9a9620db07
* 'linux_next' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/i7core: (83 commits) i7core_edac: Better describe the supported devices Add support for Westmere to i7core_edac driver i7core_edac: don't free on success i7core_edac: Add support for X5670 Always call i7core_[ur]dimm_check_mc_ecc_err i7core_edac: fix memory leak of i7core_dev EDAC: add __init to i7core_xeon_pci_fixup i7core_edac: Fix wrong device id for channel 1 devices i7core: add support for Lynnfield alternate address i7core_edac: Add initial support for Lynnfield i7core_edac: do not export static functions edac: fix i7core build edac: i7core_edac produces undefined behaviour on 32bit i7core_edac: Use a more generic approach for probing PCI devices i7core_edac: PCI device is called NONCORE, instead of NOCORE i7core_edac: Fix ringbuffer maxsize i7core_edac: First store, then increment i7core_edac: Better parse "any" addrmask i7core_edac: Use a lockless ringbuffer edac: Create an unique instance for each kobj ...
2222 lines
50 KiB
C
2222 lines
50 KiB
C
/*
|
|
* Machine check handler.
|
|
*
|
|
* K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
|
|
* Rest from unknown author(s).
|
|
* 2004 Andi Kleen. Rewrote most of it.
|
|
* Copyright 2008 Intel Corporation
|
|
* Author: Andi Kleen
|
|
*/
|
|
#include <linux/thread_info.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/string.h>
|
|
#include <linux/sysdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/edac_mce.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/ipi.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/msr.h>
|
|
|
|
#include "mce-internal.h"
|
|
|
|
static DEFINE_MUTEX(mce_read_mutex);
|
|
|
|
#define rcu_dereference_check_mce(p) \
|
|
rcu_dereference_check((p), \
|
|
rcu_read_lock_sched_held() || \
|
|
lockdep_is_held(&mce_read_mutex))
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/mce.h>
|
|
|
|
int mce_disabled __read_mostly;
|
|
|
|
#define MISC_MCELOG_MINOR 227
|
|
|
|
#define SPINUNIT 100 /* 100ns */
|
|
|
|
atomic_t mce_entry;
|
|
|
|
DEFINE_PER_CPU(unsigned, mce_exception_count);
|
|
|
|
/*
|
|
* Tolerant levels:
|
|
* 0: always panic on uncorrected errors, log corrected errors
|
|
* 1: panic or SIGBUS on uncorrected errors, log corrected errors
|
|
* 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
|
|
* 3: never panic or SIGBUS, log all errors (for testing only)
|
|
*/
|
|
static int tolerant __read_mostly = 1;
|
|
static int banks __read_mostly;
|
|
static int rip_msr __read_mostly;
|
|
static int mce_bootlog __read_mostly = -1;
|
|
static int monarch_timeout __read_mostly = -1;
|
|
static int mce_panic_timeout __read_mostly;
|
|
static int mce_dont_log_ce __read_mostly;
|
|
int mce_cmci_disabled __read_mostly;
|
|
int mce_ignore_ce __read_mostly;
|
|
int mce_ser __read_mostly;
|
|
|
|
struct mce_bank *mce_banks __read_mostly;
|
|
|
|
/* User mode helper program triggered by machine check event */
|
|
static unsigned long mce_need_notify;
|
|
static char mce_helper[128];
|
|
static char *mce_helper_argv[2] = { mce_helper, NULL };
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
|
|
static DEFINE_PER_CPU(struct mce, mces_seen);
|
|
static int cpu_missing;
|
|
|
|
/*
|
|
* CPU/chipset specific EDAC code can register a notifier call here to print
|
|
* MCE errors in a human-readable form.
|
|
*/
|
|
ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
|
|
EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
|
|
|
|
static int default_decode_mce(struct notifier_block *nb, unsigned long val,
|
|
void *data)
|
|
{
|
|
pr_emerg("No human readable MCE decoding support on this CPU type.\n");
|
|
pr_emerg("Run the message through 'mcelog --ascii' to decode.\n");
|
|
|
|
return NOTIFY_STOP;
|
|
}
|
|
|
|
static struct notifier_block mce_dec_nb = {
|
|
.notifier_call = default_decode_mce,
|
|
.priority = -1,
|
|
};
|
|
|
|
/* MCA banks polled by the period polling timer for corrected events */
|
|
DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
|
|
[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct work_struct, mce_work);
|
|
|
|
/* Do initial initialization of a struct mce */
|
|
void mce_setup(struct mce *m)
|
|
{
|
|
memset(m, 0, sizeof(struct mce));
|
|
m->cpu = m->extcpu = smp_processor_id();
|
|
rdtscll(m->tsc);
|
|
/* We hope get_seconds stays lockless */
|
|
m->time = get_seconds();
|
|
m->cpuvendor = boot_cpu_data.x86_vendor;
|
|
m->cpuid = cpuid_eax(1);
|
|
#ifdef CONFIG_SMP
|
|
m->socketid = cpu_data(m->extcpu).phys_proc_id;
|
|
#endif
|
|
m->apicid = cpu_data(m->extcpu).initial_apicid;
|
|
rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
|
|
}
|
|
|
|
DEFINE_PER_CPU(struct mce, injectm);
|
|
EXPORT_PER_CPU_SYMBOL_GPL(injectm);
|
|
|
|
/*
|
|
* Lockless MCE logging infrastructure.
|
|
* This avoids deadlocks on printk locks without having to break locks. Also
|
|
* separate MCEs from kernel messages to avoid bogus bug reports.
|
|
*/
|
|
|
|
static struct mce_log mcelog = {
|
|
.signature = MCE_LOG_SIGNATURE,
|
|
.len = MCE_LOG_LEN,
|
|
.recordlen = sizeof(struct mce),
|
|
};
|
|
|
|
void mce_log(struct mce *mce)
|
|
{
|
|
unsigned next, entry;
|
|
|
|
/* Emit the trace record: */
|
|
trace_mce_record(mce);
|
|
|
|
mce->finished = 0;
|
|
wmb();
|
|
for (;;) {
|
|
entry = rcu_dereference_check_mce(mcelog.next);
|
|
for (;;) {
|
|
/*
|
|
* If edac_mce is enabled, it will check the error type
|
|
* and will process it, if it is a known error.
|
|
* Otherwise, the error will be sent through mcelog
|
|
* interface
|
|
*/
|
|
if (edac_mce_parse(mce))
|
|
return;
|
|
|
|
/*
|
|
* When the buffer fills up discard new entries.
