Currently the driver does not recognize when there is an 802.1AD VLAN tag right after the dmac/smac (outermost VLAN tag). If any DCB map is applied and/or DCB is enabled this is causing the hardware to insert a VLAN 0 tag after the 802.1AD VLAN tag that is already in the packet. Fix this by preventing VLAN tag 0 from being added when any VLAN is already present after dmac/smac (software offloaded) or skb (hardware offloaded). Signed-off-by: Brett Creeley <brett.creeley@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
		
			
				
	
	
		
			2532 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2532 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /* Copyright (c) 2018, Intel Corporation. */
 | |
| 
 | |
| /* The driver transmit and receive code */
 | |
| 
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/bpf_trace.h>
 | |
| #include <net/xdp.h>
 | |
| #include "ice_txrx_lib.h"
 | |
| #include "ice_lib.h"
 | |
| #include "ice.h"
 | |
| #include "ice_dcb_lib.h"
 | |
| #include "ice_xsk.h"
 | |
| 
 | |
| #define ICE_RX_HDR_SIZE		256
 | |
| 
 | |
| #define FDIR_DESC_RXDID 0x40
 | |
| #define ICE_FDIR_CLEAN_DELAY 10
 | |
| 
 | |
| /**
 | |
|  * ice_prgm_fdir_fltr - Program a Flow Director filter
 | |
|  * @vsi: VSI to send dummy packet
 | |
|  * @fdir_desc: flow director descriptor
 | |
|  * @raw_packet: allocated buffer for flow director
 | |
|  */
 | |
| int
 | |
| ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
 | |
| 		   u8 *raw_packet)
 | |
| {
 | |
| 	struct ice_tx_buf *tx_buf, *first;
 | |
| 	struct ice_fltr_desc *f_desc;
 | |
| 	struct ice_tx_desc *tx_desc;
 | |
| 	struct ice_ring *tx_ring;
 | |
| 	struct device *dev;
 | |
| 	dma_addr_t dma;
 | |
| 	u32 td_cmd;
 | |
| 	u16 i;
 | |
| 
 | |
| 	/* VSI and Tx ring */
 | |
| 	if (!vsi)
 | |
| 		return -ENOENT;
 | |
| 	tx_ring = vsi->tx_rings[0];
 | |
| 	if (!tx_ring || !tx_ring->desc)
 | |
| 		return -ENOENT;
 | |
| 	dev = tx_ring->dev;
 | |
| 
 | |
| 	/* we are using two descriptors to add/del a filter and we can wait */
 | |
| 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
 | |
| 		if (!i)
 | |
| 			return -EAGAIN;
 | |
| 		msleep_interruptible(1);
 | |
| 	}
 | |
| 
 | |
| 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
 | |
| 			     DMA_TO_DEVICE);
 | |
| 
 | |
| 	if (dma_mapping_error(dev, dma))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* grab the next descriptor */
 | |
| 	i = tx_ring->next_to_use;
 | |
| 	first = &tx_ring->tx_buf[i];
 | |
| 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
 | |
| 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
 | |
| 
 | |
| 	i++;
 | |
| 	i = (i < tx_ring->count) ? i : 0;
 | |
| 	tx_desc = ICE_TX_DESC(tx_ring, i);
 | |
| 	tx_buf = &tx_ring->tx_buf[i];
 | |
| 
 | |
| 	i++;
 | |
| 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
 | |
| 
 | |
| 	memset(tx_buf, 0, sizeof(*tx_buf));
 | |
| 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
 | |
| 	dma_unmap_addr_set(tx_buf, dma, dma);
 | |
| 
 | |
| 	tx_desc->buf_addr = cpu_to_le64(dma);
 | |
| 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
 | |
| 		 ICE_TX_DESC_CMD_RE;
 | |
| 
 | |
| 	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
 | |
| 	tx_buf->raw_buf = raw_packet;
 | |
| 
 | |
| 	tx_desc->cmd_type_offset_bsz =
 | |
| 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
 | |
| 
 | |
| 	/* Force memory write to complete before letting h/w know
 | |
| 	 * there are new descriptors to fetch.
 | |
| 	 */
 | |
| 	wmb();
 | |
| 
 | |
| 	/* mark the data descriptor to be watched */
 | |
| 	first->next_to_watch = tx_desc;
 | |
| 
 | |
| 	writel(tx_ring->next_to_use, tx_ring->tail);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_unmap_and_free_tx_buf - Release a Tx buffer
 | |
|  * @ring: the ring that owns the buffer
 | |
|  * @tx_buf: the buffer to free
 | |
|  */
 | |
| static void
 | |
| ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
 | |
| {
 | |
| 	if (tx_buf->skb) {
 | |
| 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
 | |
| 			devm_kfree(ring->dev, tx_buf->raw_buf);
 | |
| 		else if (ice_ring_is_xdp(ring))
 | |
| 			page_frag_free(tx_buf->raw_buf);
 | |
| 		else
 | |
| 			dev_kfree_skb_any(tx_buf->skb);
 | |
| 		if (dma_unmap_len(tx_buf, len))
 | |
| 			dma_unmap_single(ring->dev,
 | |
| 					 dma_unmap_addr(tx_buf, dma),
 | |
| 					 dma_unmap_len(tx_buf, len),
 | |
| 					 DMA_TO_DEVICE);
 | |
| 	} else if (dma_unmap_len(tx_buf, len)) {
 | |
| 		dma_unmap_page(ring->dev,
 | |
| 			       dma_unmap_addr(tx_buf, dma),
 | |
| 			       dma_unmap_len(tx_buf, len),
 | |
| 			       DMA_TO_DEVICE);
 | |
| 	}
 | |
| 
 | |
| 	tx_buf->next_to_watch = NULL;
 | |
| 	tx_buf->skb = NULL;
 | |
| 	dma_unmap_len_set(tx_buf, len, 0);
 | |
| 	/* tx_buf must be completely set up in the transmit path */
 | |
| }
 | |
| 
 | |
| static struct netdev_queue *txring_txq(const struct ice_ring *ring)
 | |
| {
 | |
| 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_clean_tx_ring - Free any empty Tx buffers
 | |
|  * @tx_ring: ring to be cleaned
 | |
|  */
 | |
| void ice_clean_tx_ring(struct ice_ring *tx_ring)
 | |
| {
 | |
| 	u16 i;
 | |
| 
 | |
| 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
 | |
| 		ice_xsk_clean_xdp_ring(tx_ring);
 | |
| 		goto tx_skip_free;
 | |
| 	}
 | |
| 
 | |
| 	/* ring already cleared, nothing to do */
 | |
| 	if (!tx_ring->tx_buf)
 | |
| 		return;
 | |
| 
 | |
| 	/* Free all the Tx ring sk_buffs */
 | |
| 	for (i = 0; i < tx_ring->count; i++)
 | |
| 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
 | |
| 
 | |
| tx_skip_free:
 | |
| 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
 | |
| 
 | |
| 	/* Zero out the descriptor ring */
 | |
| 	memset(tx_ring->desc, 0, tx_ring->size);
 | |
| 
 | |
| 	tx_ring->next_to_use = 0;
 | |
| 	tx_ring->next_to_clean = 0;
 | |
| 
 | |
| 	if (!tx_ring->netdev)
 | |
| 		return;
 | |
| 
 | |
| 	/* cleanup Tx queue statistics */
 | |
| 	netdev_tx_reset_queue(txring_txq(tx_ring));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_free_tx_ring - Free Tx resources per queue
 | |
|  * @tx_ring: Tx descriptor ring for a specific queue
 | |
|  *
 | |
|  * Free all transmit software resources
 | |
|  */
 | |
| void ice_free_tx_ring(struct ice_ring *tx_ring)
 | |
| {
 | |
| 	ice_clean_tx_ring(tx_ring);
 | |
| 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
 | |
| 	tx_ring->tx_buf = NULL;
 | |
| 
 | |
| 	if (tx_ring->desc) {
 | |
| 		dmam_free_coherent(tx_ring->dev, tx_ring->size,
 | |
| 				   tx_ring->desc, tx_ring->dma);
 | |
| 		tx_ring->desc = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_clean_tx_irq - Reclaim resources after transmit completes
 | |
|  * @tx_ring: Tx ring to clean
 | |
|  * @napi_budget: Used to determine if we are in netpoll
 | |
|  *
 | |
|  * Returns true if there's any budget left (e.g. the clean is finished)
 | |
|  */
 | |
| static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
 | |
| {
 | |
| 	unsigned int total_bytes = 0, total_pkts = 0;
 | |
| 	unsigned int budget = ICE_DFLT_IRQ_WORK;
 | |
| 	struct ice_vsi *vsi = tx_ring->vsi;
 | |
| 	s16 i = tx_ring->next_to_clean;
 | |
| 	struct ice_tx_desc *tx_desc;
 | |
| 	struct ice_tx_buf *tx_buf;
 | |
| 
 | |
| 	tx_buf = &tx_ring->tx_buf[i];
 | |
| 	tx_desc = ICE_TX_DESC(tx_ring, i);
 | |
| 	i -= tx_ring->count;
 | |
| 
 | |
| 	prefetch(&vsi->state);
 | |
| 
 | |
| 	do {
 | |
| 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
 | |
| 
 | |
| 		/* if next_to_watch is not set then there is no work pending */
 | |
| 		if (!eop_desc)
 | |
| 			break;
 | |
| 
 | |
| 		smp_rmb();	/* prevent any other reads prior to eop_desc */
 | |
| 
 | |
| 		/* if the descriptor isn't done, no work yet to do */
 | |
| 		if (!(eop_desc->cmd_type_offset_bsz &
 | |
| 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
 | |
| 			break;
 | |
| 
 | |
| 		/* clear next_to_watch to prevent false hangs */
 | |
| 		tx_buf->next_to_watch = NULL;
 | |
| 
 | |
| 		/* update the statistics for this packet */
 | |
| 		total_bytes += tx_buf->bytecount;
 | |
| 		total_pkts += tx_buf->gso_segs;
 | |
| 
 | |
| 		if (ice_ring_is_xdp(tx_ring))
 | |
| 			page_frag_free(tx_buf->raw_buf);
 | |
| 		else
 | |
| 			/* free the skb */
 | |
| 			napi_consume_skb(tx_buf->skb, napi_budget);
 | |
| 
 | |
| 		/* unmap skb header data */
 | |
| 		dma_unmap_single(tx_ring->dev,
 | |
| 				 dma_unmap_addr(tx_buf, dma),
 | |
| 				 dma_unmap_len(tx_buf, len),
 | |
| 				 DMA_TO_DEVICE);
 | |
| 
 | |
| 		/* clear tx_buf data */
 | |
| 		tx_buf->skb = NULL;
 | |
| 		dma_unmap_len_set(tx_buf, len, 0);
 | |
| 
 | |
| 		/* unmap remaining buffers */
 | |
| 		while (tx_desc != eop_desc) {
 | |
| 			tx_buf++;
 | |
| 			tx_desc++;
 | |
| 			i++;
 | |
| 			if (unlikely(!i)) {
 | |
| 				i -= tx_ring->count;
 | |
| 				tx_buf = tx_ring->tx_buf;
 | |
| 				tx_desc = ICE_TX_DESC(tx_ring, 0);
 | |
| 			}
 | |
| 
 | |
| 			/* unmap any remaining paged data */
 | |
| 			if (dma_unmap_len(tx_buf, len)) {
 | |
| 				dma_unmap_page(tx_ring->dev,
 | |
| 					       dma_unmap_addr(tx_buf, dma),
 | |
| 					       dma_unmap_len(tx_buf, len),
 | |
| 					       DMA_TO_DEVICE);
 | |
| 				dma_unmap_len_set(tx_buf, len, 0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* move us one more past the eop_desc for start of next pkt */
 | |
| 		tx_buf++;
 | |
| 		tx_desc++;
 | |
| 		i++;
 | |
| 		if (unlikely(!i)) {
 | |
| 			i -= tx_ring->count;
 | |
| 			tx_buf = tx_ring->tx_buf;
 | |
| 			tx_desc = ICE_TX_DESC(tx_ring, 0);
 | |
| 		}
 | |
| 
 | |
| 		prefetch(tx_desc);
 | |
| 
 | |
| 		/* update budget accounting */
 | |
| 		budget--;
 | |
| 	} while (likely(budget));
 | |
| 
 | |
| 	i += tx_ring->count;
 | |
| 	tx_ring->next_to_clean = i;
 | |
| 
 | |
| 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
 | |
| 
 | |
| 	if (ice_ring_is_xdp(tx_ring))
 | |
| 		return !!budget;
 | |
| 
 | |
| 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
 | |
| 				  total_bytes);
 | |
| 
 | |
| #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 | |
| 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
 | |
| 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 | |
| 		/* Make sure that anybody stopping the queue after this
 | |
| 		 * sees the new next_to_clean.
