
int xdp_umem_assign_dev(struct xdp_umem *umem, struct net_device *dev,
|
|
u16 queue_id, u16 flags)
|
|
{
|
|
bool force_zc, force_copy;
|
|
struct netdev_bpf bpf;
|
|
int err = 0;
|
|
|
|
ASSERT_RTNL();
|
|
|
|
force_zc = flags & XDP_ZEROCOPY;
|
|
force_copy = flags & XDP_COPY;
|
|
|
|
if (force_zc && force_copy)
|
|
return -EINVAL;
|
|
|
|
if (xdp_get_umem_from_qid(dev, queue_id))
|
|
return -EBUSY;
|
|
|
|
err = xdp_reg_umem_at_qid(dev, umem, queue_id);
|
|
if (err)
|
|
return err;
|
|
|
|
umem->dev = dev;
|
|
umem->queue_id = queue_id;
|
|
|
|
if (flags & XDP_USE_NEED_WAKEUP) {
|
|
umem->flags |= XDP_UMEM_USES_NEED_WAKEUP;
|
|
/* Tx needs to be explicitly woken up the first time.
|
|
* Also for supporting drivers that do not implement this
|
|
* feature. They will always have to call sendto().
|
|
*/
|
|
xsk_set_tx_need_wakeup(umem);
|
|
}
|
|
|
|
dev_hold(dev);
|
|
|
|
if (force_copy)
|
|
/* For copy-mode, we are done. */
|
|
return 0;
|
|
|
|
if (!dev->netdev_ops->ndo_bpf || !dev->netdev_ops->ndo_xsk_wakeup) {
|
|
err = -EOPNOTSUPP;
|
|
goto err_unreg_umem;
|
|
}
|
|
|
|
bpf.command = XDP_SETUP_XSK_UMEM;
|
|
bpf.xsk.umem = umem;
|
|
bpf.xsk.queue_id = queue_id;
|
|
|
|
err = dev->netdev_ops->ndo_bpf(dev, &bpf);
|
|
if (err)
|
|
goto err_unreg_umem;
|
|
|
|
umem->zc = true;
|
|
return 0;
|
|
|
|
err_unreg_umem:
|
|
if (!force_zc)
|
|
err = 0; /* fallback to copy mode */
|
|
if (err)
|
|
xdp_clear_umem_at_qid(dev, queue_id);
|
|
return err;
|
|
}
|
|
|
|
void xdp_umem_clear_dev(struct xdp_umem *umem)
|
|
{
|
|
struct netdev_bpf bpf;
|
|
int err;
|
|
|
|
ASSERT_RTNL();
|
|
|
|
if (!umem->dev)
|
|
return;
|
|
|
|
if (umem->zc) {
|
|
bpf.command = XDP_SETUP_XSK_UMEM;
|
|
bpf.xsk.umem = NULL;
|
|
bpf.xsk.queue_id = umem->queue_id;
|
|
|
|
err = umem->dev->netdev_ops->ndo_bpf(umem->dev, &bpf);
|
|
|
|
if (err)
|
|
WARN(1, "failed to disable umem!\n");
|
|
}
|
|
|
|
xdp_clear_umem_at_qid(umem->dev, umem->queue_id);
|
|
|
|
dev_put(umem->dev);
|
|
umem->dev = NULL;
|
|
umem->zc = false;
|
|
}
|
|
|
|
static void xdp_umem_unmap_pages(struct xdp_umem *umem)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < umem->npgs; i++)
|
|
if (PageHighMem(umem->pgs[i]))
|
|
vunmap(umem->pages[i].addr);
|
|
}
|
|
|
|
static int xdp_umem_map_pages(struct xdp_umem *umem)
|
|
{
|
|
unsigned int i;
|
|
void *addr;
|
|
|
|
for (i = 0; i < umem->npgs; i++) {
|
|
if (PageHighMem(umem->pgs[i]))
|
|
addr = vmap(&umem->pgs[i], 1, VM_MAP, PAGE_KERNEL);
|
|
else
|
|
addr = page_address(umem->pgs[i]);
|
|
|
|
if (!addr) {
|
|
xdp_umem_unmap_pages(umem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
umem->pages[i].addr = addr;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void xdp_umem_unpin_pages(struct xdp_umem *umem)
|
|
{
|
|
put_user_pages_dirty_lock(umem->pgs, umem->npgs, true);
|
|
|
|
kfree(umem->pgs);
|
|
umem->pgs = NULL;
|
|
}
|
|
|
|
static void xdp_umem_unaccount_pages(struct xdp_umem *umem)
|
|
{
|
|
if (umem->user) {
|
|
atomic_long_sub(umem->npgs, &umem->user->locked_vm);
|
|
free_uid(umem->user);
|
|
}
|
|
}
|
|