|
|
* Assume that the earlier errors are the more
|
|
* interesting ones:
|
|
*/
|
|
if (entry >= MCE_LOG_LEN) {
|
|
set_bit(MCE_OVERFLOW,
|
|
(unsigned long *)&mcelog.flags);
|
|
return;
|
|
}
|
|
/* Old left over entry. Skip: */
|
|
if (mcelog.entry[entry].finished) {
|
|
entry++;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
smp_rmb();
|
|
next = entry + 1;
|
|
if (cmpxchg(&mcelog.next, entry, next) == entry)
|
|
break;
|
|
}
|
|
memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
|
|
wmb();
|
|
mcelog.entry[entry].finished = 1;
|
|
wmb();
|
|
|
|
mce->finished = 1;
|
|
set_bit(0, &mce_need_notify);
|
|
}
|
|
|
|
static void print_mce(struct mce *m)
|
|
{
|
|
pr_emerg("CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n",
|
|
m->extcpu, m->mcgstatus, m->bank, m->status);
|
|
|
|
if (m->ip) {
|
|
pr_emerg("RIP%s %02x:<%016Lx> ",
|
|
!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
|
|
m->cs, m->ip);
|
|
|
|
if (m->cs == __KERNEL_CS)
|
|
print_symbol("{%s}", m->ip);
|
|
pr_cont("\n");
|
|
}
|
|
|
|
pr_emerg("TSC %llx ", m->tsc);
|
|
if (m->addr)
|
|
pr_cont("ADDR %llx ", m->addr);
|
|
if (m->misc)
|
|
pr_cont("MISC %llx ", m->misc);
|
|
|
|
pr_cont("\n");
|
|
pr_emerg("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
|
|
m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid);
|
|
|
|
/*
|
|
* Print out human-readable details about the MCE error,
|
|
* (if the CPU has an implementation for that)
|
|
*/
|
|
atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
|
|
}
|
|
|
|
static void print_mce_head(void)
|
|
{
|
|
pr_emerg("\nHARDWARE ERROR\n");
|
|
}
|
|
|
|
static void print_mce_tail(void)
|
|
{
|
|
pr_emerg("This is not a software problem!\n");
|
|
}
|
|
|
|
#define PANIC_TIMEOUT 5 /* 5 seconds */
|
|
|
|
static atomic_t mce_paniced;
|
|
|
|
static int fake_panic;
|
|
static atomic_t mce_fake_paniced;
|
|
|
|
/* Panic in progress. Enable interrupts and wait for final IPI */
|
|
static void wait_for_panic(void)
|
|
{
|
|
long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
|
|
|
|
preempt_disable();
|
|
local_irq_enable();
|
|
while (timeout-- > 0)
|
|
udelay(1);
|
|
if (panic_timeout == 0)
|
|
panic_timeout = mce_panic_timeout;
|
|
panic("Panicing machine check CPU died");
|
|
}
|
|
|
|
static void mce_panic(char *msg, struct mce *final, char *exp)
|
|
{
|
|
int i, apei_err = 0;
|
|
|
|
if (!fake_panic) {
|
|
/*
|
|
* Make sure only one CPU runs in machine check panic
|
|
*/
|
|
if (atomic_inc_return(&mce_paniced) > 1)
|
|
wait_for_panic();
|
|
barrier();
|
|
|
|
bust_spinlocks(1);
|
|
console_verbose();
|
|
} else {
|
|
/* Don't log too much for fake panic */
|
|
if (atomic_inc_return(&mce_fake_paniced) > 1)
|
|
return;
|
|
}
|
|
print_mce_head();
|
|
/* First print corrected ones that are still unlogged */
|
|
for (i = 0; i < MCE_LOG_LEN; i++) {
|
|
struct mce *m = &mcelog.entry[i];
|
|
if (!(m->status & MCI_STATUS_VAL))
|
|
continue;
|
|
if (!(m->status & MCI_STATUS_UC)) {
|
|
print_mce(m);
|
|
if (!apei_err)
|
|
apei_err = apei_write_mce(m);
|
|
}
|
|
}
|
|
/* Now print uncorrected but with the final one last */
|
|
for (i = 0; i < MCE_LOG_LEN; i++) {
|
|
struct mce *m = &mcelog.entry[i];
|
|
if (!(m->status & MCI_STATUS_VAL))
|
|
continue;
|
|
if (!(m->status & MCI_STATUS_UC))
|
|
continue;
|
|
if (!final || memcmp(m, final, sizeof(struct mce))) {
|
|
print_mce(m);
|
|
if (!apei_err)
|
|
apei_err = apei_write_mce(m);
|
|
}
|
|
}
|
|
if (final) {
|
|
print_mce(final);
|
|
if (!apei_err)
|
|
apei_err = apei_write_mce(final);
|
|
}
|
|
if (cpu_missing)
|
|
printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n");
|
|
print_mce_tail();
|
|
if (exp)
|
|
printk(KERN_EMERG "Machine check: %s\n", exp);
|
|
if (!fake_panic) {
|
|
if (panic_timeout == 0)
|
|
panic_timeout = mce_panic_timeout;
|
|
panic(msg);
|
|
} else
|
|
printk(KERN_EMERG "Fake kernel panic: %s\n", msg);
|
|
}
|
|
|
|
/* Support code for software error injection */
|
|
|
|
static int msr_to_offset(u32 msr)
|
|
{
|
|
unsigned bank = __get_cpu_var(injectm.bank);
|
|
|
|
if (msr == rip_msr)
|
|
return offsetof(struct mce, ip);
|
|
if (msr == MSR_IA32_MCx_STATUS(bank))
|
|
return offsetof(struct mce, status);
|
|
if (msr == MSR_IA32_MCx_ADDR(bank))
|
|
return offsetof(struct mce, addr);
|
|
if (msr == MSR_IA32_MCx_MISC(bank))
|
|
return offsetof(struct mce, misc);
|
|
if (msr == MSR_IA32_MCG_STATUS)
|
|
return offsetof(struct mce, mcgstatus);
|
|
return -1;
|
|
}
|
|
|
|
/* MSR access wrappers used for error injection */
|
|
static u64 mce_rdmsrl(u32 msr)
|
|
{
|
|
u64 v;
|
|
|
|
if (__get_cpu_var(injectm).finished) {
|
|
int offset = msr_to_offset(msr);
|
|
|
|
if (offset < 0)
|
|
return 0;
|
|
return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
|
|
}
|
|
|
|
if (rdmsrl_safe(msr, &v)) {
|
|
WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
|
|
/*
|
|
* Return zero in case the access faulted. This should
|
|
* not happen normally but can happen if the CPU does
|
|
* something weird, or if the code is buggy.
|
|
*/
|
|
v = 0;
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
static void mce_wrmsrl(u32 msr, u64 v)
|
|
{
|
|
if (__get_cpu_var(injectm).finished) {
|
|
int offset = msr_to_offset(msr);
|
|
|
|
if (offset >= 0)
|
|
*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
|
|
return;
|
|
}
|
|
wrmsrl(msr, v);
|
|
}
|
|
|
|
/*
|
|
* Simple lockless ring to communicate PFNs from the exception handler with the
|
|
* process context work function. This is vastly simplified because there's
|
|
* only a single reader and a single writer.
|
|
*/
|
|
#define MCE_RING_SIZE 16 /* we use one entry less */
|
|
|
|
struct mce_ring {
|
|
unsigned short start;
|
|
unsigned short end;
|
|
unsigned long ring[MCE_RING_SIZE];
|
|
};
|
|
static DEFINE_PER_CPU(struct mce_ring, mce_ring);
|
|
|
|
/* Runs with CPU affinity in workqueue */
|
|
static int mce_ring_empty(void)
|
|
{
|
|
struct mce_ring *r = &__get_cpu_var(mce_ring);
|
|
|
|
return r->start == r->end;
|
|
}
|
|
|
|
static int mce_ring_get(unsigned long *pfn)
|
|
{
|
|
struct mce_ring *r;
|
|
int ret = 0;
|
|
|
|
*pfn = 0;
|
|
get_cpu();
|
|
r = &__get_cpu_var(mce_ring);
|
|
if (r->start == r->end)
|
|
goto out;
|
|
*pfn = r->ring[r->start];
|
|
r->start = (r->start + 1) % MCE_RING_SIZE;
|
|
ret = 1;
|
|
out:
|
|
put_cpu();
|
|
return ret;
|
|
}
|
|
|
|
/* Always runs in MCE context with preempt off */
|
|
static int mce_ring_add(unsigned long pfn)
|
|
{
|
|
struct mce_ring *r = &__get_cpu_var(mce_ring);
|
|
unsigned next;
|
|
|
|
next = (r->end + 1) % MCE_RING_SIZE;
|
|
if (next == r->start)
|
|
return -1;
|
|
r->ring[r->end] = pfn;
|
|
wmb();
|
|
r->end = next;
|
|
return 0;
|
|
}
|
|
|
|
int mce_available(struct cpuinfo_x86 *c)
|
|
{
|
|
if (mce_disabled)
|
|
return 0;
|
|
return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
|
|
}
|
|
|
|
static void mce_schedule_work(void)
|
|
{
|
|
if (!mce_ring_empty()) {
|
|
struct work_struct *work = &__get_cpu_var(mce_work);
|
|
if (!work_pending(work))
|
|
schedule_work(work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the address of the instruction at the time of the machine check
|
|
* error.
|
|
*/
|
|
static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
|
|
{
|
|
|
|
if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
|
|
m->ip = regs->ip;
|
|
m->cs = regs->cs;
|
|
} else {
|
|
m->ip = 0;
|
|
m->cs = 0;
|
|
}
|
|
if (rip_msr)
|
|
m->ip = mce_rdmsrl(rip_msr);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
/*
|
|
* Called after interrupts have been reenabled again
|
|
* when a MCE happened during an interrupts off region
|
|
* in the kernel.
|
|
*/
|
|
asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
|
|
{
|
|
ack_APIC_irq();
|
|
exit_idle();
|
|
irq_enter();
|
|
mce_notify_irq();
|
|
mce_schedule_work();
|
|
irq_exit();
|
|
}
|
|
#endif
|
|
|
|
static void mce_report_event(struct pt_regs *regs)
|
|
{
|
|
if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
|
|
mce_notify_irq();
|
|
/*
|
|
* Triggering the work queue here is just an insurance
|
|
* policy in case the syscall exit notify handler
|
|
* doesn't run soon enough or ends up running on the
|
|
* wrong CPU (can happen when audit sleeps)
|
|
*/
|
|
mce_schedule_work();
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
/*
|
|
* Without APIC do not notify. The event will be picked
|
|
* up eventually.