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 		if (__netif_subqueue_stopped(tx_ring->netdev,
 | |
| 					     tx_ring->q_index) &&
 | |
| 		    !test_bit(__ICE_DOWN, vsi->state)) {
 | |
| 			netif_wake_subqueue(tx_ring->netdev,
 | |
| 					    tx_ring->q_index);
 | |
| 			++tx_ring->tx_stats.restart_q;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return !!budget;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_setup_tx_ring - Allocate the Tx descriptors
 | |
|  * @tx_ring: the Tx ring to set up
 | |
|  *
 | |
|  * Return 0 on success, negative on error
 | |
|  */
 | |
| int ice_setup_tx_ring(struct ice_ring *tx_ring)
 | |
| {
 | |
| 	struct device *dev = tx_ring->dev;
 | |
| 
 | |
| 	if (!dev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* warn if we are about to overwrite the pointer */
 | |
| 	WARN_ON(tx_ring->tx_buf);
 | |
| 	tx_ring->tx_buf =
 | |
| 		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
 | |
| 			     GFP_KERNEL);
 | |
| 	if (!tx_ring->tx_buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* round up to nearest page */
 | |
| 	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
 | |
| 			      PAGE_SIZE);
 | |
| 	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
 | |
| 					    GFP_KERNEL);
 | |
| 	if (!tx_ring->desc) {
 | |
| 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 | |
| 			tx_ring->size);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	tx_ring->next_to_use = 0;
 | |
| 	tx_ring->next_to_clean = 0;
 | |
| 	tx_ring->tx_stats.prev_pkt = -1;
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	devm_kfree(dev, tx_ring->tx_buf);
 | |
| 	tx_ring->tx_buf = NULL;
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_clean_rx_ring - Free Rx buffers
 | |
|  * @rx_ring: ring to be cleaned
 | |
|  */
 | |
| void ice_clean_rx_ring(struct ice_ring *rx_ring)
 | |
| {
 | |
| 	struct device *dev = rx_ring->dev;
 | |
| 	u16 i;
 | |
| 
 | |
| 	/* ring already cleared, nothing to do */
 | |
| 	if (!rx_ring->rx_buf)
 | |
| 		return;
 | |
| 
 | |
| 	if (rx_ring->xsk_umem) {
 | |
| 		ice_xsk_clean_rx_ring(rx_ring);
 | |
| 		goto rx_skip_free;
 | |
| 	}
 | |
| 
 | |
| 	/* Free all the Rx ring sk_buffs */
 | |
| 	for (i = 0; i < rx_ring->count; i++) {
 | |
| 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
 | |
| 
 | |
| 		if (rx_buf->skb) {
 | |
| 			dev_kfree_skb(rx_buf->skb);
 | |
| 			rx_buf->skb = NULL;
 | |
| 		}
 | |
| 		if (!rx_buf->page)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Invalidate cache lines that may have been written to by
 | |
| 		 * device so that we avoid corrupting memory.
 | |
| 		 */
 | |
| 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
 | |
| 					      rx_buf->page_offset,
 | |
| 					      rx_ring->rx_buf_len,
 | |
| 					      DMA_FROM_DEVICE);
 | |
| 
 | |
| 		/* free resources associated with mapping */
 | |
| 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
 | |
| 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 | |
| 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
 | |
| 
 | |
| 		rx_buf->page = NULL;
 | |
| 		rx_buf->page_offset = 0;
 | |
| 	}
 | |
| 
 | |
| rx_skip_free:
 | |
| 	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
 | |
| 
 | |
| 	/* Zero out the descriptor ring */
 | |
| 	memset(rx_ring->desc, 0, rx_ring->size);
 | |
| 
 | |
| 	rx_ring->next_to_alloc = 0;
 | |
| 	rx_ring->next_to_clean = 0;
 | |
| 	rx_ring->next_to_use = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_free_rx_ring - Free Rx resources
 | |
|  * @rx_ring: ring to clean the resources from
 | |
|  *
 | |
|  * Free all receive software resources
 | |
|  */
 | |
| void ice_free_rx_ring(struct ice_ring *rx_ring)
 | |
| {
 | |
| 	ice_clean_rx_ring(rx_ring);
 | |
| 	if (rx_ring->vsi->type == ICE_VSI_PF)
 | |
| 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 | |
| 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 | |
| 	rx_ring->xdp_prog = NULL;
 | |
| 	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
 | |
| 	rx_ring->rx_buf = NULL;
 | |
| 
 | |
| 	if (rx_ring->desc) {
 | |
| 		dmam_free_coherent(rx_ring->dev, rx_ring->size,
 | |
| 				   rx_ring->desc, rx_ring->dma);
 | |
| 		rx_ring->desc = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_setup_rx_ring - Allocate the Rx descriptors
 | |
|  * @rx_ring: the Rx ring to set up
 | |
|  *
 | |
|  * Return 0 on success, negative on error
 | |
|  */
 | |
| int ice_setup_rx_ring(struct ice_ring *rx_ring)
 | |
| {
 | |
| 	struct device *dev = rx_ring->dev;
 | |
| 
 | |
| 	if (!dev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* warn if we are about to overwrite the pointer */
 | |
| 	WARN_ON(rx_ring->rx_buf);
 | |
| 	rx_ring->rx_buf =
 | |
| 		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
 | |
| 			     GFP_KERNEL);
 | |
| 	if (!rx_ring->rx_buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* round up to nearest page */
 | |
| 	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
 | |
| 			      PAGE_SIZE);
 | |
| 	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
 | |
| 					    GFP_KERNEL);
 | |
| 	if (!rx_ring->desc) {
 | |
| 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 | |
| 			rx_ring->size);
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	rx_ring->next_to_use = 0;
 | |
| 	rx_ring->next_to_clean = 0;
 | |
| 
 | |
| 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 | |
| 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
 | |
| 
 | |
| 	if (rx_ring->vsi->type == ICE_VSI_PF &&
 | |
| 	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 | |
| 		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
 | |
| 				     rx_ring->q_index))
 | |
| 			goto err;
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	devm_kfree(dev, rx_ring->rx_buf);
 | |
| 	rx_ring->rx_buf = NULL;
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_rx_offset - Return expected offset into page to access data
 | |
|  * @rx_ring: Ring we are requesting offset of
 | |
|  *
 | |
|  * Returns the offset value for ring into the data buffer.
 | |
|  */
 | |
| static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
 | |
| {
 | |
| 	if (ice_ring_uses_build_skb(rx_ring))
 | |
| 		return ICE_SKB_PAD;
 | |
| 	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 | |
| 		return XDP_PACKET_HEADROOM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int ice_rx_frame_truesize(struct ice_ring *rx_ring,
 | |
| 					  unsigned int size)
 | |
| {
 | |
| 	unsigned int truesize;
 | |
| 
 | |
| #if (PAGE_SIZE < 8192)
 | |
| 	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
 | |
| #else
 | |
| 	truesize = ice_rx_offset(rx_ring) ?
 | |
| 		SKB_DATA_ALIGN(ice_rx_offset(rx_ring) + size) +
 | |
| 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
 | |
| 		SKB_DATA_ALIGN(size);
 | |
| #endif
 | |
| 	return truesize;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
 | |
|  * @rx_ring: Rx ring
 | |
|  * @xdp: xdp_buff used as input to the XDP program
 | |
|  * @xdp_prog: XDP program to run
 | |
|  *
 | |
|  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
 | |
|  */
 | |
| static int
 | |
| ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
 | |
| 	    struct bpf_prog *xdp_prog)
 | |
| {
 | |
| 	int err, result = ICE_XDP_PASS;
 | |
| 	struct ice_ring *xdp_ring;
 | |
| 	u32 act;
 | |
| 
 | |
| 	act = bpf_prog_run_xdp(xdp_prog, xdp);
 | |
| 	switch (act) {
 | |
| 	case XDP_PASS:
 | |
| 		break;
 | |
| 	case XDP_TX:
 | |
| 		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
 | |
| 		result = ice_xmit_xdp_buff(xdp, xdp_ring);
 | |
| 		break;
 | |
| 	case XDP_REDIRECT:
 | |
| 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
 | |
| 		result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
 | |
| 		break;
 | |
| 	default:
 | |
| 		bpf_warn_invalid_xdp_action(act);
 | |
| 		fallthrough;
 | |
| 	case XDP_ABORTED:
 | |
| 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 | |
| 		fallthrough;
 | |
| 	case XDP_DROP:
 | |
| 		result = ICE_XDP_CONSUMED;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_xdp_xmit - submit packets to XDP ring for transmission
 | |
|  * @dev: netdev
 | |
|  * @n: number of XDP frames to be transmitted
 | |
|  * @frames: XDP frames to be transmitted
 | |
|  * @flags: transmit flags
 | |
|  *
 | |
|  * Returns number of frames successfully sent. Frames that fail are
 | |
|  * free'ed via XDP return API.
 | |
|  * For error cases, a negative errno code is returned and no-frames
 | |
|  * are transmitted (caller must handle freeing frames).
 | |
|  */
 | |
| int
 | |
| ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
 | |
| 	     u32 flags)
 | |
| {
 | |
| 	struct ice_netdev_priv *np = netdev_priv(dev);
 | |
| 	unsigned int queue_index = smp_processor_id();
 | |
| 	struct ice_vsi *vsi = np->vsi;
 | |
| 	struct ice_ring *xdp_ring;
 | |
| 	int drops = 0, i;
 | |
| 
 | |
| 	if (test_bit(__ICE_DOWN, vsi->state))
 | |
| 		return -ENETDOWN;
 | |
| 
 | |
| 	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	xdp_ring = vsi->xdp_rings[queue_index];
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		struct xdp_frame *xdpf = frames[i];
 | |
| 		int err;
 | |
| 
 | |
| 		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
 | |
| 		if (err != ICE_XDP_TX) {
 | |
| 			xdp_return_frame_rx_napi(xdpf);
 | |
| 			drops++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(flags & XDP_XMIT_FLUSH))
 | |
| 		ice_xdp_ring_update_tail(xdp_ring);
 | |
| 
 | |
| 	return n - drops;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_alloc_mapped_page - recycle or make a new page
 | |
|  * @rx_ring: ring to use
 | |
|  * @bi: rx_buf struct to modify
 | |
|  *
 | |
|  * Returns true if the page was successfully allocated or
 | |
|  * reused.