|
|
static void xdp_umem_release(struct xdp_umem *umem)
|
|
{
|
|
rtnl_lock();
|
|
xdp_umem_clear_dev(umem);
|
|
rtnl_unlock();
|
|
|
|
ida_simple_remove(&umem_ida, umem->id);
|
|
|
|
if (umem->fq) {
|
|
xskq_destroy(umem->fq);
|
|
umem->fq = NULL;
|
|
}
|
|
|
|
if (umem->cq) {
|
|
xskq_destroy(umem->cq);
|
|
umem->cq = NULL;
|
|
}
|
|
|
|
xsk_reuseq_destroy(umem);
|
|
|
|
xdp_umem_unmap_pages(umem);
|
|
xdp_umem_unpin_pages(umem);
|
|
|
|
kvfree(umem->pages);
|
|
umem->pages = NULL;
|
|
|
|
xdp_umem_unaccount_pages(umem);
|
|
kfree(umem);
|
|
}
|
|
|
|
static void xdp_umem_release_deferred(struct work_struct *work)
|
|
{
|
|
struct xdp_umem *umem = container_of(work, struct xdp_umem, work);
|
|
|
|
xdp_umem_release(umem);
|
|
}
|
|
|
|
void xdp_get_umem(struct xdp_umem *umem)
|
|
{
|
|
refcount_inc(&umem->users);
|
|
}
|
|
|
|
void xdp_put_umem(struct xdp_umem *umem)
|
|
{
|
|
if (!umem)
|
|
return;
|
|
|
|
if (refcount_dec_and_test(&umem->users)) {
|
|
INIT_WORK(&umem->work, xdp_umem_release_deferred);
|
|
schedule_work(&umem->work);
|
|
}
|
|
}
|
|
|
|
static int xdp_umem_pin_pages(struct xdp_umem *umem)
|
|
{
|
|
unsigned int gup_flags = FOLL_WRITE;
|
|
long npgs;
|
|
int err;
|
|
|
|
umem->pgs = kcalloc(umem->npgs, sizeof(*umem->pgs),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!umem->pgs)
|
|
return -ENOMEM;
|
|
|
|
down_read(¤t->mm->mmap_sem);
|
|
npgs = get_user_pages(umem->address, umem->npgs,
|
|
gup_flags | FOLL_LONGTERM, &umem->pgs[0], NULL);
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
if (npgs != umem->npgs) {
|
|
if (npgs >= 0) {
|
|
umem->npgs = npgs;
|
|
err = -ENOMEM;
|
|
goto out_pin;
|
|
}
|
|
err = npgs;
|
|
goto out_pgs;
|
|
}
|
|
return 0;
|
|
|
|
out_pin:
|
|
xdp_umem_unpin_pages(umem);
|
|
out_pgs:
|
|
kfree(umem->pgs);
|
|
umem->pgs = NULL;
|
|
return err;
|
|
}
|
|
|
|
static int xdp_umem_account_pages(struct xdp_umem *umem)
|
|
{
|
|
unsigned long lock_limit, new_npgs, old_npgs;
|
|
|
|
if (capable(CAP_IPC_LOCK))
|
|
return 0;
|
|
|
|
lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
|
|
umem->user = get_uid(current_user());
|
|
|
|
do {
|
|
old_npgs = atomic_long_read(&umem->user->locked_vm);
|
|
new_npgs = old_npgs + umem->npgs;
|
|
if (new_npgs > lock_limit) {
|
|
free_uid(umem->user);
|
|
umem->user = NULL;
|
|
return -ENOBUFS;
|
|
}
|
|
} while (atomic_long_cmpxchg(&umem->user->locked_vm, old_npgs,
|
|
new_npgs) != old_npgs);
|
|
return 0;
|
|
}
|
|
|
|
static int xdp_umem_reg(struct xdp_umem *umem, struct xdp_umem_reg *mr)
|
|
{
|
|
bool unaligned_chunks = mr->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG;
|
|
u32 chunk_size = mr->chunk_size, headroom = mr->headroom;
|
|
unsigned int chunks, chunks_per_page;
|
|
u64 addr = mr->addr, size = mr->len;
|
|
int size_chk, err;
|
|
|
|
if (chunk_size < XDP_UMEM_MIN_CHUNK_SIZE || chunk_size > PAGE_SIZE) {
|
|
/* Strictly speaking we could support this, if:
|
|
* - huge pages, or*
|
|
* - using an IOMMU, or
|
|
* - making sure the memory area is consecutive
|
|
* but for now, we simply say "computer says no".