|
|
*/
|
|
if (!cpu_has_apic)
|
|
return;
|
|
|
|
/*
|
|
* When interrupts are disabled we cannot use
|
|
* kernel services safely. Trigger an self interrupt
|
|
* through the APIC to instead do the notification
|
|
* after interrupts are reenabled again.
|
|
*/
|
|
apic->send_IPI_self(MCE_SELF_VECTOR);
|
|
|
|
/*
|
|
* Wait for idle afterwards again so that we don't leave the
|
|
* APIC in a non idle state because the normal APIC writes
|
|
* cannot exclude us.
|
|
*/
|
|
apic_wait_icr_idle();
|
|
#endif
|
|
}
|
|
|
|
DEFINE_PER_CPU(unsigned, mce_poll_count);
|
|
|
|
/*
|
|
* Poll for corrected events or events that happened before reset.
|
|
* Those are just logged through /dev/mcelog.
|
|
*
|
|
* This is executed in standard interrupt context.
|
|
*
|
|
* Note: spec recommends to panic for fatal unsignalled
|
|
* errors here. However this would be quite problematic --
|
|
* we would need to reimplement the Monarch handling and
|
|
* it would mess up the exclusion between exception handler
|
|
* and poll hander -- * so we skip this for now.
|
|
* These cases should not happen anyways, or only when the CPU
|
|
* is already totally * confused. In this case it's likely it will
|
|
* not fully execute the machine check handler either.
|
|
*/
|
|
void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
|
|
{
|
|
struct mce m;
|
|
int i;
|
|
|
|
percpu_inc(mce_poll_count);
|
|
|
|
mce_setup(&m);
|
|
|
|
m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
|
|
for (i = 0; i < banks; i++) {
|
|
if (!mce_banks[i].ctl || !test_bit(i, *b))
|
|
continue;
|
|
|
|
m.misc = 0;
|
|
m.addr = 0;
|
|
m.bank = i;
|
|
m.tsc = 0;
|
|
|
|
barrier();
|
|
m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
|
|
if (!(m.status & MCI_STATUS_VAL))
|
|
continue;
|
|
|
|
/*
|
|
* Uncorrected or signalled events are handled by the exception
|
|
* handler when it is enabled, so don't process those here.
|
|
*
|
|
* TBD do the same check for MCI_STATUS_EN here?
|
|
*/
|
|
if (!(flags & MCP_UC) &&
|
|
(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
|
|
continue;
|
|
|
|
if (m.status & MCI_STATUS_MISCV)
|
|
m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
|
|
if (m.status & MCI_STATUS_ADDRV)
|
|
m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
|
|
|
|
if (!(flags & MCP_TIMESTAMP))
|
|
m.tsc = 0;
|
|
/*
|
|
* Don't get the IP here because it's unlikely to
|
|
* have anything to do with the actual error location.
|
|
*/
|
|
if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
|
|
mce_log(&m);
|
|
add_taint(TAINT_MACHINE_CHECK);
|
|
}
|
|
|
|
/*
|
|
* Clear state for this bank.
|
|
*/
|
|
mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
|
|
}
|
|
|
|
/*
|
|
* Don't clear MCG_STATUS here because it's only defined for
|
|
* exceptions.
|
|
*/
|
|
|
|
sync_core();
|
|
}
|
|
EXPORT_SYMBOL_GPL(machine_check_poll);
|
|
|
|
/*
|
|
* Do a quick check if any of the events requires a panic.
|
|
* This decides if we keep the events around or clear them.
|
|
*/
|
|
static int mce_no_way_out(struct mce *m, char **msg)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < banks; i++) {
|
|
m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
|
|
if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Variable to establish order between CPUs while scanning.
|
|
* Each CPU spins initially until executing is equal its number.
|
|
*/
|
|
static atomic_t mce_executing;
|
|
|
|
/*
|
|
* Defines order of CPUs on entry. First CPU becomes Monarch.
|
|
*/
|
|
static atomic_t mce_callin;
|
|
|
|
/*
|
|
* Check if a timeout waiting for other CPUs happened.
|
|
*/
|
|
static int mce_timed_out(u64 *t)
|
|
{
|
|
/*
|
|
* The others already did panic for some reason.
|
|
* Bail out like in a timeout.
|
|
* rmb() to tell the compiler that system_state
|
|
* might have been modified by someone else.
|
|
*/
|
|
rmb();
|
|
if (atomic_read(&mce_paniced))
|
|
wait_for_panic();
|
|
if (!monarch_timeout)
|
|
goto out;
|
|
if ((s64)*t < SPINUNIT) {
|
|
/* CHECKME: Make panic default for 1 too? */
|
|
if (tolerant < 1)
|
|
mce_panic("Timeout synchronizing machine check over CPUs",
|
|
NULL, NULL);
|
|
cpu_missing = 1;
|
|
return 1;
|
|
}
|
|
*t -= SPINUNIT;
|
|
out:
|
|
touch_nmi_watchdog();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The Monarch's reign. The Monarch is the CPU who entered
|
|
* the machine check handler first. It waits for the others to
|
|
* raise the exception too and then grades them. When any
|
|
* error is fatal panic. Only then let the others continue.
|
|
*
|
|
* The other CPUs entering the MCE handler will be controlled by the
|
|
* Monarch. They are called Subjects.
|
|
*
|
|
* This way we prevent any potential data corruption in a unrecoverable case
|
|
* and also makes sure always all CPU's errors are examined.
|
|
*
|
|
* Also this detects the case of a machine check event coming from outer
|
|
* space (not detected by any CPUs) In this case some external agent wants
|
|
* us to shut down, so panic too.
|
|
*
|
|
* The other CPUs might still decide to panic if the handler happens
|
|
* in a unrecoverable place, but in this case the system is in a semi-stable
|
|
* state and won't corrupt anything by itself. It's ok to let the others
|
|
* continue for a bit first.
|
|
*
|
|
* All the spin loops have timeouts; when a timeout happens a CPU
|
|
* typically elects itself to be Monarch.
|
|
*/
|
|
static void mce_reign(void)
|
|
{
|
|
int cpu;
|
|
struct mce *m = NULL;
|
|
int global_worst = 0;
|
|
char *msg = NULL;
|
|
char *nmsg = NULL;
|
|
|
|
/*
|
|
* This CPU is the Monarch and the other CPUs have run
|
|
* through their handlers.
|
|
* Grade the severity of the errors of all the CPUs.
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
|
|
&nmsg);
|
|
if (severity > global_worst) {
|
|
msg = nmsg;
|
|
global_worst = severity;
|
|
m = &per_cpu(mces_seen, cpu);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Cannot recover? Panic here then.
|
|
* This dumps all the mces in the log buffer and stops the
|
|
* other CPUs.
|
|
*/
|
|
if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
|
|
mce_panic("Fatal Machine check", m, msg);
|
|
|
|
/*
|
|
* For UC somewhere we let the CPU who detects it handle it.
|
|
* Also must let continue the others, otherwise the handling
|
|
* CPU could deadlock on a lock.
|
|
*/
|
|
|
|
/*
|
|
* No machine check event found. Must be some external
|
|
* source or one CPU is hung. Panic.
|
|
*/
|
|
if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
|
|
mce_panic("Machine check from unknown source", NULL, NULL);
|
|
|
|
/*
|
|
* Now clear all the mces_seen so that they don't reappear on
|
|
* the next mce.
|
|
*/
|
|
for_each_possible_cpu(cpu)
|
|
memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
|
|
}
|
|
|
|
static atomic_t global_nwo;
|
|
|
|
/*
|
|
* Start of Monarch synchronization. This waits until all CPUs have
|
|
* entered the exception handler and then determines if any of them
|
|
* saw a fatal event that requires panic. Then it executes them
|
|
* in the entry order.
|
|
* TBD double check parallel CPU hotunplug
|
|
*/
|
|
static int mce_start(int *no_way_out)
|
|
{
|
|
int order;
|
|
int cpus = num_online_cpus();
|
|
u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
|
|
|
|
if (!timeout)
|
|
return -1;
|
|
|
|
atomic_add(*no_way_out, &global_nwo);
|
|
/*
|
|
* global_nwo should be updated before mce_callin
|
|
*/
|
|
smp_wmb();
|
|
order = atomic_inc_return(&mce_callin);
|
|
|
|
/*
|
|
* Wait for everyone.
|
|
*/
|
|
while (atomic_read(&mce_callin) != cpus) {
|
|
if (mce_timed_out(&timeout)) {
|
|
atomic_set(&global_nwo, 0);
|
|
return -1;
|
|
}
|
|
ndelay(SPINUNIT);
|
|
}
|
|
|
|
/*
|
|
* mce_callin should be read before global_nwo
|
|
*/
|
|
smp_rmb();
|
|
|
|
if (order == 1) {
|
|
/*
|
|
* Monarch: Starts executing now, the others wait.