 | |
|  */
 | |
| static bool
 | |
| ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
 | |
| {
 | |
| 	struct page *page = bi->page;
 | |
| 	dma_addr_t dma;
 | |
| 
 | |
| 	/* since we are recycling buffers we should seldom need to alloc */
 | |
| 	if (likely(page)) {
 | |
| 		rx_ring->rx_stats.page_reuse_count++;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* alloc new page for storage */
 | |
| 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
 | |
| 	if (unlikely(!page)) {
 | |
| 		rx_ring->rx_stats.alloc_page_failed++;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* map page for use */
 | |
| 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
 | |
| 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 | |
| 
 | |
| 	/* if mapping failed free memory back to system since
 | |
| 	 * there isn't much point in holding memory we can't use
 | |
| 	 */
 | |
| 	if (dma_mapping_error(rx_ring->dev, dma)) {
 | |
| 		__free_pages(page, ice_rx_pg_order(rx_ring));
 | |
| 		rx_ring->rx_stats.alloc_page_failed++;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	bi->dma = dma;
 | |
| 	bi->page = page;
 | |
| 	bi->page_offset = ice_rx_offset(rx_ring);
 | |
| 	page_ref_add(page, USHRT_MAX - 1);
 | |
| 	bi->pagecnt_bias = USHRT_MAX;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_alloc_rx_bufs - Replace used receive buffers
 | |
|  * @rx_ring: ring to place buffers on
 | |
|  * @cleaned_count: number of buffers to replace
 | |
|  *
 | |
|  * Returns false if all allocations were successful, true if any fail. Returning
 | |
|  * true signals to the caller that we didn't replace cleaned_count buffers and
 | |
|  * there is more work to do.
 | |
|  *
 | |
|  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
 | |
|  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
 | |
|  * multiple tail writes per call.
 | |
|  */
 | |
| bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
 | |
| {
 | |
| 	union ice_32b_rx_flex_desc *rx_desc;
 | |
| 	u16 ntu = rx_ring->next_to_use;
 | |
| 	struct ice_rx_buf *bi;
 | |
| 
 | |
| 	/* do nothing if no valid netdev defined */
 | |
| 	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
 | |
| 	    !cleaned_count)
 | |
| 		return false;
 | |
| 
 | |
| 	/* get the Rx descriptor and buffer based on next_to_use */
 | |
| 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
 | |
| 	bi = &rx_ring->rx_buf[ntu];
 | |
| 
 | |
| 	do {
 | |
| 		/* if we fail here, we have work remaining */
 | |
| 		if (!ice_alloc_mapped_page(rx_ring, bi))
 | |
| 			break;
 | |
| 
 | |
| 		/* sync the buffer for use by the device */
 | |
| 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 | |
| 						 bi->page_offset,
 | |
| 						 rx_ring->rx_buf_len,
 | |
| 						 DMA_FROM_DEVICE);
 | |
| 
 | |
| 		/* Refresh the desc even if buffer_addrs didn't change
 | |
| 		 * because each write-back erases this info.
 | |
| 		 */
 | |
| 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 | |
| 
 | |
| 		rx_desc++;
 | |
| 		bi++;
 | |
| 		ntu++;
 | |
| 		if (unlikely(ntu == rx_ring->count)) {
 | |
| 			rx_desc = ICE_RX_DESC(rx_ring, 0);
 | |
| 			bi = rx_ring->rx_buf;
 | |
| 			ntu = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* clear the status bits for the next_to_use descriptor */
 | |
| 		rx_desc->wb.status_error0 = 0;
 | |
| 
 | |
| 		cleaned_count--;
 | |
| 	} while (cleaned_count);
 | |
| 
 | |
| 	if (rx_ring->next_to_use != ntu)
 | |
| 		ice_release_rx_desc(rx_ring, ntu);
 | |
| 
 | |
| 	return !!cleaned_count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_page_is_reserved - check if reuse is possible
 | |
|  * @page: page struct to check
 | |
|  */
 | |
| static bool ice_page_is_reserved(struct page *page)
 | |
| {
 | |
| 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
 | |
|  * @rx_buf: Rx buffer to adjust
 | |
|  * @size: Size of adjustment
 | |
|  *
 | |
|  * Update the offset within page so that Rx buf will be ready to be reused.
 | |
|  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
 | |
|  * so the second half of page assigned to Rx buffer will be used, otherwise
 | |
|  * the offset is moved by "size" bytes
 | |
|  */
 | |
| static void
 | |
| ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
 | |
| {
 | |
| #if (PAGE_SIZE < 8192)
 | |
| 	/* flip page offset to other buffer */
 | |
| 	rx_buf->page_offset ^= size;
 | |
| #else
 | |
| 	/* move offset up to the next cache line */
 | |
| 	rx_buf->page_offset += size;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
 | |
|  * @rx_buf: buffer containing the page
 | |
|  *
 | |
|  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
 | |
|  * which will assign the current buffer to the buffer that next_to_alloc is
 | |
|  * pointing to; otherwise, the DMA mapping needs to be destroyed and
 | |
|  * page freed
 | |
|  */
 | |
| static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
 | |
| {
 | |
| 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
 | |
| 	struct page *page = rx_buf->page;
 | |
| 
 | |
| 	/* avoid re-using remote pages */
 | |
| 	if (unlikely(ice_page_is_reserved(page)))
 | |
| 		return false;
 | |
| 
 | |
| #if (PAGE_SIZE < 8192)
 | |
| 	/* if we are only owner of page we can reuse it */
 | |
| 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
 | |
| 		return false;
 | |
| #else
 | |
| #define ICE_LAST_OFFSET \
 | |
| 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
 | |
| 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
 | |
| 		return false;
 | |
| #endif /* PAGE_SIZE < 8192) */
 | |
| 
 | |
| 	/* If we have drained the page fragment pool we need to update
 | |
| 	 * the pagecnt_bias and page count so that we fully restock the
 | |
| 	 * number of references the driver holds.
 | |
| 	 */
 | |
| 	if (unlikely(pagecnt_bias == 1)) {
 | |
| 		page_ref_add(page, USHRT_MAX - 1);
 | |
| 		rx_buf->pagecnt_bias = USHRT_MAX;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
 | |
|  * @rx_ring: Rx descriptor ring to transact packets on
 | |
|  * @rx_buf: buffer containing page to add
 | |
|  * @skb: sk_buff to place the data into
 | |
|  * @size: packet length from rx_desc
 | |
|  *
 | |
|  * This function will add the data contained in rx_buf->page to the skb.
 | |
|  * It will just attach the page as a frag to the skb.
 | |
|  * The function will then update the page offset.
 | |
|  */
 | |
| static void
 | |
| ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 | |
| 		struct sk_buff *skb, unsigned int size)
 | |
| {
 | |
| #if (PAGE_SIZE >= 8192)
 | |
| 	unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring));
 | |
| #else
 | |
| 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 | |
| #endif
 | |
| 
 | |
| 	if (!size)
 | |
| 		return;
 | |
| 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
 | |
| 			rx_buf->page_offset, size, truesize);
 | |
| 
 | |
| 	/* page is being used so we must update the page offset */
 | |
| 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_reuse_rx_page - page flip buffer and store it back on the ring
 | |
|  * @rx_ring: Rx descriptor ring to store buffers on
 | |
|  * @old_buf: donor buffer to have page reused
 | |
|  *
 | |
|  * Synchronizes page for reuse by the adapter
 | |
|  */
 | |
| static void
 | |
| ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
 | |
| {
 | |
| 	u16 nta = rx_ring->next_to_alloc;
 | |
| 	struct ice_rx_buf *new_buf;
 | |
| 
 | |
| 	new_buf = &rx_ring->rx_buf[nta];
 | |
| 
 | |
| 	/* update, and store next to alloc */
 | |
| 	nta++;
 | |
| 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 | |
| 
 | |
| 	/* Transfer page from old buffer to new buffer.
 | |
| 	 * Move each member individually to avoid possible store
 | |
| 	 * forwarding stalls and unnecessary copy of skb.
 | |
| 	 */
 | |
| 	new_buf->dma = old_buf->dma;
 | |
| 	new_buf->page = old_buf->page;
 | |
| 	new_buf->page_offset = old_buf->page_offset;
 | |
| 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
 | |
|  * @rx_ring: Rx descriptor ring to transact packets on
 | |
|  * @skb: skb to be used
 | |
|  * @size: size of buffer to add to skb
 | |
|  *
 | |
|  * This function will pull an Rx buffer from the ring and synchronize it
 | |
|  * for use by the CPU.
 | |
|  */
 | |
| static struct ice_rx_buf *
 | |
| ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
 | |
| 	       const unsigned int size)
 | |
| {
 | |
| 	struct ice_rx_buf *rx_buf;
 | |
| 
 | |
| 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
 | |
| 	prefetchw(rx_buf->page);
 | |
| 	*skb = rx_buf->skb;
 | |
| 
 | |
| 	if (!size)
 | |
| 		return rx_buf;
 | |
| 	/* we are reusing so sync this buffer for CPU use */
 | |
| 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
 | |
| 				      rx_buf->page_offset, size,
 | |
| 				      DMA_FROM_DEVICE);
 | |
| 
 | |
| 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
 | |
| 	rx_buf->pagecnt_bias--;
 | |
| 
 | |
| 	return rx_buf;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_build_skb - Build skb around an existing buffer
 | |
|  * @rx_ring: Rx descriptor ring to transact packets on
 | |
|  * @rx_buf: Rx buffer to pull data from
 | |
|  * @xdp: xdp_buff pointing to the data
 | |
|  *
 | |
|  * This function builds an skb around an existing Rx buffer, taking care
 | |
|  * to set up the skb correctly and avoid any memcpy overhead.
 | |
|  */
 | |
| static struct sk_buff *
 | |
| ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 | |
| 	      struct xdp_buff *xdp)
 | |
| {
 | |
| 	u8 metasize = xdp->data - xdp->data_meta;
 | |
| #if (PAGE_SIZE < 8192)
 | |
| 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 | |
| #else
 | |
| 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
 | |
| 				SKB_DATA_ALIGN(xdp->data_end -
 | |
| 					       xdp->data_hard_start);
 | |
| #endif
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	/* Prefetch first cache line of first page. If xdp->data_meta
 | |
| 	 * is unused, this points exactly as xdp->data, otherwise we
 | |
| 	 * likely have a consumer accessing first few bytes of meta
 | |
| 	 * data, and then actual data.
 | |
| 	 */
 | |
| 	prefetch(xdp->data_meta);
 | |
| #if L1_CACHE_BYTES < 128
 | |
| 	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
 | |
| #endif
 | |
| 	/* build an skb around the page buffer */
 | |
| 	skb = build_skb(xdp->data_hard_start, truesize);
 | |
| 	if (unlikely(!skb))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* must to record Rx queue, otherwise OS features such as
 | |
| 	 * symmetric queue won't work
 | |
| 	 */
 | |
| 	skb_record_rx_queue(skb, rx_ring->q_index);
 | |
| 
 | |
| 	/* update pointers within the skb to store the data */
 | |
| 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
 | |
| 	__skb_put(skb, xdp->data_end - xdp->data);
 | |
| 	if (metasize)
 | |
| 		skb_metadata_set(skb, metasize);
 | |
| 
 | |
| 	/* buffer is used by skb, update page_offset */
 | |
| 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_construct_skb - Allocate skb and populate it
 | |
|  * @rx_ring: Rx descriptor ring to transact packets on
 | |
|  * @rx_buf: Rx buffer to pull data from
 | |
|  * @xdp: xdp_buff pointing to the data
 | |
|  *
 | |
|  * This function allocates an skb. It then populates it with the page
 | |
|  * data from the current receive descriptor, taking care to set up the
 | |
|  * skb correctly.
