93b90414c3
John reports that the recently merged commit1a8e1cef76
("arm64: use both ZONE_DMA and ZONE_DMA32") breaks the boot on his DB845C board: | Booting Linux on physical CPU 0x0000000000 [0x517f803c] | Linux version 5.4.0-mainline-10675-g957a03b9e38f | Machine model: Thundercomm Dragonboard 845c | [...] | Built 1 zonelists, mobility grouping on. Total pages: -188245 | Kernel command line: earlycon | firmware_class.path=/vendor/firmware/ androidboot.hardware=db845c | init=/init androidboot.boot_devices=soc/1d84000.ufshc | printk.devkmsg=on buildvariant=userdebug root=/dev/sda2 | androidboot.bootdevice=1d84000.ufshc androidboot.serialno=c4e1189c | androidboot.baseband=sda | msm_drm.dsi_display0=dsi_lt9611_1080_video_display: | androidboot.slot_suffix=_a skip_initramfs rootwait ro init=/init | | <hangs indefinitely here> This is because, when CONFIG_NUMA=n, zone_sizes_init() fails to handle memblocks that fall entirely within the ZONE_DMA region and erroneously ends up trying to add a negatively-sized region into the following ZONE_DMA32, which is later interpreted as a large unsigned region by the core MM code. Rework the non-NUMA implementation of zone_sizes_init() so that the start address of the memblock being processed is adjusted according to the end of the previous zone, which is then range-checked before updating the hole information of subsequent zones. Cc: Nicolas Saenz Julienne <nsaenzjulienne@suse.de> Cc: Christoph Hellwig <hch@lst.de> Cc: Bjorn Andersson <bjorn.andersson@linaro.org> Link: https://lore.kernel.org/lkml/CALAqxLVVcsmFrDKLRGRq7GewcW405yTOxG=KR3csVzQ6bXutkA@mail.gmail.com Fixes:1a8e1cef76
("arm64: use both ZONE_DMA and ZONE_DMA32") Reported-by: John Stultz <john.stultz@linaro.org> Tested-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
633 lines
17 KiB
C
633 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Based on arch/arm/mm/init.c
|
|
*
|
|
* Copyright (C) 1995-2005 Russell King
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/export.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dma-contiguous.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/crash_dump.h>
|
|
|
|
#include <asm/boot.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/kasan.h>
|
|
#include <asm/kernel-pgtable.h>
|
|
#include <asm/memory.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
#include <linux/sizes.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/alternative.h>
|
|
|
|
#define ARM64_ZONE_DMA_BITS 30
|
|
|
|
/*
|
|
* We need to be able to catch inadvertent references to memstart_addr
|
|
* that occur (potentially in generic code) before arm64_memblock_init()
|
|
* executes, which assigns it its actual value. So use a default value
|
|
* that cannot be mistaken for a real physical address.
|
|
*/
|
|
s64 memstart_addr __ro_after_init = -1;
|
|
EXPORT_SYMBOL(memstart_addr);
|
|
|
|
s64 physvirt_offset __ro_after_init;
|
|
EXPORT_SYMBOL(physvirt_offset);
|
|
|
|
struct page *vmemmap __ro_after_init;
|
|
EXPORT_SYMBOL(vmemmap);
|
|
|
|
/*
|
|
* We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of
|
|
* memory as some devices, namely the Raspberry Pi 4, have peripherals with
|
|
* this limited view of the memory. ZONE_DMA32 will cover the rest of the 32
|
|
* bit addressable memory area.
|
|
*/
|
|
phys_addr_t arm64_dma_phys_limit __ro_after_init;
|
|
static phys_addr_t arm64_dma32_phys_limit __ro_after_init;
|
|
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
/*
|
|
* reserve_crashkernel() - reserves memory for crash kernel
|
|
*
|
|
* This function reserves memory area given in "crashkernel=" kernel command
|
|
* line parameter. The memory reserved is used by dump capture kernel when
|
|
* primary kernel is crashing.