|
|
*/
|
|
atomic_set(&mce_executing, 1);
|
|
} else {
|
|
/*
|
|
* Subject: Now start the scanning loop one by one in
|
|
* the original callin order.
|
|
* This way when there are any shared banks it will be
|
|
* only seen by one CPU before cleared, avoiding duplicates.
|
|
*/
|
|
while (atomic_read(&mce_executing) < order) {
|
|
if (mce_timed_out(&timeout)) {
|
|
atomic_set(&global_nwo, 0);
|
|
return -1;
|
|
}
|
|
ndelay(SPINUNIT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Cache the global no_way_out state.
|
|
*/
|
|
*no_way_out = atomic_read(&global_nwo);
|
|
|
|
return order;
|
|
}
|
|
|
|
/*
|
|
* Synchronize between CPUs after main scanning loop.
|
|
* This invokes the bulk of the Monarch processing.
|
|
*/
|
|
static int mce_end(int order)
|
|
{
|
|
int ret = -1;
|
|
u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
|
|
|
|
if (!timeout)
|
|
goto reset;
|
|
if (order < 0)
|
|
goto reset;
|
|
|
|
/*
|
|
* Allow others to run.
|
|
*/
|
|
atomic_inc(&mce_executing);
|
|
|
|
if (order == 1) {
|
|
/* CHECKME: Can this race with a parallel hotplug? */
|
|
int cpus = num_online_cpus();
|
|
|
|
/*
|
|
* Monarch: Wait for everyone to go through their scanning
|
|
* loops.
|
|
*/
|
|
while (atomic_read(&mce_executing) <= cpus) {
|
|
if (mce_timed_out(&timeout))
|
|
goto reset;
|
|
ndelay(SPINUNIT);
|
|
}
|
|
|
|
mce_reign();
|
|
barrier();
|
|
ret = 0;
|
|
} else {
|
|
/*
|
|
* Subject: Wait for Monarch to finish.
|
|
*/
|
|
while (atomic_read(&mce_executing) != 0) {
|
|
if (mce_timed_out(&timeout))
|
|
goto reset;
|
|
ndelay(SPINUNIT);
|
|
}
|
|
|
|
/*
|
|
* Don't reset anything. That's done by the Monarch.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reset all global state.
|
|
*/
|
|
reset:
|
|
atomic_set(&global_nwo, 0);
|
|
atomic_set(&mce_callin, 0);
|
|
barrier();
|
|
|
|
/*
|
|
* Let others run again.
|
|
*/
|
|
atomic_set(&mce_executing, 0);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check if the address reported by the CPU is in a format we can parse.
|
|
* It would be possible to add code for most other cases, but all would
|
|
* be somewhat complicated (e.g. segment offset would require an instruction
|
|
* parser). So only support physical addresses upto page granuality for now.
|
|
*/
|
|
static int mce_usable_address(struct mce *m)
|
|
{
|
|
if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
|
|
return 0;
|
|
if ((m->misc & 0x3f) > PAGE_SHIFT)
|
|
return 0;
|
|
if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static void mce_clear_state(unsigned long *toclear)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < banks; i++) {
|
|
if (test_bit(i, toclear))
|
|
mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The actual machine check handler. This only handles real
|
|
* exceptions when something got corrupted coming in through int 18.
|
|
*
|
|
* This is executed in NMI context not subject to normal locking rules. This
|
|
* implies that most kernel services cannot be safely used. Don't even
|
|
* think about putting a printk in there!
|
|
*
|
|
* On Intel systems this is entered on all CPUs in parallel through
|
|
* MCE broadcast. However some CPUs might be broken beyond repair,
|
|
* so be always careful when synchronizing with others.
|
|
*/
|
|
void do_machine_check(struct pt_regs *regs, long error_code)
|
|
{
|
|
struct mce m, *final;
|
|
int i;
|
|
int worst = 0;
|
|
int severity;
|
|
/*
|
|
* Establish sequential order between the CPUs entering the machine
|
|
* check handler.
|
|
*/
|
|
int order;
|
|
/*
|
|
* If no_way_out gets set, there is no safe way to recover from this
|
|
* MCE. If tolerant is cranked up, we'll try anyway.
|
|
*/
|
|
int no_way_out = 0;
|
|
/*
|
|
* If kill_it gets set, there might be a way to recover from this
|
|
* error.
|
|
*/
|
|
int kill_it = 0;
|
|
DECLARE_BITMAP(toclear, MAX_NR_BANKS);
|
|
char *msg = "Unknown";
|
|
|
|
atomic_inc(&mce_entry);
|
|
|
|
percpu_inc(mce_exception_count);
|
|
|
|
if (notify_die(DIE_NMI, "machine check", regs, error_code,
|
|
18, SIGKILL) == NOTIFY_STOP)
|
|
goto out;
|
|
if (!banks)
|
|
goto out;
|
|
|
|
mce_setup(&m);
|
|
|
|
m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
|
|
final = &__get_cpu_var(mces_seen);
|
|
*final = m;
|
|
|
|
no_way_out = mce_no_way_out(&m, &msg);
|
|
|
|
barrier();
|
|
|
|
/*
|
|
* When no restart IP must always kill or panic.
|
|
*/
|
|
if (!(m.mcgstatus & MCG_STATUS_RIPV))
|
|
kill_it = 1;
|
|
|
|
/*
|
|
* Go through all the banks in exclusion of the other CPUs.
|
|
* This way we don't report duplicated events on shared banks
|
|
* because the first one to see it will clear it.
|
|
*/
|
|
order = mce_start(&no_way_out);
|
|
for (i = 0; i < banks; i++) {
|
|
__clear_bit(i, toclear);
|
|
if (!mce_banks[i].ctl)
|
|
continue;
|
|
|
|
m.misc = 0;
|
|
m.addr = 0;
|
|
m.bank = i;
|
|
|
|
m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
|
|
if ((m.status & MCI_STATUS_VAL) == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Non uncorrected or non signaled errors are handled by
|
|
* machine_check_poll. Leave them alone, unless this panics.
|
|
*/
|
|
if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
|
|
!no_way_out)
|
|
continue;
|
|
|
|
/*
|
|
* Set taint even when machine check was not enabled.
|
|
*/
|
|
add_taint(TAINT_MACHINE_CHECK);
|
|
|
|
severity = mce_severity(&m, tolerant, NULL);
|
|
|
|
/*
|
|
* When machine check was for corrected handler don't touch,
|
|
* unless we're panicing.
|
|
*/
|
|
if (severity == MCE_KEEP_SEVERITY && !no_way_out)
|
|
continue;
|
|
__set_bit(i, toclear);
|
|
if (severity == MCE_NO_SEVERITY) {
|
|
/*
|
|
* Machine check event was not enabled. Clear, but
|
|
* ignore.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Kill on action required.
|
|
*/
|
|
if (severity == MCE_AR_SEVERITY)
|
|
kill_it = 1;
|
|
|
|
if (m.status & MCI_STATUS_MISCV)
|
|
m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
|
|
if (m.status & MCI_STATUS_ADDRV)
|
|
m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
|
|
|
|
/*
|
|
* Action optional error. Queue address for later processing.
|
|
* When the ring overflows we just ignore the AO error.
|
|
* RED-PEN add some logging mechanism when
|
|
* usable_address or mce_add_ring fails.
|
|
* RED-PEN don't ignore overflow for tolerant == 0
|
|
*/
|
|
if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
|
|
mce_ring_add(m.addr >> PAGE_SHIFT);
|
|
|
|
mce_get_rip(&m, regs);
|
|
mce_log(&m);
|
|
|
|
if (severity > worst) {
|
|
*final = m;
|
|
worst = severity;
|
|
}
|
|
}
|
|
|
|
if (!no_way_out)
|
|
mce_clear_state(toclear);
|
|
|
|
/*
|
|
* Do most of the synchronization with other CPUs.
|
|
* When there's any problem use only local no_way_out state.
|
|
*/
|
|
if (mce_end(order) < 0)
|
|
no_way_out = worst >= MCE_PANIC_SEVERITY;
|
|
|
|
/*
|
|
* If we have decided that we just CAN'T continue, and the user
|
|
* has not set tolerant to an insane level, give up and die.
|
|
*
|
|
* This is mainly used in the case when the system doesn't
|
|
* support MCE broadcasting or it has been disabled.