 | |
|  */
 | |
| static struct sk_buff *
 | |
| ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 | |
| 		  struct xdp_buff *xdp)
 | |
| {
 | |
| 	unsigned int size = xdp->data_end - xdp->data;
 | |
| 	unsigned int headlen;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	/* prefetch first cache line of first page */
 | |
| 	prefetch(xdp->data);
 | |
| #if L1_CACHE_BYTES < 128
 | |
| 	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
 | |
| #endif /* L1_CACHE_BYTES */
 | |
| 
 | |
| 	/* allocate a skb to store the frags */
 | |
| 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
 | |
| 			       GFP_ATOMIC | __GFP_NOWARN);
 | |
| 	if (unlikely(!skb))
 | |
| 		return NULL;
 | |
| 
 | |
| 	skb_record_rx_queue(skb, rx_ring->q_index);
 | |
| 	/* Determine available headroom for copy */
 | |
| 	headlen = size;
 | |
| 	if (headlen > ICE_RX_HDR_SIZE)
 | |
| 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
 | |
| 
 | |
| 	/* align pull length to size of long to optimize memcpy performance */
 | |
| 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
 | |
| 							 sizeof(long)));
 | |
| 
 | |
| 	/* if we exhaust the linear part then add what is left as a frag */
 | |
| 	size -= headlen;
 | |
| 	if (size) {
 | |
| #if (PAGE_SIZE >= 8192)
 | |
| 		unsigned int truesize = SKB_DATA_ALIGN(size);
 | |
| #else
 | |
| 		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 | |
| #endif
 | |
| 		skb_add_rx_frag(skb, 0, rx_buf->page,
 | |
| 				rx_buf->page_offset + headlen, size, truesize);
 | |
| 		/* buffer is used by skb, update page_offset */
 | |
| 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 | |
| 	} else {
 | |
| 		/* buffer is unused, reset bias back to rx_buf; data was copied
 | |
| 		 * onto skb's linear part so there's no need for adjusting
 | |
| 		 * page offset and we can reuse this buffer as-is
 | |
| 		 */
 | |
| 		rx_buf->pagecnt_bias++;
 | |
| 	}
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_put_rx_buf - Clean up used buffer and either recycle or free
 | |
|  * @rx_ring: Rx descriptor ring to transact packets on
 | |
|  * @rx_buf: Rx buffer to pull data from
 | |
|  *
 | |
|  * This function will update next_to_clean and then clean up the contents
 | |
|  * of the rx_buf. It will either recycle the buffer or unmap it and free
 | |
|  * the associated resources.
 | |
|  */
 | |
| static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
 | |
| {
 | |
| 	u16 ntc = rx_ring->next_to_clean + 1;
 | |
| 
 | |
| 	/* fetch, update, and store next to clean */
 | |
| 	ntc = (ntc < rx_ring->count) ? ntc : 0;
 | |
| 	rx_ring->next_to_clean = ntc;
 | |
| 
 | |
| 	if (!rx_buf)
 | |
| 		return;
 | |
| 
 | |
| 	if (ice_can_reuse_rx_page(rx_buf)) {
 | |
| 		/* hand second half of page back to the ring */
 | |
| 		ice_reuse_rx_page(rx_ring, rx_buf);
 | |
| 		rx_ring->rx_stats.page_reuse_count++;
 | |
| 	} else {
 | |
| 		/* we are not reusing the buffer so unmap it */
 | |
| 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
 | |
| 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
 | |
| 				     ICE_RX_DMA_ATTR);
 | |
| 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
 | |
| 	}
 | |
| 
 | |
| 	/* clear contents of buffer_info */
 | |
| 	rx_buf->page = NULL;
 | |
| 	rx_buf->skb = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_is_non_eop - process handling of non-EOP buffers
 | |
|  * @rx_ring: Rx ring being processed
 | |
|  * @rx_desc: Rx descriptor for current buffer
 | |
|  * @skb: Current socket buffer containing buffer in progress
 | |
|  *
 | |
|  * If the buffer is an EOP buffer, this function exits returning false,
 | |
|  * otherwise return true indicating that this is in fact a non-EOP buffer.
 | |
|  */
 | |
| static bool
 | |
| ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
 | |
| 	       struct sk_buff *skb)
 | |
| {
 | |
| 	/* if we are the last buffer then there is nothing else to do */
 | |
| #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
 | |
| 	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
 | |
| 		return false;
 | |
| 
 | |
| 	/* place skb in next buffer to be received */
 | |
| 	rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
 | |
| 	rx_ring->rx_stats.non_eop_descs++;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 | |
|  * @rx_ring: Rx descriptor ring to transact packets on
 | |
|  * @budget: Total limit on number of packets to process
 | |
|  *
 | |
|  * This function provides a "bounce buffer" approach to Rx interrupt
 | |
|  * processing. The advantage to this is that on systems that have
 | |
|  * expensive overhead for IOMMU access this provides a means of avoiding
 | |
|  * it by maintaining the mapping of the page to the system.
 | |
|  *
 | |
|  * Returns amount of work completed
 | |
|  */
 | |
| int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
 | |
| {
 | |
| 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
 | |
| 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
 | |
| 	unsigned int xdp_res, xdp_xmit = 0;
 | |
| 	struct bpf_prog *xdp_prog = NULL;
 | |
| 	struct xdp_buff xdp;
 | |
| 	bool failure;
 | |
| 
 | |
| 	xdp.rxq = &rx_ring->xdp_rxq;
 | |
| 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
 | |
| #if (PAGE_SIZE < 8192)
 | |
| 	xdp.frame_sz = ice_rx_frame_truesize(rx_ring, 0);
 | |
| #endif
 | |
| 
 | |
| 	/* start the loop to process Rx packets bounded by 'budget' */
 | |
| 	while (likely(total_rx_pkts < (unsigned int)budget)) {
 | |
| 		union ice_32b_rx_flex_desc *rx_desc;
 | |
| 		struct ice_rx_buf *rx_buf;
 | |
| 		struct sk_buff *skb;
 | |
| 		unsigned int size;
 | |
| 		u16 stat_err_bits;
 | |
| 		u16 vlan_tag = 0;
 | |
| 		u8 rx_ptype;
 | |
| 
 | |
| 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
 | |
| 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
 | |
| 
 | |
| 		/* status_error_len will always be zero for unused descriptors
 | |
| 		 * because it's cleared in cleanup, and overlaps with hdr_addr
 | |
| 		 * which is always zero because packet split isn't used, if the
 | |
| 		 * hardware wrote DD then it will be non-zero
 | |
| 		 */
 | |
| 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
 | |
| 		if (!ice_test_staterr(rx_desc, stat_err_bits))
 | |
| 			break;
 | |
| 
 | |
| 		/* This memory barrier is needed to keep us from reading
 | |
| 		 * any other fields out of the rx_desc until we know the
 | |
| 		 * DD bit is set.
 | |
| 		 */
 | |
| 		dma_rmb();
 | |
| 
 | |
| 		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
 | |
| 			ice_put_rx_buf(rx_ring, NULL);
 | |
| 			cleaned_count++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
 | |
| 			ICE_RX_FLX_DESC_PKT_LEN_M;
 | |
| 
 | |
| 		/* retrieve a buffer from the ring */
 | |
| 		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
 | |
| 
 | |
| 		if (!size) {
 | |
| 			xdp.data = NULL;
 | |
| 			xdp.data_end = NULL;
 | |
| 			xdp.data_hard_start = NULL;
 | |
| 			xdp.data_meta = NULL;
 | |
| 			goto construct_skb;
 | |
| 		}
 | |
| 
 | |
| 		xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
 | |
| 		xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
 | |
| 		xdp.data_meta = xdp.data;
 | |
| 		xdp.data_end = xdp.data + size;
 | |
| #if (PAGE_SIZE > 4096)
 | |
| 		/* At larger PAGE_SIZE, frame_sz depend on len size */
 | |
| 		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
 | |
| #endif
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
 | |
| 		if (!xdp_prog) {
 | |
| 			rcu_read_unlock();
 | |
| 			goto construct_skb;
 | |
| 		}
 | |
| 
 | |
| 		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
 | |
| 		rcu_read_unlock();
 | |
| 		if (!xdp_res)
 | |
| 			goto construct_skb;
 | |
| 		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
 | |
| 			xdp_xmit |= xdp_res;
 | |
| 			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
 | |
| 		} else {
 | |
| 			rx_buf->pagecnt_bias++;
 | |
| 		}
 | |
| 		total_rx_bytes += size;
 | |
| 		total_rx_pkts++;
 | |
| 
 | |
| 		cleaned_count++;
 | |
| 		ice_put_rx_buf(rx_ring, rx_buf);
 | |
| 		continue;
 | |
| construct_skb:
 | |
| 		if (skb) {
 | |
| 			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
 | |
| 		} else if (likely(xdp.data)) {
 | |
| 			if (ice_ring_uses_build_skb(rx_ring))
 | |
| 				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
 | |
| 			else
 | |
| 				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
 | |
| 		}
 | |
| 		/* exit if we failed to retrieve a buffer */
 | |
| 		if (!skb) {
 | |
| 			rx_ring->rx_stats.alloc_buf_failed++;
 | |
| 			if (rx_buf)
 | |
| 				rx_buf->pagecnt_bias++;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ice_put_rx_buf(rx_ring, rx_buf);
 | |
| 		cleaned_count++;
 | |
| 
 | |
| 		/* skip if it is NOP desc */
 | |
| 		if (ice_is_non_eop(rx_ring, rx_desc, skb))
 | |
| 			continue;
 | |
| 
 | |
| 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
 | |
| 		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
 | |
| 			dev_kfree_skb_any(skb);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
 | |
| 		if (ice_test_staterr(rx_desc, stat_err_bits))
 | |
| 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
 | |
| 
 | |
| 		/* pad the skb if needed, to make a valid ethernet frame */
 | |
| 		if (eth_skb_pad(skb)) {
 | |
| 			skb = NULL;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* probably a little skewed due to removing CRC */
 | |
| 		total_rx_bytes += skb->len;
 | |
| 
 | |
| 		/* populate checksum, VLAN, and protocol */
 | |
| 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
 | |
| 			ICE_RX_FLEX_DESC_PTYPE_M;
 | |
| 
 | |
| 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
 | |
| 
 | |
| 		/* send completed skb up the stack */
 | |
| 		ice_receive_skb(rx_ring, skb, vlan_tag);
 | |
| 
 | |
| 		/* update budget accounting */
 | |
| 		total_rx_pkts++;
 | |
| 	}
 | |
| 
 | |
| 	/* return up to cleaned_count buffers to hardware */
 | |
| 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
 | |
| 
 | |
| 	if (xdp_prog)
 | |
| 		ice_finalize_xdp_rx(rx_ring, xdp_xmit);
 | |
| 
 | |
| 	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
 | |
| 
 | |
| 	/* guarantee a trip back through this routine if there was a failure */
 | |
| 	return failure ? budget : (int)total_rx_pkts;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
 | |
|  * @port_info: port_info structure containing the current link speed
 | |
|  * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
 | |
|  * @itr: ITR value to update
 | |
|  *
 | |
|  * Calculate how big of an increment should be applied to the ITR value passed
 | |
|  * in based on wmem_default, SKB overhead, Ethernet overhead, and the current
 | |
|  * link speed.