|
|
*/
|
|
static void __init reserve_crashkernel(void)
|
|
{
|
|
unsigned long long crash_base, crash_size;
|
|
int ret;
|
|
|
|
ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
|
|
&crash_size, &crash_base);
|
|
/* no crashkernel= or invalid value specified */
|
|
if (ret || !crash_size)
|
|
return;
|
|
|
|
crash_size = PAGE_ALIGN(crash_size);
|
|
|
|
if (crash_base == 0) {
|
|
/* Current arm64 boot protocol requires 2MB alignment */
|
|
crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit,
|
|
crash_size, SZ_2M);
|
|
if (crash_base == 0) {
|
|
pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
|
|
crash_size);
|
|
return;
|
|
}
|
|
} else {
|
|
/* User specifies base address explicitly. */
|
|
if (!memblock_is_region_memory(crash_base, crash_size)) {
|
|
pr_warn("cannot reserve crashkernel: region is not memory\n");
|
|
return;
|
|
}
|
|
|
|
if (memblock_is_region_reserved(crash_base, crash_size)) {
|
|
pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
|
|
return;
|
|
}
|
|
|
|
if (!IS_ALIGNED(crash_base, SZ_2M)) {
|
|
pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
|
|
return;
|
|
}
|
|
}
|
|
memblock_reserve(crash_base, crash_size);
|
|
|
|
pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
|
|
crash_base, crash_base + crash_size, crash_size >> 20);
|
|
|
|
crashk_res.start = crash_base;
|
|
crashk_res.end = crash_base + crash_size - 1;
|
|
}
|
|
#else
|
|
static void __init reserve_crashkernel(void)
|
|
{
|
|
}
|
|
#endif /* CONFIG_KEXEC_CORE */
|
|
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
|
|
const char *uname, int depth, void *data)
|
|
{
|
|
const __be32 *reg;
|
|
int len;
|
|
|
|
if (depth != 1 || strcmp(uname, "chosen") != 0)
|
|
return 0;
|
|
|
|
reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
|
|
if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
|
|
return 1;
|
|
|
|
elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®);
|
|
elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* reserve_elfcorehdr() - reserves memory for elf core header
|
|
*
|
|
* This function reserves the memory occupied by an elf core header
|
|
* described in the device tree. This region contains all the
|
|
* information about primary kernel's core image and is used by a dump
|
|
* capture kernel to access the system memory on primary kernel.
|
|
*/
|
|
static void __init reserve_elfcorehdr(void)
|
|
{
|
|
of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
|
|
|
|
if (!elfcorehdr_size)
|
|
return;
|
|
|
|
if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
|
|
pr_warn("elfcorehdr is overlapped\n");
|
|
return;
|
|
}
|
|
|
|
memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
|
|
|
|
pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
|
|
elfcorehdr_size >> 10, elfcorehdr_addr);
|
|
}
|
|
#else
|
|
static void __init reserve_elfcorehdr(void)
|
|
{
|
|
}
|
|
#endif /* CONFIG_CRASH_DUMP */
|
|
|
|
/*
|
|
* Return the maximum physical address for a zone with a given address size
|
|
* limit. It currently assumes that for memory starting above 4G, 32-bit
|
|
* devices will use a DMA offset.
|
|
*/
|
|
static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
|
|
{
|
|
phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits);
|
|
return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM());
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
static void __init zone_sizes_init(unsigned long min, unsigned long max)
|
|
{
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
|
|
#endif
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit);
|
|
#endif
|
|
max_zone_pfns[ZONE_NORMAL] = max;
|
|
|
|
free_area_init_nodes(max_zone_pfns);
|
|
}
|
|
|
|
#else
|
|
|
|
static void __init zone_sizes_init(unsigned long min, unsigned long max)
|
|
{
|
|
struct memblock_region *reg;
|
|
unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
|
|
unsigned long __maybe_unused max_dma, max_dma32;
|
|
|
|
memset(zone_size, 0, sizeof(zone_size));
|
|
|
|
max_dma = max_dma32 = min;
|
|