|
|
*/
|
|
if (no_way_out && tolerant < 3)
|
|
mce_panic("Fatal machine check on current CPU", final, msg);
|
|
|
|
/*
|
|
* If the error seems to be unrecoverable, something should be
|
|
* done. Try to kill as little as possible. If we can kill just
|
|
* one task, do that. If the user has set the tolerance very
|
|
* high, don't try to do anything at all.
|
|
*/
|
|
|
|
if (kill_it && tolerant < 3)
|
|
force_sig(SIGBUS, current);
|
|
|
|
/* notify userspace ASAP */
|
|
set_thread_flag(TIF_MCE_NOTIFY);
|
|
|
|
if (worst > 0)
|
|
mce_report_event(regs);
|
|
mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
|
|
out:
|
|
atomic_dec(&mce_entry);
|
|
sync_core();
|
|
}
|
|
EXPORT_SYMBOL_GPL(do_machine_check);
|
|
|
|
/* dummy to break dependency. actual code is in mm/memory-failure.c */
|
|
void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
|
|
{
|
|
printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
|
|
}
|
|
|
|
/*
|
|
* Called after mce notification in process context. This code
|
|
* is allowed to sleep. Call the high level VM handler to process
|
|
* any corrupted pages.
|
|
* Assume that the work queue code only calls this one at a time
|
|
* per CPU.
|
|
* Note we don't disable preemption, so this code might run on the wrong
|
|
* CPU. In this case the event is picked up by the scheduled work queue.
|
|
* This is merely a fast path to expedite processing in some common
|
|
* cases.
|
|
*/
|
|
void mce_notify_process(void)
|
|
{
|
|
unsigned long pfn;
|
|
mce_notify_irq();
|
|
while (mce_ring_get(&pfn))
|
|
memory_failure(pfn, MCE_VECTOR);
|
|
}
|
|
|
|
static void mce_process_work(struct work_struct *dummy)
|
|
{
|
|
mce_notify_process();
|
|
}
|
|
|
|
#ifdef CONFIG_X86_MCE_INTEL
|
|
/***
|
|
* mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
|
|
* @cpu: The CPU on which the event occurred.
|
|
* @status: Event status information
|
|
*
|
|
* This function should be called by the thermal interrupt after the
|
|
* event has been processed and the decision was made to log the event
|
|
* further.
|
|
*
|
|
* The status parameter will be saved to the 'status' field of 'struct mce'
|
|
* and historically has been the register value of the
|
|
* MSR_IA32_THERMAL_STATUS (Intel) msr.
|
|
*/
|
|
void mce_log_therm_throt_event(__u64 status)
|
|
{
|
|
struct mce m;
|
|
|
|
mce_setup(&m);
|
|
m.bank = MCE_THERMAL_BANK;
|
|
m.status = status;
|
|
mce_log(&m);
|
|
}
|
|
#endif /* CONFIG_X86_MCE_INTEL */
|
|
|
|
/*
|
|
* Periodic polling timer for "silent" machine check errors. If the
|
|
* poller finds an MCE, poll 2x faster. When the poller finds no more
|
|
* errors, poll 2x slower (up to check_interval seconds).
|
|
*/
|
|
static int check_interval = 5 * 60; /* 5 minutes */
|
|
|
|
static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
|
|
static DEFINE_PER_CPU(struct timer_list, mce_timer);
|
|
|
|
static void mce_start_timer(unsigned long data)
|
|
{
|
|
struct timer_list *t = &per_cpu(mce_timer, data);
|
|
int *n;
|
|
|
|
WARN_ON(smp_processor_id() != data);
|
|
|
|
if (mce_available(¤t_cpu_data)) {
|
|
machine_check_poll(MCP_TIMESTAMP,
|
|
&__get_cpu_var(mce_poll_banks));
|
|
}
|
|
|
|
/*
|
|
* Alert userspace if needed. If we logged an MCE, reduce the
|
|
* polling interval, otherwise increase the polling interval.
|
|
*/
|
|
n = &__get_cpu_var(mce_next_interval);
|
|
if (mce_notify_irq())
|
|
*n = max(*n/2, HZ/100);
|
|
else
|
|
*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
|
|
|
|
t->expires = jiffies + *n;
|
|
add_timer_on(t, smp_processor_id());
|
|
}
|
|
|
|
static void mce_do_trigger(struct work_struct *work)
|
|
{
|
|
call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
|
|
}
|
|
|
|
static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
|
|
|
|
/*
|
|
* Notify the user(s) about new machine check events.
|
|
* Can be called from interrupt context, but not from machine check/NMI
|
|
* context.
|
|
*/
|
|
int mce_notify_irq(void)
|
|
{
|
|
/* Not more than two messages every minute */
|
|
static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
|
|
|
|
clear_thread_flag(TIF_MCE_NOTIFY);
|
|
|
|
if (test_and_clear_bit(0, &mce_need_notify)) {
|
|
wake_up_interruptible(&mce_wait);
|
|
|
|
/*
|
|
* There is no risk of missing notifications because
|
|
* work_pending is always cleared before the function is
|
|
* executed.
|
|
*/
|
|
if (mce_helper[0] && !work_pending(&mce_trigger_work))
|
|
schedule_work(&mce_trigger_work);
|
|
|
|
if (__ratelimit(&ratelimit))
|
|
printk(KERN_INFO "Machine check events logged\n");
|
|
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mce_notify_irq);
|
|
|
|
static int __cpuinit __mcheck_cpu_mce_banks_init(void)
|
|
{
|
|
int i;
|
|
|
|
mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
|
|
if (!mce_banks)
|
|
return -ENOMEM;
|
|
for (i = 0; i < banks; i++) {
|
|
struct mce_bank *b = &mce_banks[i];
|
|
|
|
b->ctl = -1ULL;
|
|
b->init = 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize Machine Checks for a CPU.
|
|
*/
|
|
static int __cpuinit __mcheck_cpu_cap_init(void)
|
|
{
|
|
unsigned b;
|
|
u64 cap;
|
|
|
|
rdmsrl(MSR_IA32_MCG_CAP, cap);
|
|
|
|
b = cap & MCG_BANKCNT_MASK;
|
|
if (!banks)
|
|
printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
|
|
|
|
if (b > MAX_NR_BANKS) {
|
|
printk(KERN_WARNING
|
|
"MCE: Using only %u machine check banks out of %u\n",
|
|
MAX_NR_BANKS, b);
|
|
b = MAX_NR_BANKS;
|
|
}
|
|
|
|
/* Don't support asymmetric configurations today */
|
|
WARN_ON(banks != 0 && b != banks);
|
|
banks = b;
|
|
if (!mce_banks) {
|
|
int err = __mcheck_cpu_mce_banks_init();
|
|
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Use accurate RIP reporting if available. */
|
|
if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
|
|
rip_msr = MSR_IA32_MCG_EIP;
|
|
|
|
if (cap & MCG_SER_P)
|
|
mce_ser = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __mcheck_cpu_init_generic(void)
|
|
{
|
|
mce_banks_t all_banks;
|
|
u64 cap;
|
|
int i;
|
|
|
|
/*
|
|
* Log the machine checks left over from the previous reset.
|
|
*/
|
|
bitmap_fill(all_banks, MAX_NR_BANKS);
|
|
machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
|
|
|
|
set_in_cr4(X86_CR4_MCE);
|
|
|
|
rdmsrl(MSR_IA32_MCG_CAP, cap);
|
|
if (cap & MCG_CTL_P)
|
|
wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
|
|
|
|
for (i = 0; i < banks; i++) {
|
|
struct mce_bank *b = &mce_banks[i];
|
|
|
|
if (!b->init)
|
|
continue;
|
|
wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
|
|
wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
|
|
}
|
|
}
|
|
|
|
/* Add per CPU specific workarounds here */
|
|
static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
|
|
{
|
|
if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
|
|
pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* This should be disabled by the BIOS, but isn't always */
|
|
if (c->x86_vendor == X86_VENDOR_AMD) {
|
|
if (c->x86 == 15 && banks > 4) {
|
|
/*
|
|
* disable GART TBL walk error reporting, which
|
|
* trips off incorrectly with the IOMMU & 3ware
|
|
* & Cerberus:
|
|
*/
|
|
clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
|
|
}
|
|
if (c->x86 <= 17 && mce_bootlog < 0) {
|
|
/*
|
|
* Lots of broken BIOS around that don't clear them
|
|
* by default and leave crap in there. Don't log:
|
|
*/
|
|
mce_bootlog = 0;
|
|
}
|
|
/*
|
|
* Various K7s with broken bank 0 around. Always disable
|
|
* by default.