 | |
|  *
 | |
|  * The following is a calculation derived from:
 | |
|  *  wmem_default / (size + overhead) = desired_pkts_per_int
 | |
|  *  rate / bits_per_byte / (size + Ethernet overhead) = pkt_rate
 | |
|  *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
 | |
|  *
 | |
|  * Assuming wmem_default is 212992 and overhead is 640 bytes per
 | |
|  * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
 | |
|  * formula down to:
 | |
|  *
 | |
|  *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
 | |
|  * ITR = -------------------------------------------- * --------------
 | |
|  *			     rate			pkt_size + 640
 | |
|  */
 | |
| static unsigned int
 | |
| ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
 | |
| 				 unsigned int avg_pkt_size,
 | |
| 				 unsigned int itr)
 | |
| {
 | |
| 	switch (port_info->phy.link_info.link_speed) {
 | |
| 	case ICE_AQ_LINK_SPEED_100GB:
 | |
| 		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
 | |
| 				    avg_pkt_size + 640);
 | |
| 		break;
 | |
| 	case ICE_AQ_LINK_SPEED_50GB:
 | |
| 		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
 | |
| 				    avg_pkt_size + 640);
 | |
| 		break;
 | |
| 	case ICE_AQ_LINK_SPEED_40GB:
 | |
| 		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
 | |
| 				    avg_pkt_size + 640);
 | |
| 		break;
 | |
| 	case ICE_AQ_LINK_SPEED_25GB:
 | |
| 		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
 | |
| 				    avg_pkt_size + 640);
 | |
| 		break;
 | |
| 	case ICE_AQ_LINK_SPEED_20GB:
 | |
| 		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
 | |
| 				    avg_pkt_size + 640);
 | |
| 		break;
 | |
| 	case ICE_AQ_LINK_SPEED_10GB:
 | |
| 	default:
 | |
| 		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
 | |
| 				    avg_pkt_size + 640);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
 | |
| 		itr &= ICE_ITR_ADAPTIVE_LATENCY;
 | |
| 		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
 | |
| 	}
 | |
| 
 | |
| 	return itr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_update_itr - update the adaptive ITR value based on statistics
 | |
|  * @q_vector: structure containing interrupt and ring information
 | |
|  * @rc: structure containing ring performance data
 | |
|  *
 | |
|  * Stores a new ITR value based on packets and byte
 | |
|  * counts during the last interrupt.  The advantage of per interrupt
 | |
|  * computation is faster updates and more accurate ITR for the current
 | |
|  * traffic pattern.  Constants in this function were computed
 | |
|  * based on theoretical maximum wire speed and thresholds were set based
 | |
|  * on testing data as well as attempting to minimize response time
 | |
|  * while increasing bulk throughput.
 | |
|  */
 | |
| static void
 | |
| ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
 | |
| {
 | |
| 	unsigned long next_update = jiffies;
 | |
| 	unsigned int packets, bytes, itr;
 | |
| 	bool container_is_rx;
 | |
| 
 | |
| 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
 | |
| 		return;
 | |
| 
 | |
| 	/* If itr_countdown is set it means we programmed an ITR within
 | |
| 	 * the last 4 interrupt cycles. This has a side effect of us
 | |
| 	 * potentially firing an early interrupt. In order to work around
 | |
| 	 * this we need to throw out any data received for a few
 | |
| 	 * interrupts following the update.
 | |
| 	 */
 | |
| 	if (q_vector->itr_countdown) {
 | |
| 		itr = rc->target_itr;
 | |
| 		goto clear_counts;
 | |
| 	}
 | |
| 
 | |
| 	container_is_rx = (&q_vector->rx == rc);
 | |
| 	/* For Rx we want to push the delay up and default to low latency.
 | |
| 	 * for Tx we want to pull the delay down and default to high latency.
 | |
| 	 */
 | |
| 	itr = container_is_rx ?
 | |
| 		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
 | |
| 		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
 | |
| 
 | |
| 	/* If we didn't update within up to 1 - 2 jiffies we can assume
 | |
| 	 * that either packets are coming in so slow there hasn't been
 | |
| 	 * any work, or that there is so much work that NAPI is dealing
 | |
| 	 * with interrupt moderation and we don't need to do anything.
 | |
| 	 */
 | |
| 	if (time_after(next_update, rc->next_update))
 | |
| 		goto clear_counts;
 | |
| 
 | |
| 	prefetch(q_vector->vsi->port_info);
 | |
| 
 | |
| 	packets = rc->total_pkts;
 | |
| 	bytes = rc->total_bytes;
 | |
| 
 | |
| 	if (container_is_rx) {
 | |
| 		/* If Rx there are 1 to 4 packets and bytes are less than
 | |
| 		 * 9000 assume insufficient data to use bulk rate limiting
 | |
| 		 * approach unless Tx is already in bulk rate limiting. We
 | |
| 		 * are likely latency driven.
 | |
| 		 */
 | |
| 		if (packets && packets < 4 && bytes < 9000 &&
 | |
| 		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
 | |
| 			itr = ICE_ITR_ADAPTIVE_LATENCY;
 | |
| 			goto adjust_by_size_and_speed;
 | |
| 		}
 | |
| 	} else if (packets < 4) {
 | |
| 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
 | |
| 		 * bulk mode and we are receiving 4 or fewer packets just
 | |
| 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
 | |
| 		 * that the Rx can relax.
 | |
| 		 */
 | |
| 		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
 | |
| 		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
 | |
| 		    ICE_ITR_ADAPTIVE_MAX_USECS)
 | |
| 			goto clear_counts;
 | |
| 	} else if (packets > 32) {
 | |
| 		/* If we have processed over 32 packets in a single interrupt
 | |
| 		 * for Tx assume we need to switch over to "bulk" mode.
 | |
| 		 */
 | |
| 		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
 | |
| 	}
 | |
| 
 | |
| 	/* We have no packets to actually measure against. This means
 | |
| 	 * either one of the other queues on this vector is active or
 | |
| 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
 | |
| 	 *
 | |
| 	 * Between 4 and 56 we can assume that our current interrupt delay
 | |
| 	 * is only slightly too low. As such we should increase it by a small
 | |
| 	 * fixed amount.
 | |
| 	 */
 | |
| 	if (packets < 56) {
 | |
| 		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
 | |
| 		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
 | |
| 			itr &= ICE_ITR_ADAPTIVE_LATENCY;
 | |
| 			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
 | |
| 		}
 | |
| 		goto clear_counts;
 | |
| 	}
 | |
| 
 | |
| 	if (packets <= 256) {
 | |
| 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
 | |
| 		itr &= ICE_ITR_MASK;
 | |
| 
 | |
| 		/* Between 56 and 112 is our "goldilocks" zone where we are
 | |
| 		 * working out "just right". Just report that our current
 | |
| 		 * ITR is good for us.
 | |
| 		 */
 | |
| 		if (packets <= 112)
 | |
| 			goto clear_counts;
 | |
| 
 | |
| 		/* If packet count is 128 or greater we are likely looking
 | |
| 		 * at a slight overrun of the delay we want. Try halving
 | |
| 		 * our delay to see if that will cut the number of packets
 | |
| 		 * in half per interrupt.
 | |
| 		 */
 | |
| 		itr >>= 1;
 | |
| 		itr &= ICE_ITR_MASK;
 | |
| 		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
 | |
| 			itr = ICE_ITR_ADAPTIVE_MIN_USECS;
 | |
| 
 | |
| 		goto clear_counts;
 | |
| 	}
 | |
| 
 | |
| 	/* The paths below assume we are dealing with a bulk ITR since
 | |
| 	 * number of packets is greater than 256. We are just going to have
 | |
| 	 * to compute a value and try to bring the count under control,
 | |
| 	 * though for smaller packet sizes there isn't much we can do as
 | |
| 	 * NAPI polling will likely be kicking in sooner rather than later.
 | |
| 	 */
 | |
| 	itr = ICE_ITR_ADAPTIVE_BULK;
 | |
| 
 | |
| adjust_by_size_and_speed:
 | |
| 
 | |
| 	/* based on checks above packets cannot be 0 so division is safe */
 | |
| 	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
 | |
| 					       bytes / packets, itr);
 | |
| 
 | |
| clear_counts:
 | |
| 	/* write back value */
 | |
| 	rc->target_itr = itr;
 | |
| 
 | |
| 	/* next update should occur within next jiffy */
 | |
| 	rc->next_update = next_update + 1;
 | |
| 
 | |
| 	rc->total_bytes = 0;
 | |
| 	rc->total_pkts = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
 | |
|  * @itr_idx: interrupt throttling index
 | |
|  * @itr: interrupt throttling value in usecs
 | |
|  */
 | |
| static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
 | |
| {
 | |
| 	/* The ITR value is reported in microseconds, and the register value is
 | |
| 	 * recorded in 2 microsecond units. For this reason we only need to
 | |
| 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
 | |
| 	 * granularity as a shift instead of division. The mask makes sure the
 | |
| 	 * ITR value is never odd so we don't accidentally write into the field
 | |
| 	 * prior to the ITR field.
 | |
| 	 */
 | |
| 	itr &= ICE_ITR_MASK;
 | |
| 
 | |
| 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
 | |
| 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
 | |
| 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
 | |
| }
 | |
| 
 | |
| /* The act of updating the ITR will cause it to immediately trigger. In order
 | |
|  * to prevent this from throwing off adaptive update statistics we defer the
 | |
|  * update so that it can only happen so often. So after either Tx or Rx are
 | |
|  * updated we make the adaptive scheme wait until either the ITR completely
 | |
|  * expires via the next_update expiration or we have been through at least
 | |
|  * 3 interrupts.
 | |
|  */
 | |
| #define ITR_COUNTDOWN_START 3
 | |
| 
 | |
| /**
 | |
|  * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
 | |
|  * @q_vector: q_vector for which ITR is being updated and interrupt enabled
 | |
|  */
 | |
| static void ice_update_ena_itr(struct ice_q_vector *q_vector)
 | |
| {
 | |
| 	struct ice_ring_container *tx = &q_vector->tx;
 | |
| 	struct ice_ring_container *rx = &q_vector->rx;
 | |
| 	struct ice_vsi *vsi = q_vector->vsi;
 | |
| 	u32 itr_val;
 | |
| 
 | |
| 	/* when exiting WB_ON_ITR lets set a low ITR value and trigger
 | |
| 	 * interrupts to expire right away in case we have more work ready to go
 | |
| 	 * already
 | |
| 	 */
 | |
| 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
 | |
| 		itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
 | |
| 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
 | |
| 		/* set target back to last user set value */
 | |
| 		rx->target_itr = rx->itr_setting;
 | |
| 		/* set current to what we just wrote and dynamic if needed */
 | |
| 		rx->current_itr = ICE_WB_ON_ITR_USECS |
 | |
| 			(rx->itr_setting & ICE_ITR_DYNAMIC);
 | |
| 		/* allow normal interrupt flow to start */
 | |
| 		q_vector->itr_countdown = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* This will do nothing if dynamic updates are not enabled */
 | |
| 	ice_update_itr(q_vector, tx);
 | |
| 	ice_update_itr(q_vector, rx);
 | |
| 
 | |
| 	/* This block of logic allows us to get away with only updating
 | |
| 	 * one ITR value with each interrupt. The idea is to perform a
 | |
| 	 * pseudo-lazy update with the following criteria.
 | |
| 	 *
 | |
| 	 * 1. Rx is given higher priority than Tx if both are in same state
 | |
| 	 * 2. If we must reduce an ITR that is given highest priority.
 | |
| 	 * 3. We then give priority to increasing ITR based on amount.
 | |
| 	 */
 | |
| 	if (rx->target_itr < rx->current_itr) {
 | |
| 		/* Rx ITR needs to be reduced, this is highest priority */
 | |
| 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
 | |
| 		rx->current_itr = rx->target_itr;
 | |
| 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
 | |
| 	} else if ((tx->target_itr < tx->current_itr) ||
 | |
| 		   ((rx->target_itr - rx->current_itr) <
 | |
| 		    (tx->target_itr - tx->current_itr))) {
 | |
| 		/* Tx ITR needs to be reduced, this is second priority
 | |
| 		 * Tx ITR needs to be increased more than Rx, fourth priority
 | |
| 		 */
 | |
| 		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
 | |
| 		tx->current_itr = tx->target_itr;
 | |
| 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
 | |
| 	} else if (rx->current_itr != rx->target_itr) {
 | |
| 		/* Rx ITR needs to be increased, third priority */
 | |
| 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
 | |
| 		rx->current_itr = rx->target_itr;
 | |
| 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
 | |
| 	} else {
 | |
| 		/* Still have to re-enable the interrupts */
 | |
| 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
 | |
| 		if (q_vector->itr_countdown)
 | |
| 			q_vector->itr_countdown--;
 | |
| 	}
 | |
| 
 | |
| 	if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
 | |
| 		wr32(&q_vector->vsi->back->hw,
 | |
| 		     GLINT_DYN_CTL(q_vector->reg_idx),
 | |
| 		     itr_val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
 | |
|  * @q_vector: q_vector to set WB_ON_ITR on
 | |
|  *
 | |
|  * We need to tell hardware to write-back completed descriptors even when
 | |
|  * interrupts are disabled. Descriptors will be written back on cache line
 | |
|  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
 | |
|  * descriptors may not be written back if they don't fill a cache line until the
 | |
|  * next interrupt.