#ifdef CONFIG_ZONE_DMA
|
|
max_dma = max_dma32 = PFN_DOWN(arm64_dma_phys_limit);
|
|
zone_size[ZONE_DMA] = max_dma - min;
|
|
#endif
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
max_dma32 = PFN_DOWN(arm64_dma32_phys_limit);
|
|
zone_size[ZONE_DMA32] = max_dma32 - max_dma;
|
|
#endif
|
|
zone_size[ZONE_NORMAL] = max - max_dma32;
|
|
|
|
memcpy(zhole_size, zone_size, sizeof(zhole_size));
|
|
|
|
for_each_memblock(memory, reg) {
|
|
unsigned long start = memblock_region_memory_base_pfn(reg);
|
|
unsigned long end = memblock_region_memory_end_pfn(reg);
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
if (start >= min && start < max_dma) {
|
|
unsigned long dma_end = min(end, max_dma);
|
|
zhole_size[ZONE_DMA] -= dma_end - start;
|
|
start = dma_end;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
if (start >= max_dma && start < max_dma32) {
|
|
unsigned long dma32_end = min(end, max_dma32);
|
|
zhole_size[ZONE_DMA32] -= dma32_end - start;
|
|
start = dma32_end;
|
|
}
|
|
#endif
|
|
if (start >= max_dma32 && start < max) {
|
|
unsigned long normal_end = min(end, max);
|
|
zhole_size[ZONE_NORMAL] -= normal_end - start;
|
|
}
|
|
}
|
|
|
|
free_area_init_node(0, zone_size, min, zhole_size);
|
|
}
|
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
int pfn_valid(unsigned long pfn)
|
|
{
|
|
phys_addr_t addr = pfn << PAGE_SHIFT;
|
|
|
|
if ((addr >> PAGE_SHIFT) != pfn)
|
|
return 0;
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
|
|
return 0;
|
|
|
|
if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn))))
|
|
return 0;
|
|
#endif
|
|
return memblock_is_map_memory(addr);
|
|
}
|
|
EXPORT_SYMBOL(pfn_valid);
|
|
|
|
static phys_addr_t memory_limit = PHYS_ADDR_MAX;
|
|
|
|
/*
|
|
* Limit the memory size that was specified via FDT.
|
|
*/
|
|
static int __init early_mem(char *p)
|
|
{
|
|
if (!p)
|
|
return 1;
|
|
|
|
memory_limit = memparse(p, &p) & PAGE_MASK;
|
|
pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
|
|
|
|
return 0;
|
|
}
|
|
early_param("mem", early_mem);
|
|
|
|
static int __init early_init_dt_scan_usablemem(unsigned long node,
|
|
const char *uname, int depth, void *data)
|
|
{
|
|
struct memblock_region *usablemem = data;
|
|
const __be32 *reg;
|
|
int len;
|
|
|
|
if (depth != 1 || strcmp(uname, "chosen") != 0)
|
|
return 0;
|
|
|
|
reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
|
|
if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
|
|
return 1;
|
|
|
|
usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®);
|
|
usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void __init fdt_enforce_memory_region(void)
|
|
{
|
|
struct memblock_region reg = {
|
|
.size = 0,
|
|
};
|
|
|
|
of_scan_flat_dt(early_init_dt_scan_usablemem, ®);
|
|
|
|
if (reg.size)
|
|
memblock_cap_memory_range(reg.base, reg.size);
|
|
}
|
|
|
|
void __init arm64_memblock_init(void)
|
|
{
|
|
const s64 linear_region_size = BIT(vabits_actual - 1);
|
|
|
|
/* Handle linux,usable-memory-range property */
|
|
fdt_enforce_memory_region();
|
|
|
|
/* Remove memory above our supported physical address size */
|
|
memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
|
|
|
|
/*
|
|
* Select a suitable value for the base of physical memory.
|
|
*/
|
|
memstart_addr = round_down(memblock_start_of_DRAM(),
|
|
ARM64_MEMSTART_ALIGN);
|
|
|
|
physvirt_offset = PHYS_OFFSET - PAGE_OFFSET;
|
|
|
|
vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT));
|
|
|
|
/*
|
|
* If we are running with a 52-bit kernel VA config on a system that
|
|
* does not support it, we have to offset our vmemmap and physvirt_offset
|
|
* s.t. we avoid the 52-bit portion of the direct linear map
|
|
*/
|
|
if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) {
|
|
vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT;
|
|
physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48);
|
|
}
|
|
|
|
/*
|
|
* Remove the memory that we will not be able to cover with the
|
|
* linear mapping. Take care not to clip the kernel which may be
|
|
* high in memory.