|
|
*/
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (mr->flags & ~(XDP_UMEM_UNALIGNED_CHUNK_FLAG |
|
|
XDP_UMEM_USES_NEED_WAKEUP))
|
|
return -EINVAL;
|
|
|
|
if (!unaligned_chunks && !is_power_of_2(chunk_size))
|
|
return -EINVAL;
|
|
|
|
if (!PAGE_ALIGNED(addr)) {
|
|
/* Memory area has to be page size aligned. For
|
|
* simplicity, this might change.
|
|
*/
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((addr + size) < addr)
|
|
return -EINVAL;
|
|
|
|
chunks = (unsigned int)div_u64(size, chunk_size);
|
|
if (chunks == 0)
|
|
return -EINVAL;
|
|
|
|
if (!unaligned_chunks) {
|
|
chunks_per_page = PAGE_SIZE / chunk_size;
|
|
if (chunks < chunks_per_page || chunks % chunks_per_page)
|
|
return -EINVAL;
|
|
}
|
|
|
|
size_chk = chunk_size - headroom - XDP_PACKET_HEADROOM;
|
|
if (size_chk < 0)
|
|
return -EINVAL;
|
|
|
|
umem->address = (unsigned long)addr;
|
|
umem->chunk_mask = unaligned_chunks ? XSK_UNALIGNED_BUF_ADDR_MASK
|
|
: ~((u64)chunk_size - 1);
|
|
umem->size = size;
|
|
umem->headroom = headroom;
|
|
umem->chunk_size_nohr = chunk_size - headroom;
|
|
umem->npgs = size / PAGE_SIZE;
|
|
umem->pgs = NULL;
|
|
umem->user = NULL;
|
|
umem->flags = mr->flags;
|
|
INIT_LIST_HEAD(&umem->xsk_list);
|
|
spin_lock_init(&umem->xsk_list_lock);
|
|
|
|
refcount_set(&umem->users, 1);
|
|
|
|
err = xdp_umem_account_pages(umem);
|
|
if (err)
|
|
return err;
|
|
|
|
err = xdp_umem_pin_pages(umem);
|
|
if (err)
|
|
goto out_account;
|
|
|
|
umem->pages = kvcalloc(umem->npgs, sizeof(*umem->pages),
|
|
GFP_KERNEL_ACCOUNT);
|
|
if (!umem->pages) {
|
|
err = -ENOMEM;
|
|
goto out_pin;
|
|
}
|
|
|
|
err = xdp_umem_map_pages(umem);
|
|
if (!err)
|
|
return 0;
|
|
|
|
kvfree(umem->pages);
|
|
|
|
out_pin:
|
|
xdp_umem_unpin_pages(umem);
|
|
out_account:
|
|
xdp_umem_unaccount_pages(umem);
|
|
return err;
|
|
}
|
|
|
|
struct xdp_umem *xdp_umem_create(struct xdp_umem_reg *mr)
|
|
{
|
|
struct xdp_umem *umem;
|
|
int err;
|
|
|
|
umem = kzalloc(sizeof(*umem), GFP_KERNEL);
|
|
if (!umem)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = ida_simple_get(&umem_ida, 0, 0, GFP_KERNEL);
|
|
if (err < 0) {
|
|
kfree(umem);
|
|
return ERR_PTR(err);
|
|
}
|
|
umem->id = err;
|
|
|
|
err = xdp_umem_reg(umem, mr);
|
|
if (err) {
|
|
ida_simple_remove(&umem_ida, umem->id);
|
|
kfree(umem);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
return umem;
|
|
}
|
|
|
|
bool xdp_umem_validate_queues(struct xdp_umem *umem)
|
|
{
|
|
return umem->fq && umem->cq;
|
|
}
|