 | |
|  *
 | |
|  * This sets the write-back frequency to 2 microseconds as that is the minimum
 | |
|  * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
 | |
|  * make sure hardware knows we aren't meddling with the INTENA_M bit.
 | |
|  */
 | |
| static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
 | |
| {
 | |
| 	struct ice_vsi *vsi = q_vector->vsi;
 | |
| 
 | |
| 	/* already in WB_ON_ITR mode no need to change it */
 | |
| 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
 | |
| 		return;
 | |
| 
 | |
| 	if (q_vector->num_ring_rx)
 | |
| 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
 | |
| 		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
 | |
| 						 ICE_RX_ITR));
 | |
| 
 | |
| 	if (q_vector->num_ring_tx)
 | |
| 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
 | |
| 		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
 | |
| 						 ICE_TX_ITR));
 | |
| 
 | |
| 	q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
 | |
|  * @napi: napi struct with our devices info in it
 | |
|  * @budget: amount of work driver is allowed to do this pass, in packets
 | |
|  *
 | |
|  * This function will clean all queues associated with a q_vector.
 | |
|  *
 | |
|  * Returns the amount of work done
 | |
|  */
 | |
| int ice_napi_poll(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct ice_q_vector *q_vector =
 | |
| 				container_of(napi, struct ice_q_vector, napi);
 | |
| 	bool clean_complete = true;
 | |
| 	struct ice_ring *ring;
 | |
| 	int budget_per_ring;
 | |
| 	int work_done = 0;
 | |
| 
 | |
| 	/* Since the actual Tx work is minimal, we can give the Tx a larger
 | |
| 	 * budget and be more aggressive about cleaning up the Tx descriptors.
 | |
| 	 */
 | |
| 	ice_for_each_ring(ring, q_vector->tx) {
 | |
| 		bool wd = ring->xsk_umem ?
 | |
| 			  ice_clean_tx_irq_zc(ring, budget) :
 | |
| 			  ice_clean_tx_irq(ring, budget);
 | |
| 
 | |
| 		if (!wd)
 | |
| 			clean_complete = false;
 | |
| 	}
 | |
| 
 | |
| 	/* Handle case where we are called by netpoll with a budget of 0 */
 | |
| 	if (unlikely(budget <= 0))
 | |
| 		return budget;
 | |
| 
 | |
| 	/* normally we have 1 Rx ring per q_vector */
 | |
| 	if (unlikely(q_vector->num_ring_rx > 1))
 | |
| 		/* We attempt to distribute budget to each Rx queue fairly, but
 | |
| 		 * don't allow the budget to go below 1 because that would exit
 | |
| 		 * polling early.
 | |
| 		 */
 | |
| 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
 | |
| 	else
 | |
| 		/* Max of 1 Rx ring in this q_vector so give it the budget */
 | |
| 		budget_per_ring = budget;
 | |
| 
 | |
| 	ice_for_each_ring(ring, q_vector->rx) {
 | |
| 		int cleaned;
 | |
| 
 | |
| 		/* A dedicated path for zero-copy allows making a single
 | |
| 		 * comparison in the irq context instead of many inside the
 | |
| 		 * ice_clean_rx_irq function and makes the codebase cleaner.
 | |
| 		 */
 | |
| 		cleaned = ring->xsk_umem ?
 | |
| 			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
 | |
| 			  ice_clean_rx_irq(ring, budget_per_ring);
 | |
| 		work_done += cleaned;
 | |
| 		/* if we clean as many as budgeted, we must not be done */
 | |
| 		if (cleaned >= budget_per_ring)
 | |
| 			clean_complete = false;
 | |
| 	}
 | |
| 
 | |
| 	/* If work not completed, return budget and polling will return */
 | |
| 	if (!clean_complete)
 | |
| 		return budget;
 | |
| 
 | |
| 	/* Exit the polling mode, but don't re-enable interrupts if stack might
 | |
| 	 * poll us due to busy-polling
 | |
| 	 */
 | |
| 	if (likely(napi_complete_done(napi, work_done)))
 | |
| 		ice_update_ena_itr(q_vector);
 | |
| 	else
 | |
| 		ice_set_wb_on_itr(q_vector);
 | |
| 
 | |
| 	return min_t(int, work_done, budget - 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
 | |
|  * @tx_ring: the ring to be checked
 | |
|  * @size: the size buffer we want to assure is available
 | |
|  *
 | |
|  * Returns -EBUSY if a stop is needed, else 0
 | |
|  */
 | |
| static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
 | |
| {
 | |
| 	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
 | |
| 	/* Memory barrier before checking head and tail */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/* Check again in a case another CPU has just made room available. */
 | |
| 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* A reprieve! - use start_subqueue because it doesn't call schedule */
 | |
| 	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
 | |
| 	++tx_ring->tx_stats.restart_q;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
 | |
|  * @tx_ring: the ring to be checked
 | |
|  * @size:    the size buffer we want to assure is available
 | |
|  *
 | |
|  * Returns 0 if stop is not needed
 | |
|  */
 | |
| static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
 | |
| {
 | |
| 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
 | |
| 		return 0;
 | |
| 
 | |
| 	return __ice_maybe_stop_tx(tx_ring, size);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_tx_map - Build the Tx descriptor
 | |
|  * @tx_ring: ring to send buffer on
 | |
|  * @first: first buffer info buffer to use
 | |
|  * @off: pointer to struct that holds offload parameters
 | |
|  *
 | |
|  * This function loops over the skb data pointed to by *first
 | |
|  * and gets a physical address for each memory location and programs
 | |
|  * it and the length into the transmit descriptor.
 | |
|  */
 | |
| static void
 | |
| ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
 | |
| 	   struct ice_tx_offload_params *off)
 | |
| {
 | |
| 	u64 td_offset, td_tag, td_cmd;
 | |
| 	u16 i = tx_ring->next_to_use;
 | |
| 	unsigned int data_len, size;
 | |
| 	struct ice_tx_desc *tx_desc;
 | |
| 	struct ice_tx_buf *tx_buf;
 | |
| 	struct sk_buff *skb;
 | |
| 	skb_frag_t *frag;
 | |
| 	dma_addr_t dma;
 | |
| 
 | |
| 	td_tag = off->td_l2tag1;
 | |
| 	td_cmd = off->td_cmd;
 | |
| 	td_offset = off->td_offset;
 | |
| 	skb = first->skb;
 | |
| 
 | |
| 	data_len = skb->data_len;
 | |
| 	size = skb_headlen(skb);
 | |
| 
 | |
| 	tx_desc = ICE_TX_DESC(tx_ring, i);
 | |
| 
 | |
| 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
 | |
| 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
 | |
| 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
 | |
| 			  ICE_TX_FLAGS_VLAN_S;
 | |
| 	}
 | |
| 
 | |
| 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
 | |
| 
 | |
| 	tx_buf = first;
 | |
| 
 | |
| 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 | |
| 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
 | |
| 
 | |
| 		if (dma_mapping_error(tx_ring->dev, dma))
 | |
| 			goto dma_error;
 | |
| 
 | |
| 		/* record length, and DMA address */
 | |
| 		dma_unmap_len_set(tx_buf, len, size);
 | |
| 		dma_unmap_addr_set(tx_buf, dma, dma);
 | |
| 
 | |
| 		/* align size to end of page */
 | |
| 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
 | |
| 		tx_desc->buf_addr = cpu_to_le64(dma);
 | |
| 
 | |
| 		/* account for data chunks larger than the hardware
 | |
| 		 * can handle
 | |
| 		 */
 | |
| 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
 | |
| 			tx_desc->cmd_type_offset_bsz =
 | |
| 				ice_build_ctob(td_cmd, td_offset, max_data,
 | |
| 					       td_tag);
 | |
| 
 | |
| 			tx_desc++;
 | |
| 			i++;
 | |
| 
 | |
| 			if (i == tx_ring->count) {
 | |
| 				tx_desc = ICE_TX_DESC(tx_ring, 0);
 | |
| 				i = 0;
 | |
| 			}
 | |
| 
 | |
| 			dma += max_data;
 | |
| 			size -= max_data;
 | |
| 
 | |
| 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
 | |
| 			tx_desc->buf_addr = cpu_to_le64(dma);
 | |
| 		}
 | |
| 
 | |
| 		if (likely(!data_len))
 | |
| 			break;
 | |
| 
 | |
| 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
 | |
| 							      size, td_tag);
 | |
| 
 | |
| 		tx_desc++;
 | |
| 		i++;
 | |
| 
 | |
| 		if (i == tx_ring->count) {
 | |
| 			tx_desc = ICE_TX_DESC(tx_ring, 0);
 | |
| 			i = 0;
 | |
| 		}
 | |
| 
 | |
| 		size = skb_frag_size(frag);
 | |
| 		data_len -= size;
 | |
| 
 | |
| 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
 | |
| 				       DMA_TO_DEVICE);
 | |
| 
 | |
| 		tx_buf = &tx_ring->tx_buf[i];
 | |
| 	}
 | |
| 
 | |
| 	/* record bytecount for BQL */
 | |
| 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
 | |
| 
 | |
| 	/* record SW timestamp if HW timestamp is not available */
 | |
| 	skb_tx_timestamp(first->skb);
 | |
| 
 | |
| 	i++;
 | |
| 	if (i == tx_ring->count)
 | |
| 		i = 0;
 | |
| 
 | |
| 	/* write last descriptor with RS and EOP bits */
 | |
| 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
 | |
| 	tx_desc->cmd_type_offset_bsz =
 | |
| 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
 | |
| 
 | |
| 	/* Force memory writes to complete before letting h/w know there
 | |
| 	 * are new descriptors to fetch.
 | |
| 	 *
 | |
| 	 * We also use this memory barrier to make certain all of the
 | |
| 	 * status bits have been updated before next_to_watch is written.