|
|
*/
|
|
memblock_remove(max_t(u64, memstart_addr + linear_region_size,
|
|
__pa_symbol(_end)), ULLONG_MAX);
|
|
if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
|
|
/* ensure that memstart_addr remains sufficiently aligned */
|
|
memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
|
|
ARM64_MEMSTART_ALIGN);
|
|
memblock_remove(0, memstart_addr);
|
|
}
|
|
|
|
/*
|
|
* Apply the memory limit if it was set. Since the kernel may be loaded
|
|
* high up in memory, add back the kernel region that must be accessible
|
|
* via the linear mapping.
|
|
*/
|
|
if (memory_limit != PHYS_ADDR_MAX) {
|
|
memblock_mem_limit_remove_map(memory_limit);
|
|
memblock_add(__pa_symbol(_text), (u64)(_end - _text));
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
|
|
/*
|
|
* Add back the memory we just removed if it results in the
|
|
* initrd to become inaccessible via the linear mapping.
|
|
* Otherwise, this is a no-op
|
|
*/
|
|
u64 base = phys_initrd_start & PAGE_MASK;
|
|
u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
|
|
|
|
/*
|
|
* We can only add back the initrd memory if we don't end up
|
|
* with more memory than we can address via the linear mapping.
|
|
* It is up to the bootloader to position the kernel and the
|
|
* initrd reasonably close to each other (i.e., within 32 GB of
|
|
* each other) so that all granule/#levels combinations can
|
|
* always access both.
|
|
*/
|
|
if (WARN(base < memblock_start_of_DRAM() ||
|
|
base + size > memblock_start_of_DRAM() +
|
|
linear_region_size,
|
|
"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
|
|
phys_initrd_size = 0;
|
|
} else {
|
|
memblock_remove(base, size); /* clear MEMBLOCK_ flags */
|
|
memblock_add(base, size);
|
|
memblock_reserve(base, size);
|
|
}
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
|
|
extern u16 memstart_offset_seed;
|
|
u64 range = linear_region_size -
|
|
(memblock_end_of_DRAM() - memblock_start_of_DRAM());
|
|
|
|
/*
|
|
* If the size of the linear region exceeds, by a sufficient
|
|
* margin, the size of the region that the available physical
|
|
* memory spans, randomize the linear region as well.
|
|
*/
|
|
if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
|
|
range /= ARM64_MEMSTART_ALIGN;
|
|
memstart_addr -= ARM64_MEMSTART_ALIGN *
|
|
((range * memstart_offset_seed) >> 16);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Register the kernel text, kernel data, initrd, and initial
|
|
* pagetables with memblock.
|
|
*/
|
|
memblock_reserve(__pa_symbol(_text), _end - _text);
|
|
if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
|
|
/* the generic initrd code expects virtual addresses */
|
|
initrd_start = __phys_to_virt(phys_initrd_start);
|
|
initrd_end = initrd_start + phys_initrd_size;
|
|
}
|
|
|
|
early_init_fdt_scan_reserved_mem();
|
|
|
|
if (IS_ENABLED(CONFIG_ZONE_DMA)) {
|
|
zone_dma_bits = ARM64_ZONE_DMA_BITS;
|
|
arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS);
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_ZONE_DMA32))
|
|
arm64_dma32_phys_limit = max_zone_phys(32);
|
|
else
|
|
arm64_dma32_phys_limit = PHYS_MASK + 1;
|
|
|
|
reserve_crashkernel();
|
|
|
|
reserve_elfcorehdr();
|
|
|
|
high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
|
|
|
|
dma_contiguous_reserve(arm64_dma32_phys_limit);
|
|
}
|
|
|
|
void __init bootmem_init(void)
|
|
{
|
|
unsigned long min, max;
|
|
|
|
min = PFN_UP(memblock_start_of_DRAM());
|
|
max = PFN_DOWN(memblock_end_of_DRAM());
|
|
|
|
early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
|
|
|
|
max_pfn = max_low_pfn = max;
|
|
min_low_pfn = min;
|
|
|
|
arm64_numa_init();
|
|
/*
|
|
* Sparsemem tries to allocate bootmem in memory_present(), so must be
|
|
* done after the fixed reservations.
|
|
*/
|
|
memblocks_present();
|
|
|
|
sparse_init();
|
|
zone_sizes_init(min, max);
|
|
|
|
memblock_dump_all();
|
|
}
|
|
|
|
#ifndef CONFIG_SPARSEMEM_VMEMMAP
|
|
static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
struct page *start_pg, *end_pg;
|
|
unsigned long pg, pgend;
|
|
|
|
/*
|
|
* Convert start_pfn/end_pfn to a struct page pointer.