|
|
*/
|
|
if (c->x86 == 6 && banks > 0)
|
|
mce_banks[0].ctl = 0;
|
|
}
|
|
|
|
if (c->x86_vendor == X86_VENDOR_INTEL) {
|
|
/*
|
|
* SDM documents that on family 6 bank 0 should not be written
|
|
* because it aliases to another special BIOS controlled
|
|
* register.
|
|
* But it's not aliased anymore on model 0x1a+
|
|
* Don't ignore bank 0 completely because there could be a
|
|
* valid event later, merely don't write CTL0.
|
|
*/
|
|
|
|
if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
|
|
mce_banks[0].init = 0;
|
|
|
|
/*
|
|
* All newer Intel systems support MCE broadcasting. Enable
|
|
* synchronization with a one second timeout.
|
|
*/
|
|
if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
|
|
monarch_timeout < 0)
|
|
monarch_timeout = USEC_PER_SEC;
|
|
|
|
/*
|
|
* There are also broken BIOSes on some Pentium M and
|
|
* earlier systems:
|
|
*/
|
|
if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
|
|
mce_bootlog = 0;
|
|
}
|
|
if (monarch_timeout < 0)
|
|
monarch_timeout = 0;
|
|
if (mce_bootlog != 0)
|
|
mce_panic_timeout = 30;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
|
|
{
|
|
if (c->x86 != 5)
|
|
return;
|
|
switch (c->x86_vendor) {
|
|
case X86_VENDOR_INTEL:
|
|
intel_p5_mcheck_init(c);
|
|
break;
|
|
case X86_VENDOR_CENTAUR:
|
|
winchip_mcheck_init(c);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
|
|
{
|
|
switch (c->x86_vendor) {
|
|
case X86_VENDOR_INTEL:
|
|
mce_intel_feature_init(c);
|
|
break;
|
|
case X86_VENDOR_AMD:
|
|
mce_amd_feature_init(c);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void __mcheck_cpu_init_timer(void)
|
|
{
|
|
struct timer_list *t = &__get_cpu_var(mce_timer);
|
|
int *n = &__get_cpu_var(mce_next_interval);
|
|
|
|
setup_timer(t, mce_start_timer, smp_processor_id());
|
|
|
|
if (mce_ignore_ce)
|
|
return;
|
|
|
|
*n = check_interval * HZ;
|
|
if (!*n)
|
|
return;
|
|
t->expires = round_jiffies(jiffies + *n);
|
|
add_timer_on(t, smp_processor_id());
|
|
}
|
|
|
|
/* Handle unconfigured int18 (should never happen) */
|
|
static void unexpected_machine_check(struct pt_regs *regs, long error_code)
|
|
{
|
|
printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
|
|
smp_processor_id());
|
|
}
|
|
|
|
/* Call the installed machine check handler for this CPU setup. */
|
|
void (*machine_check_vector)(struct pt_regs *, long error_code) =
|
|
unexpected_machine_check;
|
|
|
|
/*
|
|
* Called for each booted CPU to set up machine checks.
|
|
* Must be called with preempt off:
|
|
*/
|
|
void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
|
|
{
|
|
if (mce_disabled)
|
|
return;
|
|
|
|
__mcheck_cpu_ancient_init(c);
|
|
|
|
if (!mce_available(c))
|
|
return;
|
|
|
|
if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
|
|
mce_disabled = 1;
|
|
return;
|
|
}
|
|
|
|
machine_check_vector = do_machine_check;
|
|
|
|
__mcheck_cpu_init_generic();
|
|
__mcheck_cpu_init_vendor(c);
|
|
__mcheck_cpu_init_timer();
|
|
INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
|
|
|
|
}
|
|
|
|
/*
|
|
* Character device to read and clear the MCE log.
|
|
*/
|
|
|
|
static DEFINE_SPINLOCK(mce_state_lock);
|
|
static int open_count; /* #times opened */
|
|
static int open_exclu; /* already open exclusive? */
|
|
|
|
static int mce_open(struct inode *inode, struct file *file)
|
|
{
|
|
spin_lock(&mce_state_lock);
|
|
|
|
if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
|
|
spin_unlock(&mce_state_lock);
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (file->f_flags & O_EXCL)
|
|
open_exclu = 1;
|
|
open_count++;
|
|
|
|
spin_unlock(&mce_state_lock);
|
|
|
|
return nonseekable_open(inode, file);
|
|
}
|
|
|
|
static int mce_release(struct inode *inode, struct file *file)
|
|
{
|
|
spin_lock(&mce_state_lock);
|
|
|
|
open_count--;
|
|
open_exclu = 0;
|
|
|
|
spin_unlock(&mce_state_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void collect_tscs(void *data)
|
|
{
|
|
unsigned long *cpu_tsc = (unsigned long *)data;
|
|
|
|
rdtscll(cpu_tsc[smp_processor_id()]);
|
|
}
|
|
|
|
static int mce_apei_read_done;
|
|
|
|
/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
|
|
static int __mce_read_apei(char __user **ubuf, size_t usize)
|
|
{
|
|
int rc;
|
|
u64 record_id;
|
|
struct mce m;
|
|
|
|
if (usize < sizeof(struct mce))
|
|
return -EINVAL;
|
|
|
|
rc = apei_read_mce(&m, &record_id);
|
|
/* Error or no more MCE record */
|
|
if (rc <= 0) {
|
|
mce_apei_read_done = 1;
|
|
return rc;
|
|
}
|
|
rc = -EFAULT;
|
|
if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
|
|
return rc;
|
|
/*
|
|
* In fact, we should have cleared the record after that has
|
|
* been flushed to the disk or sent to network in
|
|
* /sbin/mcelog, but we have no interface to support that now,
|
|
* so just clear it to avoid duplication.
|
|
*/
|
|
rc = apei_clear_mce(record_id);
|
|
if (rc) {
|
|
mce_apei_read_done = 1;
|
|
return rc;
|
|
}
|
|
*ubuf += sizeof(struct mce);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
|
|
loff_t *off)
|
|
{
|
|
char __user *buf = ubuf;
|
|
unsigned long *cpu_tsc;
|
|
unsigned prev, next;
|
|
int i, err;
|
|
|
|
cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
|
|
if (!cpu_tsc)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&mce_read_mutex);
|
|
|
|
if (!mce_apei_read_done) {
|
|
err = __mce_read_apei(&buf, usize);
|
|
if (err || buf != ubuf)
|
|
goto out;
|
|
}
|
|
|
|
next = rcu_dereference_check_mce(mcelog.next);
|
|
|
|
/* Only supports full reads right now */
|
|
err = -EINVAL;
|
|
if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
|
|
goto out;
|
|
|
|
err = 0;
|
|
prev = 0;
|
|
do {
|
|
for (i = prev; i < next; i++) {
|
|
unsigned long start = jiffies;
|
|
|
|
while (!mcelog.entry[i].finished) {
|
|
if (time_after_eq(jiffies, start + 2)) {
|
|
memset(mcelog.entry + i, 0,
|
|
sizeof(struct mce));
|
|
goto timeout;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
smp_rmb();
|
|
err |= copy_to_user(buf, mcelog.entry + i,
|
|
sizeof(struct mce));
|
|
buf += sizeof(struct mce);
|
|
timeout:
|
|
;
|
|
}
|
|
|
|
memset(mcelog.entry + prev, 0,
|
|
(next - prev) * sizeof(struct mce));
|
|
prev = next;
|
|
next = cmpxchg(&mcelog.next, prev, 0);
|
|
} while (next != prev);
|
|
|
|
synchronize_sched();
|
|
|
|
/*
|
|
* Collect entries that were still getting written before the
|
|
* synchronize.