 | |
| 	 */
 | |
| 	wmb();
 | |
| 
 | |
| 	/* set next_to_watch value indicating a packet is present */
 | |
| 	first->next_to_watch = tx_desc;
 | |
| 
 | |
| 	tx_ring->next_to_use = i;
 | |
| 
 | |
| 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
 | |
| 
 | |
| 	/* notify HW of packet */
 | |
| 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
 | |
| 		writel(i, tx_ring->tail);
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| dma_error:
 | |
| 	/* clear DMA mappings for failed tx_buf map */
 | |
| 	for (;;) {
 | |
| 		tx_buf = &tx_ring->tx_buf[i];
 | |
| 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
 | |
| 		if (tx_buf == first)
 | |
| 			break;
 | |
| 		if (i == 0)
 | |
| 			i = tx_ring->count;
 | |
| 		i--;
 | |
| 	}
 | |
| 
 | |
| 	tx_ring->next_to_use = i;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_tx_csum - Enable Tx checksum offloads
 | |
|  * @first: pointer to the first descriptor
 | |
|  * @off: pointer to struct that holds offload parameters
 | |
|  *
 | |
|  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
 | |
|  */
 | |
| static
 | |
| int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
 | |
| {
 | |
| 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
 | |
| 	struct sk_buff *skb = first->skb;
 | |
| 	union {
 | |
| 		struct iphdr *v4;
 | |
| 		struct ipv6hdr *v6;
 | |
| 		unsigned char *hdr;
 | |
| 	} ip;
 | |
| 	union {
 | |
| 		struct tcphdr *tcp;
 | |
| 		unsigned char *hdr;
 | |
| 	} l4;
 | |
| 	__be16 frag_off, protocol;
 | |
| 	unsigned char *exthdr;
 | |
| 	u32 offset, cmd = 0;
 | |
| 	u8 l4_proto = 0;
 | |
| 
 | |
| 	if (skb->ip_summed != CHECKSUM_PARTIAL)
 | |
| 		return 0;
 | |
| 
 | |
| 	ip.hdr = skb_network_header(skb);
 | |
| 	l4.hdr = skb_transport_header(skb);
 | |
| 
 | |
| 	/* compute outer L2 header size */
 | |
| 	l2_len = ip.hdr - skb->data;
 | |
| 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
 | |
| 
 | |
| 	protocol = vlan_get_protocol(skb);
 | |
| 
 | |
| 	if (protocol == htons(ETH_P_IP))
 | |
| 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
 | |
| 	else if (protocol == htons(ETH_P_IPV6))
 | |
| 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
 | |
| 
 | |
| 	if (skb->encapsulation) {
 | |
| 		bool gso_ena = false;
 | |
| 		u32 tunnel = 0;
 | |
| 
 | |
| 		/* define outer network header type */
 | |
| 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
 | |
| 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
 | |
| 				  ICE_TX_CTX_EIPT_IPV4 :
 | |
| 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
 | |
| 			l4_proto = ip.v4->protocol;
 | |
| 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
 | |
| 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
 | |
| 			exthdr = ip.hdr + sizeof(*ip.v6);
 | |
| 			l4_proto = ip.v6->nexthdr;
 | |
| 			if (l4.hdr != exthdr)
 | |
| 				ipv6_skip_exthdr(skb, exthdr - skb->data,
 | |
| 						 &l4_proto, &frag_off);
 | |
| 		}
 | |
| 
 | |
| 		/* define outer transport */
 | |
| 		switch (l4_proto) {
 | |
| 		case IPPROTO_UDP:
 | |
| 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
 | |
| 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
 | |
| 			break;
 | |
| 		case IPPROTO_GRE:
 | |
| 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
 | |
| 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
 | |
| 			break;
 | |
| 		case IPPROTO_IPIP:
 | |
| 		case IPPROTO_IPV6:
 | |
| 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
 | |
| 			l4.hdr = skb_inner_network_header(skb);
 | |
| 			break;
 | |
| 		default:
 | |
| 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
 | |
| 				return -1;
 | |
| 
 | |
| 			skb_checksum_help(skb);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/* compute outer L3 header size */
 | |
| 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
 | |
| 			  ICE_TXD_CTX_QW0_EIPLEN_S;
 | |
| 
 | |
| 		/* switch IP header pointer from outer to inner header */
 | |
| 		ip.hdr = skb_inner_network_header(skb);
 | |
| 
 | |
| 		/* compute tunnel header size */
 | |
| 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
 | |
| 			   ICE_TXD_CTX_QW0_NATLEN_S;
 | |
| 
 | |
| 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
 | |
| 		/* indicate if we need to offload outer UDP header */
 | |
| 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
 | |
| 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
 | |
| 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
 | |
| 
 | |
| 		/* record tunnel offload values */
 | |
| 		off->cd_tunnel_params |= tunnel;
 | |
| 
 | |
| 		/* set DTYP=1 to indicate that it's an Tx context descriptor
 | |
| 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
 | |
| 		 */
 | |
| 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
 | |
| 
 | |
| 		/* switch L4 header pointer from outer to inner */
 | |
| 		l4.hdr = skb_inner_transport_header(skb);
 | |
| 		l4_proto = 0;
 | |
| 
 | |
| 		/* reset type as we transition from outer to inner headers */
 | |
| 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
 | |
| 		if (ip.v4->version == 4)
 | |
| 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
 | |
| 		if (ip.v6->version == 6)
 | |
| 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable IP checksum offloads */
 | |
| 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
 | |
| 		l4_proto = ip.v4->protocol;
 | |
| 		/* the stack computes the IP header already, the only time we
 | |
| 		 * need the hardware to recompute it is in the case of TSO.
 | |
| 		 */
 | |
| 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
 | |
| 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
 | |
| 		else
 | |
| 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
 | |
| 
 | |
| 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
 | |
| 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
 | |
| 		exthdr = ip.hdr + sizeof(*ip.v6);
 | |
| 		l4_proto = ip.v6->nexthdr;
 | |
| 		if (l4.hdr != exthdr)
 | |
| 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
 | |
| 					 &frag_off);
 | |
| 	} else {
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* compute inner L3 header size */
 | |
| 	l3_len = l4.hdr - ip.hdr;
 | |
| 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
 | |
| 
 | |
| 	/* Enable L4 checksum offloads */
 | |
| 	switch (l4_proto) {
 | |
| 	case IPPROTO_TCP:
 | |
| 		/* enable checksum offloads */
 | |
| 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
 | |
| 		l4_len = l4.tcp->doff;
 | |
| 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
 | |
| 		break;
 | |
| 	case IPPROTO_UDP:
 | |
| 		/* enable UDP checksum offload */
 | |
| 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
 | |
| 		l4_len = (sizeof(struct udphdr) >> 2);
 | |
| 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
 | |
| 		break;
 | |
| 	case IPPROTO_SCTP:
 | |
| 		/* enable SCTP checksum offload */
 | |
| 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
 | |
| 		l4_len = sizeof(struct sctphdr) >> 2;
 | |
| 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
 | |
| 			return -1;
 | |
| 		skb_checksum_help(skb);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	off->td_cmd |= cmd;
 | |
| 	off->td_offset |= offset;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
 | |
|  * @tx_ring: ring to send buffer on
 | |
|  * @first: pointer to struct ice_tx_buf
 | |
|  *
 | |
|  * Checks the skb and set up correspondingly several generic transmit flags
 | |
|  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 | |
|  */
 | |
| static void
 | |
| ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
 | |
| {
 | |
| 	struct sk_buff *skb = first->skb;
 | |
| 
 | |
| 	/* nothing left to do, software offloaded VLAN */
 | |
| 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
 | |
| 		return;
 | |
| 
 | |
| 	/* currently, we always assume 802.1Q for VLAN insertion as VLAN
 | |
| 	 * insertion for 802.1AD is not supported
 | |
| 	 */
 | |
| 	if (skb_vlan_tag_present(skb)) {
 | |
| 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
 | |
| 		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
 | |
| 	}
 | |
| 
 | |
| 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_tso - computes mss and TSO length to prepare for TSO
 | |
|  * @first: pointer to struct ice_tx_buf
 | |
|  * @off: pointer to struct that holds offload parameters
 | |
|  *
 | |
|  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
 | |
|  */
 | |
| static
 | |
| int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
 | |
| {
 | |
| 	struct sk_buff *skb = first->skb;
 | |
| 	union {
 | |
| 		struct iphdr *v4;
 | |
| 		struct ipv6hdr *v6;
 | |
| 		unsigned char *hdr;
 | |
| 	} ip;
 | |
| 	union {
 | |
| 		struct tcphdr *tcp;
 | |
| 		struct udphdr *udp;
 | |
| 		unsigned char *hdr;
 | |
| 	} l4;
 | |
| 	u64 cd_mss, cd_tso_len;
 | |
| 	u32 paylen;
 | |
| 	u8 l4_start;
 | |
| 	int err;
 | |
| 
 | |
| 	if (skb->ip_summed != CHECKSUM_PARTIAL)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!skb_is_gso(skb))
 | |
| 		return 0;
 | |
| 
 | |
| 	err = skb_cow_head(skb, 0);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	/* cppcheck-suppress unreadVariable */
 | |
| 	ip.hdr = skb_network_header(skb);
 | |
| 	l4.hdr = skb_transport_header(skb);
 | |
| 
 | |
| 	/* initialize outer IP header fields */
 | |
| 	if (ip.v4->version == 4) {
 | |
| 		ip.v4->tot_len = 0;
 | |
| 		ip.v4->check = 0;
 | |
| 	} else {
 | |
| 		ip.v6->payload_len = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
 | |
| 					 SKB_GSO_GRE_CSUM |
 | |
| 					 SKB_GSO_IPXIP4 |
 | |
| 					 SKB_GSO_IPXIP6 |
 | |
| 					 SKB_GSO_UDP_TUNNEL |
 | |
| 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
 | |
| 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
 | |
| 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
 | |
| 			l4.udp->len = 0;
 | |
| 
 | |
| 			/* determine offset of outer transport header */
 | |
| 			l4_start = (u8)(l4.hdr - skb->data);
 | |
| 
 | |
| 			/* remove payload length from outer checksum */
 | |
| 			paylen = skb->len - l4_start;
 | |
| 			csum_replace_by_diff(&l4.udp->check,
 | |
| 					     (__force __wsum)htonl(paylen));
 | |
| 		}
 | |
| 
 | |
| 		/* reset pointers to inner headers */
 | |
| 
 | |
| 		/* cppcheck-suppress unreadVariable */
 | |
| 		ip.hdr = skb_inner_network_header(skb);
 | |
| 		l4.hdr = skb_inner_transport_header(skb);
 | |
| 
 | |
| 		/* initialize inner IP header fields */
 | |
| 		if (ip.v4->version == 4) {
 | |
| 			ip.v4->tot_len = 0;
 | |
| 			ip.v4->check = 0;
 | |
| 		} else {
 | |
| 			ip.v6->payload_len = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* determine offset of transport header */
 | |
| 	l4_start = (u8)(l4.hdr - skb->data);
 | |
| 
 | |
| 	/* remove payload length from checksum */
 | |
| 	paylen = skb->len - l4_start;
 | |
| 
 | |
| 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
 | |
| 		csum_replace_by_diff(&l4.udp->check,
 | |
| 				     (__force __wsum)htonl(paylen));
 | |
| 		/* compute length of UDP segmentation header */
 | |
| 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
 | |
| 	} else {
 | |
| 		csum_replace_by_diff(&l4.tcp->check,
 | |
| 				     (__force __wsum)htonl(paylen));
 | |
| 		/* compute length of TCP segmentation header */
 | |
| 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
 | |
| 	}
 | |
| 
 | |
| 	/* update gso_segs and bytecount */
 | |
| 	first->gso_segs = skb_shinfo(skb)->gso_segs;
 | |
| 	first->bytecount += (first->gso_segs - 1) * off->header_len;
 | |
| 
 | |
| 	cd_tso_len = skb->len - off->header_len;
 | |
| 	cd_mss = skb_shinfo(skb)->gso_size;
 | |
| 
 | |
| 	/* record cdesc_qw1 with TSO parameters */
 | |
| 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
 | |
| 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
 | |
| 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
 | |
| 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
 | |
| 	first->tx_flags |= ICE_TX_FLAGS_TSO;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
 | |
|  * @size: transmit request size in bytes
 | |
|  *
 | |
|  * Due to hardware alignment restrictions (4K alignment), we need to
 | |
|  * assume that we can have no more than 12K of data per descriptor, even
 | |
|  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
 | |
|  * Thus, we need to divide by 12K. But division is slow! Instead,
 | |
|  * we decompose the operation into shifts and one relatively cheap
 | |
|  * multiply operation.
 | |
|  *
 | |
|  * To divide by 12K, we first divide by 4K, then divide by 3:
 | |
|  *     To divide by 4K, shift right by 12 bits
 | |
|  *     To divide by 3, multiply by 85, then divide by 256
 | |
|  *     (Divide by 256 is done by shifting right by 8 bits)
 | |
|  * Finally, we add one to round up. Because 256 isn't an exact multiple of
 | |
|  * 3, we'll underestimate near each multiple of 12K. This is actually more
 | |
|  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
 | |
|  * segment. For our purposes this is accurate out to 1M which is orders of
 | |
|  * magnitude greater than our largest possible GSO size.
 | |
|  *
 | |
|  * This would then be implemented as:
 | |
|  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
 | |
|  *
 | |
|  * Since multiplication and division are commutative, we can reorder
 | |
|  * operations into:
 | |
|  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
 | |
|  */
 | |
| static unsigned int ice_txd_use_count(unsigned int size)
 | |
| {
 | |
| 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_xmit_desc_count - calculate number of Tx descriptors needed
 | |
|  * @skb: send buffer
 | |
|  *
 | |
|  * Returns number of data descriptors needed for this skb.