|
|
*/
|
|
start_pg = pfn_to_page(start_pfn - 1) + 1;
|
|
end_pg = pfn_to_page(end_pfn - 1) + 1;
|
|
|
|
/*
|
|
* Convert to physical addresses, and round start upwards and end
|
|
* downwards.
|
|
*/
|
|
pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
|
|
pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
|
|
|
|
/*
|
|
* If there are free pages between these, free the section of the
|
|
* memmap array.
|
|
*/
|
|
if (pg < pgend)
|
|
memblock_free(pg, pgend - pg);
|
|
}
|
|
|
|
/*
|
|
* The mem_map array can get very big. Free the unused area of the memory map.
|
|
*/
|
|
static void __init free_unused_memmap(void)
|
|
{
|
|
unsigned long start, prev_end = 0;
|
|
struct memblock_region *reg;
|
|
|
|
for_each_memblock(memory, reg) {
|
|
start = __phys_to_pfn(reg->base);
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
/*
|
|
* Take care not to free memmap entries that don't exist due
|
|
* to SPARSEMEM sections which aren't present.
|
|
*/
|
|
start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
|
|
#endif
|
|
/*
|
|
* If we had a previous bank, and there is a space between the
|
|
* current bank and the previous, free it.
|
|
*/
|
|
if (prev_end && prev_end < start)
|
|
free_memmap(prev_end, start);
|
|
|
|
/*
|
|
* Align up here since the VM subsystem insists that the
|
|
* memmap entries are valid from the bank end aligned to
|
|
* MAX_ORDER_NR_PAGES.
|
|
*/
|
|
prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
|
|
MAX_ORDER_NR_PAGES);
|
|
}
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
|
|
free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
|
|
#endif
|
|
}
|
|
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
/*
|
|
* mem_init() marks the free areas in the mem_map and tells us how much memory
|
|
* is free. This is done after various parts of the system have claimed their
|
|
* memory after the kernel image.
|
|
*/
|
|
void __init mem_init(void)
|
|
{
|
|
if (swiotlb_force == SWIOTLB_FORCE ||
|
|
max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit))
|
|
swiotlb_init(1);
|
|
else
|
|
swiotlb_force = SWIOTLB_NO_FORCE;
|
|
|
|
set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
|
|
|
|
#ifndef CONFIG_SPARSEMEM_VMEMMAP
|
|
free_unused_memmap();
|
|
#endif
|
|
/* this will put all unused low memory onto the freelists */
|
|
memblock_free_all();
|
|
|
|
mem_init_print_info(NULL);
|
|
|
|
/*
|
|
* Check boundaries twice: Some fundamental inconsistencies can be
|
|
* detected at build time already.
|
|
*/
|
|
#ifdef CONFIG_COMPAT
|
|
BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
|
|
#endif
|
|
|
|
if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
|
|
extern int sysctl_overcommit_memory;
|
|
/*
|
|
* On a machine this small we won't get anywhere without
|
|
* overcommit, so turn it on by default.
|
|
*/
|
|
sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
|
|
}
|
|
}
|
|
|
|
void free_initmem(void)
|
|
{
|
|
free_reserved_area(lm_alias(__init_begin),
|
|
lm_alias(__init_end),
|
|
POISON_FREE_INITMEM, "unused kernel");
|
|
/*
|
|
* Unmap the __init region but leave the VM area in place. This
|
|
* prevents the region from being reused for kernel modules, which
|
|
* is not supported by kallsyms.
|
|
*/
|
|
unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
|
|
}
|
|
|
|
/*
|
|
* Dump out memory limit information on panic.
|
|
*/
|
|
static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
|
|
{
|
|
if (memory_limit != PHYS_ADDR_MAX) {
|
|
pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
|
|
} else {
|
|
pr_emerg("Memory Limit: none\n");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block mem_limit_notifier = {
|
|
.notifier_call = dump_mem_limit,
|
|
};
|
|
|
|
static int __init register_mem_limit_dumper(void)
|
|
{
|
|
atomic_notifier_chain_register(&panic_notifier_list,
|
|
&mem_limit_notifier);
|
|
return 0;
|
|
}
|
|
__initcall(register_mem_limit_dumper);
|