|
|
*/
|
|
on_each_cpu(collect_tscs, cpu_tsc, 1);
|
|
|
|
for (i = next; i < MCE_LOG_LEN; i++) {
|
|
if (mcelog.entry[i].finished &&
|
|
mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
|
|
err |= copy_to_user(buf, mcelog.entry+i,
|
|
sizeof(struct mce));
|
|
smp_rmb();
|
|
buf += sizeof(struct mce);
|
|
memset(&mcelog.entry[i], 0, sizeof(struct mce));
|
|
}
|
|
}
|
|
|
|
if (err)
|
|
err = -EFAULT;
|
|
|
|
out:
|
|
mutex_unlock(&mce_read_mutex);
|
|
kfree(cpu_tsc);
|
|
|
|
return err ? err : buf - ubuf;
|
|
}
|
|
|
|
static unsigned int mce_poll(struct file *file, poll_table *wait)
|
|
{
|
|
poll_wait(file, &mce_wait, wait);
|
|
if (rcu_dereference_check_mce(mcelog.next))
|
|
return POLLIN | POLLRDNORM;
|
|
if (!mce_apei_read_done && apei_check_mce())
|
|
return POLLIN | POLLRDNORM;
|
|
return 0;
|
|
}
|
|
|
|
static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
|
|
{
|
|
int __user *p = (int __user *)arg;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
switch (cmd) {
|
|
case MCE_GET_RECORD_LEN:
|
|
return put_user(sizeof(struct mce), p);
|
|
case MCE_GET_LOG_LEN:
|
|
return put_user(MCE_LOG_LEN, p);
|
|
case MCE_GETCLEAR_FLAGS: {
|
|
unsigned flags;
|
|
|
|
do {
|
|
flags = mcelog.flags;
|
|
} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
|
|
|
|
return put_user(flags, p);
|
|
}
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
/* Modified in mce-inject.c, so not static or const */
|
|
struct file_operations mce_chrdev_ops = {
|
|
.open = mce_open,
|
|
.release = mce_release,
|
|
.read = mce_read,
|
|
.poll = mce_poll,
|
|
.unlocked_ioctl = mce_ioctl,
|
|
};
|
|
EXPORT_SYMBOL_GPL(mce_chrdev_ops);
|
|
|
|
static struct miscdevice mce_log_device = {
|
|
MISC_MCELOG_MINOR,
|
|
"mcelog",
|
|
&mce_chrdev_ops,
|
|
};
|
|
|
|
/*
|
|
* mce=off Disables machine check
|
|
* mce=no_cmci Disables CMCI
|
|
* mce=dont_log_ce Clears corrected events silently, no log created for CEs.
|
|
* mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
|
|
* mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
|
|
* monarchtimeout is how long to wait for other CPUs on machine
|
|
* check, or 0 to not wait
|
|
* mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
|
|
* mce=nobootlog Don't log MCEs from before booting.
|
|
*/
|
|
static int __init mcheck_enable(char *str)
|
|
{
|
|
if (*str == 0) {
|
|
enable_p5_mce();
|
|
return 1;
|
|
}
|
|
if (*str == '=')
|
|
str++;
|
|
if (!strcmp(str, "off"))
|
|
mce_disabled = 1;
|
|
else if (!strcmp(str, "no_cmci"))
|
|
mce_cmci_disabled = 1;
|
|
else if (!strcmp(str, "dont_log_ce"))
|
|
mce_dont_log_ce = 1;
|
|
else if (!strcmp(str, "ignore_ce"))
|
|
mce_ignore_ce = 1;
|
|
else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
|
|
mce_bootlog = (str[0] == 'b');
|
|
else if (isdigit(str[0])) {
|
|
get_option(&str, &tolerant);
|
|
if (*str == ',') {
|
|
++str;
|
|
get_option(&str, &monarch_timeout);
|
|
}
|
|
} else {
|
|
printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
|
|
str);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
__setup("mce", mcheck_enable);
|
|
|
|
int __init mcheck_init(void)
|
|
{
|
|
atomic_notifier_chain_register(&x86_mce_decoder_chain, &mce_dec_nb);
|
|
|
|
mcheck_intel_therm_init();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Sysfs support
|
|
*/
|
|
|
|
/*
|
|
* Disable machine checks on suspend and shutdown. We can't really handle
|
|
* them later.
|
|
*/
|
|
static int mce_disable_error_reporting(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < banks; i++) {
|
|
struct mce_bank *b = &mce_banks[i];
|
|
|
|
if (b->init)
|
|
wrmsrl(MSR_IA32_MCx_CTL(i), 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mce_suspend(struct sys_device *dev, pm_message_t state)
|
|
{
|
|
return mce_disable_error_reporting();
|
|
}
|
|
|
|
static int mce_shutdown(struct sys_device *dev)
|
|
{
|
|
return mce_disable_error_reporting();
|
|
}
|
|
|
|
/*
|
|
* On resume clear all MCE state. Don't want to see leftovers from the BIOS.
|
|
* Only one CPU is active at this time, the others get re-added later using
|
|
* CPU hotplug:
|
|
*/
|
|
static int mce_resume(struct sys_device *dev)
|
|
{
|
|
__mcheck_cpu_init_generic();
|
|
__mcheck_cpu_init_vendor(¤t_cpu_data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mce_cpu_restart(void *data)
|
|
{
|
|
del_timer_sync(&__get_cpu_var(mce_timer));
|
|
if (!mce_available(¤t_cpu_data))
|
|
return;
|
|
__mcheck_cpu_init_generic();
|
|
__mcheck_cpu_init_timer();
|
|
}
|
|
|
|
/* Reinit MCEs after user configuration changes */
|
|
static void mce_restart(void)
|
|
{
|
|
on_each_cpu(mce_cpu_restart, NULL, 1);
|
|
}
|
|
|
|
/* Toggle features for corrected errors */
|
|
static void mce_disable_ce(void *all)
|
|
{
|
|
if (!mce_available(¤t_cpu_data))
|
|
return;
|
|
if (all)
|
|
del_timer_sync(&__get_cpu_var(mce_timer));
|
|
cmci_clear();
|
|
}
|
|
|
|
static void mce_enable_ce(void *all)
|
|
{
|
|
if (!mce_available(¤t_cpu_data))
|
|
return;
|
|
cmci_reenable();
|
|
cmci_recheck();
|
|
if (all)
|
|
__mcheck_cpu_init_timer();
|
|
}
|
|
|
|
static struct sysdev_class mce_sysclass = {
|
|
.suspend = mce_suspend,
|
|
.shutdown = mce_shutdown,
|
|
.resume = mce_resume,
|
|
.name = "machinecheck",
|
|
};
|
|
|
|
DEFINE_PER_CPU(struct sys_device, mce_dev);
|
|
|
|
__cpuinitdata
|
|
void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
|
|
|
|
static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
|
|
{
|
|
return container_of(attr, struct mce_bank, attr);
|
|
}
|
|
|
|
static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
|
|
}
|
|
|
|
static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
u64 new;
|
|
|
|
if (strict_strtoull(buf, 0, &new) < 0)
|
|
return -EINVAL;
|
|
|
|
attr_to_bank(attr)->ctl = new;
|
|
mce_restart();
|
|
|
|
return size;
|
|
}
|
|
|
|
static ssize_t
|
|
show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
|
|
{
|
|
strcpy(buf, mce_helper);
|
|
strcat(buf, "\n");
|
|
return strlen(mce_helper) + 1;
|
|
}
|
|
|
|
static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
|
|
const char *buf, size_t siz)
|
|
{
|
|
char *p;
|
|
|
|
strncpy(mce_helper, buf, sizeof(mce_helper));
|
|
mce_helper[sizeof(mce_helper)-1] = 0;
|
|
p = strchr(mce_helper, '\n');
|
|
|
|
if (p)
|
|
*p = 0;
|
|
|
|
return strlen(mce_helper) + !!p;
|
|
}
|
|
|
|
static ssize_t set_ignore_ce(struct sys_device *s,
|
|
struct sysdev_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
u64 new;
|
|
|
|
if (strict_strtoull(buf, 0, &new) < 0)
|
|
return -EINVAL;
|
|
|
|
if (mce_ignore_ce ^ !!new) {
|
|
if (new) {
|
|
/* disable ce features */
|
|
on_each_cpu(mce_disable_ce, (void *)1, 1);
|
|
mce_ignore_ce = 1;
|
|
} else {
|
|
/* enable ce features */
|
|
mce_ignore_ce = 0;
|
|
on_each_cpu(mce_enable_ce, (void *)1, 1);
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static ssize_t set_cmci_disabled(struct sys_device *s,
|
|
struct sysdev_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
u64 new;
|
|
|
|
if (strict_strtoull(buf, 0, &new) < 0)
|
|
return -EINVAL;
|
|
|
|
if (mce_cmci_disabled ^ !!new) {
|
|
if (new) {
|
|
/* disable cmci */
|
|
on_each_cpu(mce_disable_ce, NULL, 1);
|
|
mce_cmci_disabled = 1;
|
|
} else {
|
|
/* enable cmci */
|
|
mce_cmci_disabled = 0;
|
|
on_each_cpu(mce_enable_ce, NULL, 1);