 | |
|  */
 | |
| static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
 | |
| {
 | |
| 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
 | |
| 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
 | |
| 	unsigned int count = 0, size = skb_headlen(skb);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		count += ice_txd_use_count(size);
 | |
| 
 | |
| 		if (!nr_frags--)
 | |
| 			break;
 | |
| 
 | |
| 		size = skb_frag_size(frag++);
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
 | |
|  * @skb: send buffer
 | |
|  *
 | |
|  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
 | |
|  * and so we need to figure out the cases where we need to linearize the skb.
 | |
|  *
 | |
|  * For TSO we need to count the TSO header and segment payload separately.
 | |
|  * As such we need to check cases where we have 7 fragments or more as we
 | |
|  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
 | |
|  * the segment payload in the first descriptor, and another 7 for the
 | |
|  * fragments.
 | |
|  */
 | |
| static bool __ice_chk_linearize(struct sk_buff *skb)
 | |
| {
 | |
| 	const skb_frag_t *frag, *stale;
 | |
| 	int nr_frags, sum;
 | |
| 
 | |
| 	/* no need to check if number of frags is less than 7 */
 | |
| 	nr_frags = skb_shinfo(skb)->nr_frags;
 | |
| 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
 | |
| 		return false;
 | |
| 
 | |
| 	/* We need to walk through the list and validate that each group
 | |
| 	 * of 6 fragments totals at least gso_size.
 | |
| 	 */
 | |
| 	nr_frags -= ICE_MAX_BUF_TXD - 2;
 | |
| 	frag = &skb_shinfo(skb)->frags[0];
 | |
| 
 | |
| 	/* Initialize size to the negative value of gso_size minus 1. We
 | |
| 	 * use this as the worst case scenario in which the frag ahead
 | |
| 	 * of us only provides one byte which is why we are limited to 6
 | |
| 	 * descriptors for a single transmit as the header and previous
 | |
| 	 * fragment are already consuming 2 descriptors.
 | |
| 	 */
 | |
| 	sum = 1 - skb_shinfo(skb)->gso_size;
 | |
| 
 | |
| 	/* Add size of frags 0 through 4 to create our initial sum */
 | |
| 	sum += skb_frag_size(frag++);
 | |
| 	sum += skb_frag_size(frag++);
 | |
| 	sum += skb_frag_size(frag++);
 | |
| 	sum += skb_frag_size(frag++);
 | |
| 	sum += skb_frag_size(frag++);
 | |
| 
 | |
| 	/* Walk through fragments adding latest fragment, testing it, and
 | |
| 	 * then removing stale fragments from the sum.
 | |
| 	 */
 | |
| 	stale = &skb_shinfo(skb)->frags[0];
 | |
| 	for (;;) {
 | |
| 		sum += skb_frag_size(frag++);
 | |
| 
 | |
| 		/* if sum is negative we failed to make sufficient progress */
 | |
| 		if (sum < 0)
 | |
| 			return true;
 | |
| 
 | |
| 		if (!nr_frags--)
 | |
| 			break;
 | |
| 
 | |
| 		sum -= skb_frag_size(stale++);
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_chk_linearize - Check if there are more than 8 fragments per packet
 | |
|  * @skb:      send buffer
 | |
|  * @count:    number of buffers used
 | |
|  *
 | |
|  * Note: Our HW can't scatter-gather more than 8 fragments to build
 | |
|  * a packet on the wire and so we need to figure out the cases where we
 | |
|  * need to linearize the skb.
 | |
|  */
 | |
| static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
 | |
| {
 | |
| 	/* Both TSO and single send will work if count is less than 8 */
 | |
| 	if (likely(count < ICE_MAX_BUF_TXD))
 | |
| 		return false;
 | |
| 
 | |
| 	if (skb_is_gso(skb))
 | |
| 		return __ice_chk_linearize(skb);
 | |
| 
 | |
| 	/* we can support up to 8 data buffers for a single send */
 | |
| 	return count != ICE_MAX_BUF_TXD;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_xmit_frame_ring - Sends buffer on Tx ring
 | |
|  * @skb: send buffer
 | |
|  * @tx_ring: ring to send buffer on
 | |
|  *
 | |
|  * Returns NETDEV_TX_OK if sent, else an error code
 | |
|  */
 | |
| static netdev_tx_t
 | |
| ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
 | |
| {
 | |
| 	struct ice_tx_offload_params offload = { 0 };
 | |
| 	struct ice_vsi *vsi = tx_ring->vsi;
 | |
| 	struct ice_tx_buf *first;
 | |
| 	unsigned int count;
 | |
| 	int tso, csum;
 | |
| 
 | |
| 	count = ice_xmit_desc_count(skb);
 | |
| 	if (ice_chk_linearize(skb, count)) {
 | |
| 		if (__skb_linearize(skb))
 | |
| 			goto out_drop;
 | |
| 		count = ice_txd_use_count(skb->len);
 | |
| 		tx_ring->tx_stats.tx_linearize++;
 | |
| 	}
 | |
| 
 | |
| 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
 | |
| 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
 | |
| 	 *       + 4 desc gap to avoid the cache line where head is,
 | |
| 	 *       + 1 desc for context descriptor,
 | |
| 	 * otherwise try next time
 | |
| 	 */
 | |
| 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
 | |
| 			      ICE_DESCS_FOR_CTX_DESC)) {
 | |
| 		tx_ring->tx_stats.tx_busy++;
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	offload.tx_ring = tx_ring;
 | |
| 
 | |
| 	/* record the location of the first descriptor for this packet */
 | |
| 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
 | |
| 	first->skb = skb;
 | |
| 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
 | |
| 	first->gso_segs = 1;
 | |
| 	first->tx_flags = 0;
 | |
| 
 | |
| 	/* prepare the VLAN tagging flags for Tx */
 | |
| 	ice_tx_prepare_vlan_flags(tx_ring, first);
 | |
| 
 | |
| 	/* set up TSO offload */
 | |
| 	tso = ice_tso(first, &offload);
 | |
| 	if (tso < 0)
 | |
| 		goto out_drop;
 | |
| 
 | |
| 	/* always set up Tx checksum offload */
 | |
| 	csum = ice_tx_csum(first, &offload);
 | |
| 	if (csum < 0)
 | |
| 		goto out_drop;
 | |
| 
 | |
| 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
 | |
| 	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
 | |
| 		     vsi->type == ICE_VSI_PF &&
 | |
| 		     vsi->port_info->is_sw_lldp))
 | |
| 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
 | |
| 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
 | |
| 					ICE_TXD_CTX_QW1_CMD_S);
 | |
| 
 | |
| 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
 | |
| 		struct ice_tx_ctx_desc *cdesc;
 | |
| 		u16 i = tx_ring->next_to_use;
 | |
| 
 | |
| 		/* grab the next descriptor */
 | |
| 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
 | |
| 		i++;
 | |
| 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
 | |
| 
 | |
| 		/* setup context descriptor */
 | |
| 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
 | |
| 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
 | |
| 		cdesc->rsvd = cpu_to_le16(0);
 | |
| 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
 | |
| 	}
 | |
| 
 | |
| 	ice_tx_map(tx_ring, first, &offload);
 | |
| 	return NETDEV_TX_OK;
 | |
| 
 | |
| out_drop:
 | |
| 	dev_kfree_skb_any(skb);
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
 | |
|  * @skb: send buffer
 | |
|  * @netdev: network interface device structure
 | |
|  *
 | |
|  * Returns NETDEV_TX_OK if sent, else an error code
 | |
|  */
 | |
| netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
 | |
| {
 | |
| 	struct ice_netdev_priv *np = netdev_priv(netdev);
 | |
| 	struct ice_vsi *vsi = np->vsi;
 | |
| 	struct ice_ring *tx_ring;
 | |
| 
 | |
| 	tx_ring = vsi->tx_rings[skb->queue_mapping];
 | |
| 
 | |
| 	/* hardware can't handle really short frames, hardware padding works
 | |
| 	 * beyond this point
 | |
| 	 */
 | |
| 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
 | |
| 		return NETDEV_TX_OK;
 | |
| 
 | |
| 	return ice_xmit_frame_ring(skb, tx_ring);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
 | |
|  * @tx_ring: tx_ring to clean
 | |
|  */
 | |
| void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
 | |
| {
 | |
| 	struct ice_vsi *vsi = tx_ring->vsi;
 | |
| 	s16 i = tx_ring->next_to_clean;
 | |
| 	int budget = ICE_DFLT_IRQ_WORK;
 | |
| 	struct ice_tx_desc *tx_desc;
 | |
| 	struct ice_tx_buf *tx_buf;
 | |
| 
 | |
| 	tx_buf = &tx_ring->tx_buf[i];
 | |
| 	tx_desc = ICE_TX_DESC(tx_ring, i);
 | |
| 	i -= tx_ring->count;
 | |
| 
 | |
| 	do {
 | |
| 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
 | |
| 
 | |
| 		/* if next_to_watch is not set then there is no pending work */
 | |
| 		if (!eop_desc)
 | |
| 			break;
 | |
| 
 | |
| 		/* prevent any other reads prior to eop_desc */
 | |
| 		smp_rmb();
 | |
| 
 | |
| 		/* if the descriptor isn't done, no work to do */
 | |
| 		if (!(eop_desc->cmd_type_offset_bsz &
 | |
| 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
 | |
| 			break;
 | |
| 
 | |
| 		/* clear next_to_watch to prevent false hangs */
 | |
| 		tx_buf->next_to_watch = NULL;
 | |
| 		tx_desc->buf_addr = 0;
 | |
| 		tx_desc->cmd_type_offset_bsz = 0;
 | |
| 
 | |
| 		/* move past filter desc */
 | |
| 		tx_buf++;
 | |
| 		tx_desc++;
 | |
| 		i++;
 | |
| 		if (unlikely(!i)) {
 | |
| 			i -= tx_ring->count;
 | |
| 			tx_buf = tx_ring->tx_buf;
 | |
| 			tx_desc = ICE_TX_DESC(tx_ring, 0);
 | |
| 		}
 | |
| 
 | |
| 		/* unmap the data header */
 | |
| 		if (dma_unmap_len(tx_buf, len))
 | |
| 			dma_unmap_single(tx_ring->dev,
 | |
| 					 dma_unmap_addr(tx_buf, dma),
 | |
| 					 dma_unmap_len(tx_buf, len),
 | |
| 					 DMA_TO_DEVICE);
 | |
| 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
 | |
| 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
 | |
| 
 | |
| 		/* clear next_to_watch to prevent false hangs */
 | |
| 		tx_buf->raw_buf = NULL;
 | |
| 		tx_buf->tx_flags = 0;
 | |
| 		tx_buf->next_to_watch = NULL;
 | |
| 		dma_unmap_len_set(tx_buf, len, 0);
 | |
| 		tx_desc->buf_addr = 0;
 | |
| 		tx_desc->cmd_type_offset_bsz = 0;
 | |
| 
 | |
| 		/* move past eop_desc for start of next FD desc */
 | |
| 		tx_buf++;
 | |
| 		tx_desc++;
 | |
| 		i++;
 | |
| 		if (unlikely(!i)) {
 | |
| 			i -= tx_ring->count;
 | |
| 			tx_buf = tx_ring->tx_buf;
 | |
| 			tx_desc = ICE_TX_DESC(tx_ring, 0);
 | |
| 		}
 | |
| 
 | |
| 		budget--;
 | |
| 	} while (likely(budget));
 | |
| 
 | |
| 	i += tx_ring->count;
 | |
| 	tx_ring->next_to_clean = i;
 | |
| 
 | |
| 	/* re-enable interrupt if needed */
 | |
| 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
 | |
| }
 |