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static ssize_t store_int_with_restart(struct sys_device *s,
|
|
struct sysdev_attribute *attr,
|
|
const char *buf, size_t size)
|
|
{
|
|
ssize_t ret = sysdev_store_int(s, attr, buf, size);
|
|
mce_restart();
|
|
return ret;
|
|
}
|
|
|
|
static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
|
|
static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
|
|
static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
|
|
static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
|
|
|
|
static struct sysdev_ext_attribute attr_check_interval = {
|
|
_SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
|
|
store_int_with_restart),
|
|
&check_interval
|
|
};
|
|
|
|
static struct sysdev_ext_attribute attr_ignore_ce = {
|
|
_SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
|
|
&mce_ignore_ce
|
|
};
|
|
|
|
static struct sysdev_ext_attribute attr_cmci_disabled = {
|
|
_SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
|
|
&mce_cmci_disabled
|
|
};
|
|
|
|
static struct sysdev_attribute *mce_attrs[] = {
|
|
&attr_tolerant.attr,
|
|
&attr_check_interval.attr,
|
|
&attr_trigger,
|
|
&attr_monarch_timeout.attr,
|
|
&attr_dont_log_ce.attr,
|
|
&attr_ignore_ce.attr,
|
|
&attr_cmci_disabled.attr,
|
|
NULL
|
|
};
|
|
|
|
static cpumask_var_t mce_dev_initialized;
|
|
|
|
/* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
|
|
static __cpuinit int mce_create_device(unsigned int cpu)
|
|
{
|
|
int err;
|
|
int i, j;
|
|
|
|
if (!mce_available(&boot_cpu_data))
|
|
return -EIO;
|
|
|
|
memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
|
|
per_cpu(mce_dev, cpu).id = cpu;
|
|
per_cpu(mce_dev, cpu).cls = &mce_sysclass;
|
|
|
|
err = sysdev_register(&per_cpu(mce_dev, cpu));
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; mce_attrs[i]; i++) {
|
|
err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
|
|
if (err)
|
|
goto error;
|
|
}
|
|
for (j = 0; j < banks; j++) {
|
|
err = sysdev_create_file(&per_cpu(mce_dev, cpu),
|
|
&mce_banks[j].attr);
|
|
if (err)
|
|
goto error2;
|
|
}
|
|
cpumask_set_cpu(cpu, mce_dev_initialized);
|
|
|
|
return 0;
|
|
error2:
|
|
while (--j >= 0)
|
|
sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[j].attr);
|
|
error:
|
|
while (--i >= 0)
|
|
sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
|
|
|
|
sysdev_unregister(&per_cpu(mce_dev, cpu));
|
|
|
|
return err;
|
|
}
|
|
|
|
static __cpuinit void mce_remove_device(unsigned int cpu)
|
|
{
|
|
int i;
|
|
|
|
if (!cpumask_test_cpu(cpu, mce_dev_initialized))
|
|
return;
|
|
|
|
for (i = 0; mce_attrs[i]; i++)
|
|
sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
|
|
|
|
for (i = 0; i < banks; i++)
|
|
sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[i].attr);
|
|
|
|
sysdev_unregister(&per_cpu(mce_dev, cpu));
|
|
cpumask_clear_cpu(cpu, mce_dev_initialized);
|
|
}
|
|
|
|
/* Make sure there are no machine checks on offlined CPUs. */
|
|
static void __cpuinit mce_disable_cpu(void *h)
|
|
{
|
|
unsigned long action = *(unsigned long *)h;
|
|
int i;
|
|
|
|
if (!mce_available(¤t_cpu_data))
|
|
return;
|
|
|
|
if (!(action & CPU_TASKS_FROZEN))
|
|
cmci_clear();
|
|
for (i = 0; i < banks; i++) {
|
|
struct mce_bank *b = &mce_banks[i];
|
|
|
|
if (b->init)
|
|
wrmsrl(MSR_IA32_MCx_CTL(i), 0);
|
|
}
|
|
}
|
|
|
|
static void __cpuinit mce_reenable_cpu(void *h)
|
|
{
|
|
unsigned long action = *(unsigned long *)h;
|
|
int i;
|
|
|
|
if (!mce_available(¤t_cpu_data))
|
|
return;
|
|
|
|
if (!(action & CPU_TASKS_FROZEN))
|
|
cmci_reenable();
|
|
for (i = 0; i < banks; i++) {
|
|
struct mce_bank *b = &mce_banks[i];
|
|
|
|
if (b->init)
|
|
wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
|
|
}
|
|
}
|
|
|
|
/* Get notified when a cpu comes on/off. Be hotplug friendly. */
|
|
static int __cpuinit
|
|
mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (unsigned long)hcpu;
|
|
struct timer_list *t = &per_cpu(mce_timer, cpu);
|
|
|
|
switch (action) {
|
|
case CPU_ONLINE:
|
|
case CPU_ONLINE_FROZEN:
|
|
mce_create_device(cpu);
|
|
if (threshold_cpu_callback)
|
|
threshold_cpu_callback(action, cpu);
|
|
break;
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
if (threshold_cpu_callback)
|
|
threshold_cpu_callback(action, cpu);
|
|
mce_remove_device(cpu);
|
|
break;
|
|
case CPU_DOWN_PREPARE:
|
|
case CPU_DOWN_PREPARE_FROZEN:
|
|
del_timer_sync(t);
|
|
smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
|
|
break;
|
|
case CPU_DOWN_FAILED:
|
|
case CPU_DOWN_FAILED_FROZEN:
|
|
if (!mce_ignore_ce && check_interval) {
|
|
t->expires = round_jiffies(jiffies +
|
|
__get_cpu_var(mce_next_interval));
|
|
add_timer_on(t, cpu);
|
|
}
|
|
smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
|
|
break;
|
|
case CPU_POST_DEAD:
|
|
/* intentionally ignoring frozen here */
|
|
cmci_rediscover(cpu);
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block mce_cpu_notifier __cpuinitdata = {
|
|
.notifier_call = mce_cpu_callback,
|
|
};
|
|
|
|
static __init void mce_init_banks(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < banks; i++) {
|
|
struct mce_bank *b = &mce_banks[i];
|
|
struct sysdev_attribute *a = &b->attr;
|
|
|
|
sysfs_attr_init(&a->attr);
|
|
a->attr.name = b->attrname;
|
|
snprintf(b->attrname, ATTR_LEN, "bank%d", i);
|
|
|
|
a->attr.mode = 0644;
|
|
a->show = show_bank;
|
|
a->store = set_bank;
|
|
}
|
|
}
|
|
|
|
static __init int mcheck_init_device(void)
|
|
{
|
|
int err;
|
|
int i = 0;
|
|
|
|
if (!mce_available(&boot_cpu_data))
|
|
return -EIO;
|
|
|
|
zalloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
|
|
|
|
mce_init_banks();
|
|
|
|
err = sysdev_class_register(&mce_sysclass);
|
|
if (err)
|
|
return err;
|
|
|
|
for_each_online_cpu(i) {
|
|
err = mce_create_device(i);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
register_hotcpu_notifier(&mce_cpu_notifier);
|
|
misc_register(&mce_log_device);
|
|
|
|
return err;
|
|
}
|
|
|
|
device_initcall(mcheck_init_device);
|
|
|
|
/*
|
|
* Old style boot options parsing. Only for compatibility.
|
|
*/
|
|
static int __init mcheck_disable(char *str)
|
|
{
|
|
mce_disabled = 1;
|
|
return 1;
|
|
}
|
|
__setup("nomce", mcheck_disable);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
struct dentry *mce_get_debugfs_dir(void)
|
|
{
|
|
static struct dentry *dmce;
|
|
|
|
if (!dmce)
|
|
dmce = debugfs_create_dir("mce", NULL);
|
|
|
|
return dmce;
|
|
}
|
|
|
|
static void mce_reset(void)
|
|
{
|
|
cpu_missing = 0;
|
|
atomic_set(&mce_fake_paniced, 0);
|
|
atomic_set(&mce_executing, 0);
|
|
atomic_set(&mce_callin, 0);
|
|
atomic_set(&global_nwo, 0);
|
|
}
|
|
|
|
static int fake_panic_get(void *data, u64 *val)
|
|
{
|
|
*val = fake_panic;
|
|
return 0;
|
|
}
|
|
|
|
static int fake_panic_set(void *data, u64 val)
|
|
{
|
|
mce_reset();
|
|
fake_panic = val;
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
|
|
fake_panic_set, "%llu\n");
|
|
|
|
static int __init mcheck_debugfs_init(void)
|
|
{
|
|
struct dentry *dmce, *ffake_panic;
|
|
|
|
dmce = mce_get_debugfs_dir();
|
|
if (!dmce)
|
|
return -ENOMEM;
|
|
ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
|
|
&fake_panic_fops);
|
|
if (!ffake_panic)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
late_initcall(mcheck_debugfs_init);
|
|
#endif
|